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Abstract. Semi-autonomous mobile robots are a promising alternative for tasks
that are too challenging for autonomous robots. Especially in an unstructured
environment, full autonomy is still far from being realized. In order to enable the
human operator to control the robot properly, visualization of the environment is
crucial. In this paper, we introduce a pipeline for geometric mapping that uses
narrow field of view RGB-D cameras as input source and builds a geometric
map of the environment while the robot either is operated manually or moves
autonomously. Geometric shapes are extracted from subsequent sensor frames
and are clipped and merged in a geometric feature map. Evaluation is done both
in simulation and on the real robot.

1 INTRODUCTION

Although performance of fully autonomous robots has improved greatly in recent years,
they still fail frequently while solving tasks in unstructured environments. This is be-
cause of inaccurate sensors and actuators as well as non-robust algorithms. A promising
alternative are semi-autonomous robots that try to fulfill common tasks autonomously
until an unexpected situation occurs. In this case, a human operator can compensate for
the lack of intelligence and accomplish the task manually. Optimally, the robot is able
to learn from the human actions and thus increases its degree of autonomy over time.

For both the human operator and the robot, perception of the environment is in-
evitable. Whereas the robot needs information about its surroundings for localization,
collision avoidance and planning of actions, the human operator needs visualization of
both the current field of view of the robot and past sensor data in order to be able to
understand the environment. Most of the robot’s demands can be met with a point map
representation whereas a geometric map is suitable for data transfer over network and
visualization. This leads to the need of a hybrid environment model, consisting of a
point and a geometric map.

In this paper, we propose a pipeline for geometric mapping of the environment
with focus on semi-autonomous robots. Both a point and a geometric representation of
the environment are created during processing. As sensors, RGB-D cameras are used.
Being very cost efficient and having a high frame rate they are advantageous over previ-
ously used tilting laser scanners. However, the narrow field of view demands additional
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processing steps. The method we propose does most of the calculations on single sensor
frames instead of the full map. Hence, we meet the requirements of a continuous data
flow and are able to create the map while the robot is moving. This is a special need if a
human operator is present as he or she needs immediate feedback of the robot’s vicinity.
As the movements commanded by the human are unforseeable and may be at a wide
range of speed, higher robustness of the mapping is needed than for a fully autonomous
mapping.

The first processing step is point cloud registration. The clouds are aligned to the
robot’s map coordinate system using Iterative Closest Point (ICP). This step is followed
by iterative extraction of geometric features like planes. Each plane is passed to the ge-
ometric map afterwards. We propose a novel method for processing these extracted
planes: The surfaces are transformed to a common coordinate system. Afterwards, 2-D
polygonal clipping is applied followed by a merging step. The merged planes are ad-
justed corresponding to their relative pose. This increases the robustness against inaccu-
rate plane extraction. Using a polygonal representation, we offer the chance to provide
a clear visualization to the human user. Additionally, user input can be used to correct
erroneous maps by selecting single shapes, deleting them or changing their position.
This is not possible with a bare point cloud representation.

The key contributions of this paper are (1) a mapping pipeline for single frame pro-
cessing of RGB-D data in order to create a geometric map, (2) a novel approach for
generating a geometric map from extracted planes and (3) a geometric map representa-
tion that can easily be understood and modified by a human.

The remainder of this paper is structured as follows: Section 2 provides related
work regarding geometric mapping, semi-autonomous behaviour and polygon clipping.
in Section 3 we present the mapping architecture and algorithms used. The evaluation
of the mapping and results are shown in Section 4. The paper concludes with a resume
and an outlook on future work.

2 RELATED WORK

Aggregation of geometric maps from point cloud data has been subject to many re-
search activities in recent time. For example, Rusu et al. used a tilting laser scanner to
acquire point clouds in [1] and performed planar segmentation using Random Sample
Consensus (RANSAC) in order to find table surfaces. Further work by Rusu et al. shows
semantic object labeling of planar surface structures in kitchen environments like cup-
boards, tables and drawers [2]. They also create polygonal represenations of extracted
surfaces but do not approach the merging problem related to sequnetial mapping. In
[3], Nüchter et al. used a combination of ICP and RANSAC for plane extraction in
point clouds in order to create a semantic map. However, they stop at the stage of la-
beled point representations rather than creating a map consistent of geometric shapes.
Another mapping pipeline was proposed by [4]. Henry et al. perform RGB-D SLAM
using a Kinect camera. They use feature points from the color image, apply RANSAC
and ICP based registration including loop closure and finally create a SURFEL repre-
sentation without deriving geometric shapes. A method for volumetric mine mapping
using occupancy griuds was presented in [5]. All these approaches are targeted at fully
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autonomous robots and do not propose a map representation suitable for human per-
ception. Some of them create maps in stop-and-go fashion which is not applicable for
humanly controlled robots.

Semi-autonomous behaviour in perception is not so extensively researched. Some
approaches deal with human interaction in navigation. In [6, 7], virtual objects are aug-
mented in a camera stream and the user can control the robot to avoid obstacles. How-
ever, no 3-D mapping is used in order to improve the users immersion. Goodfellow et
al. [8] introduced a system that presents the output of the perception module to the user
in order to get feedback about the next action. Recently, Pitzer et al. presented an ap-
proach for shared autonomy in perception [9]. The user has to identify objects the robot
is not able to recognize. Both approaches focus on the field of object detection and
have a much stronger user involvement than our approach. Currently, there is no system
known to the authors that is able to create geometric map representations from 3-D data
in order to satisfy both the requirements of autonomous and tele-operated mode. Basic
ideas of our work were already presented in [10], namely point cloud registration and
processing of convex hull polygons. This work is extend within this paper.

Processing of polygons is a common task in computer graphics and gaming. A va-
riety of different approaches ([11–13]) to polygon clipping can be found in literature.
Comparison of several polygon clipping methods is available in [14]. Most of the meth-
ods are limited in the types of polygons they can handle. Also, computational speed
varies greatly. A generic solution to 2-D polygon clipping was introduced by Vatti in
[15]. His method is able to clip and merge almost any kind of polygons in an efficient
way.

3 METHODOLOGY

Our mapping pipeline for geometric maps is designed for the use of narrow field of view
RGB-D or time-of-flight cameras. The system processes one sensor frame after another
and does not use the full map representations for most of the calculations. Only depth
information is currently used. We carefully choose algorithms to achieve on-the-fly
processing and keep the computational complexity of the system low since processing
of sensor frames during robot movement is essential for a tele-operated robot.

3.1 System Architecture

The system architecture is shown in Fig. 1. The first step is point cloud registration. We
use a variant called frustum ICP for alignment. ICP is applied on a downsampled sensor
frame to reduce computation time. Also, not every sensor frame is processed but only
key frames. The output of the registration component is a point map and an aligned key
frame. In the feature extraction step, planes are extracted from each key frame in an
iterative way in order to find all planes in the current point cloud. Concave hulls of the
planes are passed to the geometric aggregation module. The hull polygons are clipped
and merged into the geometric map. Finally, merged polygons are adjusted in pose w.r.t.
the input polygons.
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Fig. 1: Architecture of the mapping pipeline.

3.2 Registration

Due to the narrow field of view of the camera sensors and the uncertainty of both cam-
era data and robot position, registration of point clouds is inevitable. We rely on the ICP
algorithm which is widely used for registration in robotics. However, to bound compu-
tational effort in long-term operation, we use the frustum ICP variant [16] that considers
the current field of view of the sensor.

First, we select key frames according to the robot movement. This means that we
only allow a new point cloud for registration if the robot moved to a certain extent
since the last registration event. Each key frame is downsampled using a voxel filter
and aligned to the existing point map. However, not the full map is used but only the
part being in the current field of view of the sensor. The field of view is modeled as
a frustum as described in [10] and for each point in the map an inside-outside test is
performed using the normal vectors of the frustum planes. Once the final transformation
is found, the original full resolution point cloud is transformed and passed to the feature
extraction. Using key frames, we decrease the chance of mis-alignments that might
occur if the robot is moved to fast by a human. Also, we evaluate the fittness score of
the registration and reject a frame it is not high enough. In this case, we try aligning the
next frame.

3.3 Feature Extraction

The next processing step is feature extraction. As features we consider basic geometric
shapes like planes, lines or cylinders. In this paper, we use RANSAC to extract planes
from each key frame.

The plane extraction is done in an incremental manner. First, Euclidean clustering
is used to determine connected regions of the point cloud. In a second step, we try to
fit planes to each cluster using RANSAC. If the plane found has at least a minimum
number of inliers, it is considered for further processing, removed from the cluster and
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the fitting step is repeated. We do this as long as no new plane can be fitted or the cluster
size falls below a user defined threshold.

It is also possible to set constraints in order to specify what kind of planes should be
extracted. For example, if only horizontal planes are of interest for the geometric map,
we only consider planes as valid if their normal vector is approximately parallel to the
z axis.

In order to describe the extracted planes we use both the plane coefficients of the
cartesian form and a concave hull. First, the inliers of the plane are extracted from the
cluster and projected on the plane. For a point p the distance δ to a plane

pl : nnn · (xxx− aaa) = 0 (1)

is defined as

δ = nnn · (ppp− aaa). (2)

The projection of p on the plane follows as

pprpprppr = ppp− δnnn. (3)

Second, a concave hull of the projected inliers is constructed using alpha shapes.
The hull points are sorted so that it is possible to create a polygon. Afterwards, both
the hull polygon and the plane coefficients are passed to the geometric map for further
processing.

3.4 Aggregation of geometric map

As the same scene is observed multiple times from different points of view, many of the
extracted planes represent the same objects in the environment and therefore overlap.
The goal during aggregation of the geometric map is to merge all planes that describe
the same plane in the environment. To achieve this, we use 2-D polygon clipping algo-
rithms.

As polygon clipping is a common task in computer graphics, there are many ap-
proaches in literature. However, all of them only work for 2-D polygons. Thus, we
have to transform polygons into a common coordinate system if we want to clip them.
First, we define a similarity measure for the planes in order to determine candidates for
merging. For two planes p1 and p2 with

pi : aix+ biy + ciz + di = 0, i = 1, 2 (4)

the normal vector is

ninini =

aibi
ci

 (5)

The similarity measure is defined as

‖n1n1n1 ·n2n2n2‖ > t1 (6a)
d1 − d2 < t2 (6b)
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if the normal vectors of the two planes point in the same direction. If not, one of the
normal vectors has to be flipped. The conditions (6) limit the maximum angle and dis-
tance deviation. The parameters t1 and t2 are user defined and depend on the desired
granularity of merging. If the two planes meet the similarity condition, they are trans-
formed into a common coordinate system. We now consider to be p1 the plane already
residing in the map, whereas p2 is a new plane coming from extraction. The weight δ
is introduced for each plane in the map. It is increased after every successful merge to
account for the fact that the confidence in this feature increases over time.

The clipping coordinate system of p1 and p2 is defined as follows: As the coeffi-
cients of the merge candidates are similar but not identical we define a virtual average
plane

p3 :
(δa1 + a2)x+ (δb1 + b2)y + (δc1 + c2)z + (δd1 + d2)√

(δa1 + a2)2 + (δb1 + b2)2 + (δc1 + c2)2
= 0 (7)

The weighting factor δ yields a stronger influence of planes that have been merged
multiple times before. Thus, the robustness against outlier planes is increased, e.g. if
registration is not accurate or plane extraction fails.

The coordinate frame for this plane is defined so that n3n3n3 from (5) represents the
z-axis z3z3z3. The x-axis x3x3x3 and y-axis y3y3y3 can be chosen freely, they only have to be located
on p3p3p3 and form a right-hand coordinate system with z3z3z3. The origin of coordinate system
is calculated by

xo = yo = zo =
−(d1 + d2)

n3,x + n3,y + n3,z
(8)

which solves the plane equation. The transformation from the world coordinate frame
to the p3 frame can be derived in two steps. First, the rotation matrix is set to

RRR =

x3,x x3,y x3,zy3,x y3,y y3,z
z3,x z3,y z3,z

 (9)

using the axes of the p3 frame. Second, the translation is found by

ttt = RRR

xoyo
zo

 . (10)

The full transformation follows from (9) and (10) as

Tw2pTw2pTw2p =

(
RRR ttt
000 1

)
(11)

Now, all the points ptwptwptw of p1 and p2 can be transformed to the common p3 coordinate
frame by

ptpptpptp = Tw2pTw2pTw2pptwptwptw (12)
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For the 2-D polygon clipping, we are only interested in the x and y coordinates of the
points. We therefore project the transformed points on p3 using (3). The projection error
is usually small since we only try to merge similar planes and can be ignored.

For clipping, we use the algorithm by Vatti [15]. This method is capable of clipping
convex and concave polygons. Also, polygons with holes or self-intersecting polygons
can be processed. It uses a generic approach to clip polygons of all kinds: The polygons
are parsed in a scan line fashion. While doing this, the edges of the two polygons are
marked as left or right bound of the new polygon and also as contributing or not con-
tributing to the new polygon, depending on the occurrence of local minima or maxima.
If a left and right bound intersection occurs, edge classification schemes are used to
construct the merged polygon.

The algorithm can create both the union or the intersection of polygons. We use
this to first check, whether two candidates intersect. If this is the case, the union of the
two polygons is calculated and returned as the merged polygon. If the polygons do not
intersect, merging is rejected. After merging, the points of the merged plane are finally
transformed to the world coordinate system using Tw2pTw2pTw2p

−1 and p1 is replaced by p3 in
the map. Use of the virtual plane p3 leads to an adjustment of the plane pose in the map
over time. Hence, the pose of inaccurate planes can be improved over multiple merging
steps.

4 EVALUATION

In order to proof the functionality of our mapping concept, we do a performance evalu-
ation both on simulated and real data. As test environment we choose the kitchen in our
robot lab. The focus of the evaluation is on the geometric mapping part. The registration
was already evaluated in [10].

4.1 Setup

As robot, Care-O-bot® 3 (Fig. 3a) is used [17] . It is equipped with a Kinect RGB-D
camera on an agile head. Laser range finder based localization is used to provide an
estimate for the robot pose. The robot is moved back and forth in front of the kitchen.
Both the base and the neck are used to move the camera manually by a human user.
This means, the motions of the robot are not planned in advance.

From the simulation, we obtained two datasets, the first of them was recorded while
moving the robot in front of the empty kitchen. For the generation of the simulated
data, we used the gazebo1 simulator. It performs ray casting in a virtual environment to
simulate a 3-D camera. In order to evaluate robustness, we added Gaussian noise at dif-
ferent magnitude. Set simn0 is without noise whereas simn005 and simn02 have added
noise with a standard deviation of 0.005m and 0.02m respectively. In the second dataset
simn0obj we added non-planar objects to the scene in order to make plane extraction
more challenging.

1 http://playerstage.sourceforge.net/gazebo/gazebo.html
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With the real robot, two datasets were recorded, one similar to the simulated scene
without objects real1 (see Fig. 2a) and one with two additional tables in front of the
kitchen and non-planar objects added (see Fig. 2b), real2 .

(a) (b)

Fig. 2: Kitchen evaluation environment: (a) Set real1 , (b) Set real2 .

We evaluate the accuracy of the resulting geometric map and the level of plane
reduction by merging. Also, we take a look at the mis-detection of planar surfaces if
curved surfaces are present. For accuracy evaluation, we created a reference point map
of the environment, based on manually measured data, see Fig. 3b. Seven ground truth
planes were labeled by hand. The extracted planes are associated with and compared
to the ground truth planes. We evaluate the deviation of the plane coefficients dcoeff ,
the angle and distance error dangle and ddist based on the coefficients and the point-to-
plane errors RMSp of the hull points between associated planes. The parameters in (6)
are set to t1 = 0.95 and t2 = 0.1.

4.2 Results

The simulated data is used to proof the concept of our mapping algorithm and to test the
robustness against noise. The results shown in table 1 can be interpreted as follows: The
coefficient, angle and distance deviation grows with increasing noise. This was expected
as the planes cannot be fitted as accurate with higher noise than with lower. Also, the
point map quality suffers from a higher noise level. However, the point RMS error does
not grow as much as one could expect. This is because planes are only merged if they
are similar enough. With increasing noise, the deviation between the planes gets higher
what leads to less merged planes but also less point errors. The comparison between
the empty scene and the one with objects shows that the non-planar surfaces do not
disturb the plane extraction and therefore do not influence map quality. On the whole,
the values proof a good map at all levels of noise.
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(a) Care-O-Bot® 3 (b) Ground truth

Fig. 3: Mobile service robot Care-O-Bot® 3 (a) and ground truth of the kitchen used for
evaluation (b).

Table 1: Accuracy of geometric map for simulated data

set dcoeff dangle (rad) ddist (m) RMSp (m)
simn0 0.0108 0.0067 0.0071 0.0054
simn005 0.0211 0.0057 0.0198 0.0246
simn02 0.1511 0.0580 0.1368 0.0211
simn0obj 0.0108 0.0056 0.0084 0.0048

(a) (b)

Fig. 4: Point and geometric map from (a) simulation and (b) real data. Hull polygons of
planes marked blue.
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Fig. 5: Merging sequence.

Fig. 4a shows the map for the case without noise. It can be seen that all planes
are extracted correctly, that all planes belonging together are merged correctly and that
the bounds of the planes correspond well with those of the point cloud. In Fig. 5 the
merging sequence is shown. While the robot moves, the geometric map grows and so
do the planes when additional parts come into view.
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Fig. 6: Map size compared with number of extracted planes.

Another interesting measure is the number of planes in the map compared with the
number of incoming planes as it shows the power of the algorithm to reduce the number
of multiply observed planes. Fig. 6 shows the number of planes over the number of
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key frames for the empty kitchen at 0 and 0.02 noise. It can be seen, that the number
of planes in the map increases until all planes in the scene have been seen once and
then stays constant. The plane reduction ratio is 16.14. At a higher magnitude of noise,
more planes are extracted and cannot be reduced to the minimum number of planes.
Nevertheless, the plane reduction ratio is still at 7.0. For the real robot, the empty
kitchen scene and one with added tables and objects are evaluated. In table 2 can be
seen that the deviations of the real scene are at a similar magnitude than those from
the simulated scene at a noise level of simn02 . The performance of the mapping is
similar in both scenes, also in the one with additional tables and objects. Hence we can
conclude that our algorithm works robustly even in cluttered environments.

Fig. 4b shows the map generated from set real2 . It can be seen that most of the
planes are placed well. Also, the objects on the tables are not detected as planes. How-
ever, merging of the planes is not as perfect as with the simulated data and there is
an observable deviation of the kitchen front plane. We will investigate this issue in the
following.

Table 2: Accuracy of geometric map for real data

set dcoeff dangle (rad) ddist (m) RMSp (m)
real1 0.1699 0.0692 0.1020 0.0421
real2 0.1520 0.0658 0.1019 0.0317

The noise of the Kinect camera is comparable to the simulated scene but addition-
ally, the Kinect shows distortion especially in regions that are further away or close to
the border of the point cloud. This leads to decreased point map accuracy. The geomet-
ric map can never be more accurate than the point map as it uses aligned key frames as
input. Thus, we take a closer look on the set real2 . Table 3 shows the RMS error per
plane for the data set. The kitchen front has a significantly higher RMS error compared
to the other planes. The explanation is that there is a relatively high distortion of the
point cloud data as the plane is rather large. The other point is that the wall behind the
kitchen is dominant when it comes to registration. Because of inaccurate range data, a
good registration to the wall yields a poor registration of the kitchen front.

Timings were measured on simulated data while performing a 360° scan of the
kitchen environment. The total sequence has a duration of 90 s. The evaluation was run
on a PC with Intel Core i7 @2.80 GHz and 6 GB of RAM. The timings were obtained
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Table 3: RMS point error per plane for data set real1

set wall behind floor kit front kit top kit left kit right
real1 0.0160 0.006 0.0783 0.0149 0.0191 0.0055

in 100 runs, each run registering 52 key frames and extracting 152 planes followed by
merging. Table 4 shows the results for each processing step averaged per key frame.
It shows, that plane extraction is the most demanding step, whereas the merging needs
almost no time. The procesing time for all steps is 0.194 s enabling the mapping system
to run at approximately 5 Hz. As only key frames are processed, the system can run at
full Kinect frame rate and fast robot movement.

Table 4: Computation time in s of the mapping per key frame.

Registration Plane extraction Merging All
0.027 0.165 0.002 0.194

Finally, we take a look on the data reduction potential using the proposed method.
For the dataset simn02, 17 key frames are registered which results in a total of 5222400
raw points. Having three 32 bit values per point, the complete size of the data handled
is 62.7 MB. Downsampling after registration reduces the size of the point map to 49572
points or 595 kB. Eventually, the resulting geometry map consists of 535 Points plus
4 parameter values for each polygon. Thies yields a total size of 6.5 kB. The huge
potential in data reduction becomes clear if we take a look on the relative numbers:
From the raw data points to geometric represenatation, the amount of data is reduced
to 0.01% of the original size. Table 5 shows the absolute and relative numbers for data
reduction.

5 CONCLUSION

We presented a novel pipeline for geometric mapping with RGB-D data as input. The
processing includes point cloud registration, extraction of planar surfaces, construction
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Table 5: Data reduction

representation raw data point map geometric map

number of points 5,222,400 49,572 535
amount of data (bytes) 62.7 MB 595 kB 6.5 kB
reduction to (%) 100 0.95 0.01

of concave hulls and aggregation of a geometric map. A 2-D polygon clipping algorithm
is used to merge new features to the map.

We evaluated the performance of our mapping both in simulation and on real sensor
data and showed that all relevant planes in the scenes were detected with sufficient
accuracy. We also showed that the mapping is robust against noise.

For the future, several extensions and improvements are possible. For example, up-
dating the map in a dynamic scene is an interesting and important topic. The current
field of view could be used to replace both parts of the point and the geometric map
if the environment changes. Another extension would be to use additional geometric
shapes like lines or cylinders in order to describe non-planar parts of the environment.
To achieve this, concurrent extraction of multiple feature types and an extended geo-
metric map have to be created.
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