Skip to main content

Mean Field for Continuous High-Order MRFs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7476))

Abstract

Probabilistic inference beyond MAP estimation is of interest in computer vision, both for learning appropriate models and in applications. Yet, common approximate inference techniques, such as belief propagation, have largely been limited to discrete-valued Markov random fields (MRFs) and models with small cliques. Oftentimes, neither is desirable from an application standpoint. This paper studies mean field inference for continuous-valued MRF models with high-order cliques. Mean field can be applied effectively to such models by exploiting that the factors of certain classes of MRFs can be formulated using Gaussian mixtures, which allows retaining the mixture indicator as a latent variable. We use an image restoration setting to show that resulting mean field updates have a computational complexity quadratic in the clique size, which makes them scale even to large cliques. We contribute an empirical study with four applications: Image denoising, non-blind deblurring, noise estimation, and layer separation from a single image. We find mean field to yield a favorable combination of performance and efficiency, e.g. outperforming MAP estimation in denoising while being competitive with expensive sampling approaches. Novel approaches to noise estimation and layer separation demonstrate the breadth of applicability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chantas, G., Galatsanos, N., Likas, A., Saunders, M.: Variational Bayesian image restoration based on a product of t-distributions image prior. IEEE T. Image Process. 17(10), 1795–1805 (2008)

    Article  MathSciNet  Google Scholar 

  2. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. J. Comput. Vision 1(70), 41–54 (2006)

    Article  Google Scholar 

  3. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. In: SIGGRAPH 2006, pp. 787–794 (2006)

    Google Scholar 

  4. Geiger, D., Girosi, F.: Parallel and deterministic algorithms from MRF’s: Surface reconstruction. IEEE T. Pattern Anal. Mach. Intell. 13(5), 401–412 (1991)

    Article  Google Scholar 

  5. Ishikawa, H.: Higher-order clique reduction in binary graph cut. In: CVPR 2009 (2009)

    Google Scholar 

  6. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: NIPS 2011, pp. 109–117 (2011)

    Google Scholar 

  7. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. In: NIPS 2009, pp. 1033–1041 (2009)

    Google Scholar 

  8. Lan, X., Roth, S., Huttenlocher, D.P., Black, M.J.: Efficient Belief Propagation with Learned Higher-Order Markov Random Fields. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 269–282. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Lasowski, R., Tevs, A., Wand, M., Seidel, H.P.: Wavelet belief propagation for large scale inference problems. In: CVPR 2011 (2011)

    Google Scholar 

  10. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. ACM Transactions on Graphics 26(3), 70:1–70:9 (2007)

    Google Scholar 

  11. Levin, A., Weiss, Y.: User assisted separation of reflections from a single image using a sparsity prior. IEEE T. Pattern Anal. Mach. Intell. 29(9), 1647–1654 (2007)

    Article  Google Scholar 

  12. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: CVPR 2011 (2011)

    Google Scholar 

  13. Lucy, L.B.: An iterative technique for the rectification of observed distributions. The Astronomical Journal 79, 745 (1974)

    Article  Google Scholar 

  14. Minka, T.: Divergence measures and message passing. Tech. Rep. MSR-TR-2005-173, Microsoft Research, Cambridge, UK (2005)

    Google Scholar 

  15. Miskin, J., MacKay, D.J.C.: Ensemble learning for blind image separation and deconvolution. In: Adv. in Ind. Comp. Analysis (2000)

    Google Scholar 

  16. Pletscher, P., Nowozin, S., Kohli, P., Rother, C.: Putting MAP Back on the Map. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 111–121. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE T. Image Process. 12(11), 1338–1351 (2003)

    Article  MathSciNet  Google Scholar 

  18. Potetz, B.: Efficient belief propagation for vision using linear constraint nodes. In: CVPR 2007 (2007)

    Google Scholar 

  19. Romeiro, F., Zickler, T.: Blind Reflectometry. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 45–58. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vision 82(2), 205–229 (2009)

    Article  Google Scholar 

  21. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  22. Schmidt, U., Gao, Q., Roth, S.: A generative perspective on MRFs in low-level vision. In: CVPR 2010 (2010)

    Google Scholar 

  23. Sudderth, E.B., Ihler, A.T., Freeman, W.T., Willsky, A.S.: Nonparametric belief propagation. In: CVPR 2003, vol. 1, pp. 605–612 (2003)

    Google Scholar 

  24. Wainwright, M.J., Simoncelli, E.P.: Scale mixtures of Gaussians and the statistics of natural images. In: NIPS 1999, pp. 855–861 (1999)

    Google Scholar 

  25. Weiss, Y., Freeman, W.T.: What makes a good model of natural images? In: CVPR 2007 (2007)

    Google Scholar 

  26. Zoran, D., Weiss, Y.: Scale invariance and noise in natural images. In: ICCV 2009 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schelten, K., Roth, S. (2012). Mean Field for Continuous High-Order MRFs. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds) Pattern Recognition. DAGM/OAGM 2012. Lecture Notes in Computer Science, vol 7476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32717-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32717-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32716-2

  • Online ISBN: 978-3-642-32717-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics