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Abstract We introduce a plume tracking algorithm based on robot formations. The
algorithm is inherently designed for multi-robot systems, and requires at least two
robots to collaborate. The robots try to keep themselves centered around the plume
while moving upwind towards the source, and share their odor concentration and
wind direction measurements with each other. In addition, robots know the rela-
tive poses of other team members. Systematic experiments with up to 5 real robots
in a wind tunnel show that the robots achieve close-to-optimal performance in our
scenario, and by far outperform previous approaches. The performance gain is at-
tributed to the fact that robots continuously share information about the plume (odor
concentration, wind direction) without spatially competing for acquiring it.

1 Introduction

With the advances in robotics and chemical sensor research in the last decade, odor
sniffing robots have become an active research area. Notably the localization of odor
sources would allow for very interesting robotic applications, such as search and
rescue operations, safety and control operations on airports or industrial plants, and
humanitarian demining [15] [12] [3]. Many of these applications are time-critical,
i.e. odor sources should be found as fast as possible. Moreover, as the structure of
plumes in the air is intermittent in both time and space [17], tracking plumes is a
challenging problem.
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In previous work [9], we analyzed three bio-inspired plume tracking algorithms
based on upwind surge, casting, and spiraling, and carried out experiments with real
robots and in simulation. Experiments with the multi-robot versions of these algo-
rithms [8] thereby revealed that robots are competing for space even when they are
communicating and collaborating, a limitation which is especially important in nar-
row plumes. When robots avoid each other (to prevent collisions), they often lose the
plume and switch to plume reacquisition, which obviously results in performance
degradation. Reasons for this are the state-machine nature of the bio-inspired algo-
rithms on one hand, but also the fact that robots do not plan their path with respect
to the positions of the other robots. The low-level controller (obstacle avoidance)
interferes with the high-level controller (bio-inspired odor source localization algo-
rithm).

In this paper, we present a novel algorithm to tackle exactly this problem. The
algorithm is based on a loose robot formation which collaboratively moves through
the plume towards the source. Robots thereby communicate with each other, and
share all observations (wind and odor concentration) as well as their relative po-
sitions. A simple reactive control scheme keeps the robot formation centered (in
crosswind direction) around the plume while the robots are moving upwind towards
the source.

This algorithm is not an extension of some existing single-robot algorithm, but
inherently designed for multi-robot system. (At least 2 robots are necessary for the
algorithm to work.) By design, robots do not compete for space, and no low-level
avoidance algorithm is necessary to prevent robots from bumping into each other!.
In addition, robots truly and continuously collaborate: every single observation is
shared, and the control algorithm uses the observations of all robots in the formation
as input.

The remainder of this paper is structured as follows. In Section 2, we present
existing approaches for multi-robot odor source localization. Section 3 formally in-
troduces the crosswind formation algorithm. After depicting the experimental setup
in Section 4, we show real-robot experiments with a static source (Section 5) and a
moving source (Section 6). Finally, we conclude in Section 7.

2 Related Work

Most odor source localization algorithms found in the scientific literature are in-
tended for single-robot systems. To our knowledge, there only exist four multi-robot
approaches to date.

Hayes et al. applied a bio-inspired algorithm based on spiraling and upwind surge
to multiple robots [2] [1], and studied the effect of a primitive broadcasting commu-
nication scheme. In particular, they studied a communication scheme called KILL

1 An obstacle avoidance algorithm may still be necessary to prevent robots from bumping into
obstacles, of course.
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in which all robots stop as soon as one perceives an above-threshold odor concentra-
tion, and a scheme called ATTRACT whereby robots that do not perceive any odor
join others that have found plume information. Experiments were carried out with
real robots and in an embodied simulation, and the performance metric was a linear
combination of time and group energy, the latter being proportional to the sum of
the distances the robots traveled. The KILL strategy was found to save significant
power, whereas the ATTRACT strategy did not reveal any advantage in their setup.
The multi-robot experiments we carried out in simulation [8] are conceptually sim-
ilar.

Second, all algorithms based on PSO [13] [5] [6] [4] are intended for use in multi-
robot systems. PSO requires robots to communicate at least locally, and robots must
be aware of each other’s position. In the standard PSO algorithm, collaboration is
however limited. The only variable they share is the (locally or globally) highest
concentration, and the position where it was measured. As a result, robots will have
a tendency to move towards the same local optimum if communication is global, and
may bump into each other. Jatmiko et al. therefore introduced an extension called
CPSO [6] in which robots share their positions and use a repulsive force to avoid
collisions and make sure robots remain spread over some area. Robots however do
not directly take concentration measurements of other robots into account.

Another algorithm inherently designed for multi-robot systems is the fluxotaxis
algorithm [16]. As its name suggests, it is based on the chemical mass flux, which
is a product of the chemical density and the flow velocity. Fluxotaxis is therefore
a hybrid between chemotaxis and anemotaxis. As positive divergence of mass flux
indicates a source, this algorithm basically climbs up the mass flux gradient. This
is done with a flock of robots that share their observations (concentration and air-
flow) with a central controller. Fluxotaxis has been shown to perform well even in
complex scenarios with obstacles.

Finally, the infotaxis algorithm has been extended to multiple robots [14]. Robots
thereby share all their observations (concentrations and positions) to collaboratively
infer the location of the source. All information from all robots is integrated into a
single model, which is the maximum amount of information robots can share. The
authors reported that in some scenarios, super-linear performance increase can be
achieved by using multiple robots.

3 The Crosswind Formation Algorithm

The underlying idea of the algorithm presented in this paper is to keep some robots
on the left side of the plume, and some robots on the right side of the plume. While
they are going upwind, they try to stay centered in the plume, i.e. keep the (aver-
age) concentrations on the left and on the right approximately equal. The formation
chosen here is a line formation in crosswind direction.

Each robot can measure the odor concentration and the wind direction (relative to
its pose) at its current location, and shares this information with all members of the
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Fig. 1 Sketch of the formation algorithm from the perspective of robot 3. Calculation of the forces
fu and f, is carried out in a reference system defined by the wind direction. The resulting force vec-
tor is then rotated into the robot’s reference system. All robots carry out the exact same calculation,
but from their own perspective.

formation. In addition, robots can measure the relative poses of each other. A global
reference system is not required, but the wind measurement actually provides the
robots with an estimate of a global direction.

In a reference system defined by the wind direction, each robot calculates a (vir-
tual) crosswind and a (virtual) upwind force, as depicted in Figure 1. The upwind
force, f, is

1
fu:U‘FN;yi (D

where N denotes the number of robots and u the constant upwind drag, a parameter
of the algorithm. f, keeps the robot aligned with the other robots, such that they
all have approximately the same downwind distance from the odor source. If, for
instance, one robot is behind, the y; tend to be more positive in the coordinate system
of this robot and the resulting force is stronger.

The crosswind force, f., is a weighted difference (with weights a and r) between
an attractive and a repulsive force. Formally,
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Fig. 2 Crosswind and upwind forces (scaled) for different positions of robot 2 in a formation with
3 robots. Robot 1 is currently measuring a 4 times higher concentration as compared to robot 3.
The gray shading stands for the odor concentration, which attains its maximum at x = —0.5 m.

The attractive force, f,, takes into account the odor concentrations, c;, measured by
all other robots and is responsible for keeping the formation centered in the plume.
Robots measuring a high concentration contribute more weight, and therefore pull
the other robots towards them. The repulsive force, f;, keeps the robot at a certain
distance from all other robots.

The vector (fy, f.) is then rotated into the reference system defined by the robots
heading,

fv = fucos(—at) — f.sin(—) ®)
Jn = fusin(—a) + fecos(—a) ©)

where o denotes the wind angle relative to the robots heading. The resulting vector
(fv, fn) is finally transformed into differential drive wheel speeds as follows:

s = S(kva +khfh) @)
Sy = S(kva _khfh) (8)

ky and k;, are thereby factors to scale the forward and differential speed appropri-
ately, and s denotes the mean forward speed.

All robots keep executing these steps continuously in a loop. The loop speed is
approximately the same on all robots, but robots are not tightly synchronized. In
each iteration of the loop, a robot takes one measurement with the wind direction
sensor and one with the odor sensor, and broadcasts the latter to all other robots. To
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Fig. 3 Schematic drawing of the arena (not to scale) with the approximate location of the plume.

calculate the forces, it uses the last received odor concentration and relative position
values of each robot.

4 Experimental Setup

The experiments were carried out in a 16 m long and 4 m wide wind tunnel. The
setup was the same as described in [10], except that the arena inside the tunnel was
enlarged to approximately 15 m by 3.5 m. The same setup was also used to analyze
three bio-inspired algorithms [7]. In the following paragraphs, we briefly repeat the
most important figures.

The wind field in the wind tunnel was laminar at roughly 1m/s speed. The
ethanol odor plume was therefore a straight line (see Figure 3), and the concen-
tration peaks were slightly decreasing as the plume moved downwind. A constant
amount of ethanol vapor was released by means of a pump. To reduce the turbulence
created by the odor source, the pump was placed outside of the arena and connected
with a tube to the source outlet. Nevertheless, the outlet created some turbulence
right downwind the source, which sometimes disturbed the laminar wind flow in
that area. The starting area was 14 meters downwind from the outlet, as depicted in
Figure 3.

4.1 Robotic Platform

The robot used in the experiments was a Khepera III robot (K-Team SA, Switzer-
land) equipped with an odor sensor and a wind sensor board, as depicted in Figure 4

(a).
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(a) (b)

Fig. 4 (a) The Khepera III robot with the wind sensor and the odor sensor board. (b) Picture of the
wind sensor board. The two LEDs on top were used for tracking the robots with overhead cameras.

The odor sensor was a MiCS-5521 volatile organic compound (VOC) sensor,
which has a very fast response time (= 0.1 s). This sensor reacts to a wide range of
organic compounds in the air, with an sensitivity to ethanol comparable to that of a
human nose (= 10 ppm). To take advantage of the sensor’s low response time, air
was taken in and released with a small pump.

A new version of the wind sensor board with 6 thermistors was used on the
robots. The board reports the wind direction at a rate of ~ 10Hz with a standard
error of 4° in our flow.

4.2 Relative Positioning

Relative positions were emulated using a camera system and sent to the robots via
wireless LAN at a 10 Hz update rate. The camera system consisted of 6 overhead
cameras, which recorded the whole arena. Each robot was equipped with two LEDs,
and SwisTrack [11] was used to detect these markers on the recorded images. The
global accuracy after calibration was about 8 cm, while the precision was around
4 cm.

5 Experiments with a Static Source

We tested the crosswind formation algorithm with the following settings:

Algorithm Robots  Start position Runs
A Crosswind Formation OSL 3 left 10
B Crosswind Formation OSL 3 middle 10
C Crosswind Formation OSL 3 right 10
D Crosswind Formation OSL 5 middle 5
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With the start position left (resp. right), the robots started slightly at the left (resp.
right) of the plume, and only the rightmost (resp. leftmost) robot was measuring an
above-baseline odor concentration. With the start position middle, one robot was
placed in the plume center at the beginning of the experiment, while an equal num-
ber of robots started on the left and on the right of the plume. The mean forward
speed of the robots was s = 7.1 cm/s, and the parameters of the force model were
set as follows:

u a r ky  kp
Experiments with 3 robots (A, B, C) 1 1 0.1225 1 1
Experiments with 5 robots (D) 1 1 04225 1 1

Note that no attempt was made to systematically optimize these parameters, as
the main objective is to demonstrate odor source localization using formations, and
not formation control itself.

Before each run, the odor concentration baseline was determined individually for
each robot by taking a few measurement samples in fresh air. The sensitivities of the
odor sensors were not systematically calibrated, but believed to be approximately
the same. Slight sensitivity differences would result in a little drift of the formation
in crosswind direction, but hardly affect the performance.

Two metrics were calculated for each run:

> The success rate of the team is the number of successful runs (where robots keep
the formation and reach the source) divided by the total number of runs.

> The distance overhead of a robot is its traveled distance divided by the distance
of the shortest path to the source (straight line). The distance overhead of the
team is the average over the distance overheads of all team members.

Figure 5 shows one run of each setting. No matter where the robots started, the
robots found the center of the plume within the first 2 m upwind distance and then
continued going straight upwind. The distance overheads are therefore extremely
low, as shown in Figure 6. The success rate was 100 % in all settings.

In our setup, this algorithm clearly outperforms all bio-inspired algorithms [7]
[9] in terms of distance overhead and success rate. The distance overhead for most
runs was below 2 %, and for some runs even below 1 %. Included in this overhead
is the initial phase in which robots get into the predefined formation shape. Without
this, the results would be even closer to the optimal performance.

This is not surprising: with sensors on the left and on the right of the plume, the
formation obtains direct feedback about its position with respect to the plume, and
can correct for that long before leaving the plume completely. A plume reacquisition
phase, as it is used with the bio-inspired algorithms is not necessary any more. The
robots keep going upwind without ever losing the plume.

Using 5 instead of 3 robots did not improve the performance in our experiments.
There is no a priori reason for which 5 robots should yield worse results. After
all, 5 robots collect even more information about the plume than 3 robots, and
should therefore do at least an equally good job. However, the information gain
when switching from 3 to 5 robots might be tiny, and therefore irrelevant in our
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Fig. 5 Real-robot trajectories produced by crosswind formation algorithm. The gray rectangle
represents the target area with the odor source while the black circles denote the starting positions
of the robots. The robots go almost straight upwind towards the source, yielding very low distance
overheads and high success rates.

setup. Main reason for the performance drop here are presumable the outermost
robots, which started at a suboptimal position quite far away from the plume center,
and first had to move closer to the center. We believe, however, that increasing the
number of robots would be advantageous in settings with a sparser plume.

6 Experiments with a Moving Source

Since this algorithm measures the odor concentration at several points at the same
time, it is particularly well suited for scenarios with moving sources. With a single
sensor, an algorithm is unable to tell with a single measurement in which direction
the source moved. Such information can only be deduced from multiple (sequential
or parallel) measurements at different locations.



10 Crosswind Formation Plume Tracking Algorithm
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Fig. 6 Distance overheads (by starting position) of the experiments with three robots. The dots
stand for the distance overhead of the robots in individual runs, and are classified by the robot’s
position within the formation. The bars indicate the mean distance overhead over all runs and all
robots.
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Fig. 7 Real-robot trajectories produced by the crosswind formation algorithm tracking a source
moving in crosswind direction. The gray rectangle represents the target area with the odor source
while the black circles denote the starting positions of the robots. The robots nicely follow the
movement of the plume.

Multi-robot algorithms provide just this: taking several measurements at the same
time. This allows the formation to know immediately whether the source moved to-
wards the left or towards the right. The force model takes advantage of that infor-
mation in that it tries to keep the robots centered around the plume.
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We carried out 5 runs with the same algorithm tracking a moving source. The
source was thereby moved back and forth by 92 cm in crosswind direction at con-
stant speed. All other parameters of the setup and the algorithm were kept the same.
Two of these runs are drawn in Figure 7. While all runs were successful, it is not
possible to calculate the distance overhead (as defined above) in this case. The tra-
jectories however reveal that the algorithm works fine.

7 Conclusion

In this paper, we presented the crosswind formation algorithm, an odor source lo-
calization algorithm which is inherently designed for multi-robot systems. In its
present form, the algorithm requires at least 2 robots to collaborate. Experiments
were carried out with 3 and 5 real robots in a scenario with laminar flow and no
obstacles, and showed that this algorithm achieves close-to-optimal performance in
terms of distance overhead and success rate. We also demonstrated the algorithm’s
robustness in a scenario with a moving source.

The algorithm performs substantially better than previous attempts with bio-
inspired algorithms that were extended to multi-robot algorithms. With the formation-
based approach used here, a single controller takes care of avoiding collisions
among robots and tracking a plume at the same time. Hence, robots do not com-
pete for space, and do not block each other’s way. Instead, robots take advantage of
their relative positions, as well as their wind direction and concentration measure-
ments, and strive for a common goal: finding the source. Nevertheless, the algorithm
is simple and has — except for relative localization — low requirements.

Future work could address different formations or failing robots. In addition, the
positioning requirements may be reduced to direct-neighbor-only information. The
algorithm should also be tested in more complex scenarios, such as scenarios with
obstacles, turbulence, more complex source motions models, or multiple sources.
Also of interest is a comparison with single-robot algorithms based on multiple odor
sensors, which could be regarded as multi-robot algorithms with perfect formations.
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