Topic 4: High-Performance Architecture
and Compilers

Alex Veidenbaum, Nectarios Koziris, Toshinori Sato, and Avi Mendelson
Topic Committee

High-performance architecture and compilation are the foundation on which the
modern computer systems are built. The two sub-topics are very strongly related
and only in combination can deliver performance levels we came to expect from
systems. The topic is quite broad, with sub-areas of interest ranging from multi-
core and multi-threaded processors to large-scale parallel machines, and from
program analysis, program transformation, automatic discovery and manage-
ment of parallelism, programmer productivity tools, concurrent and sequential
languages, and other compiler issues.

This year four papers were accepted after a thorough review and discussion.
These papers are summarized below. We are grateful to all reviewers who helped
us in this process, as we obtained at least three reviews per submitted paper.

It is clear that the remaining papers proposed interesting ideas, but this year’s
competition was really tough. We thank all for their submissions and hope ev-
eryone will continue to support the conference. We also thank the Euro-Par
Organizing Committee for their guidance and their useful comments.

The paper “Dynamic Last-Level Cache Allocation to Reduce Area and Power
Overhead in Directory Coherence Protocols” by Mario Lodde, Jose Flich, and
Manuel E. Acacio proposes the reorganization of the Last Level Cache (LLC),
where the storage or not of the cache blocks’ data will depend on their charac-
terization as private or shared blocks. More specifically, if a block is private (i.e.
used only by one core), then the LLC will hold only its tag and any information
needed by the coherence protocol. The motivation behind this proposal is the
observation that a large percentage of the actions performed by the LLC con-
cerns private blocks as they are forwarded straight to the L1 caches and do not
involve the data portion of the LLC. By “eliminating” the storage of the private
blocks in the LLC, the authors achieve area and power savings with a negligible
impact on the performance.

The paper “A Practical Approach to DOACROSS Parallelization” by Priya
Unnikrishnan, Jun Shirako, Kit Barton, Sanjay Chatterjee, Raul Silvera, and
Vivek Sarkar presents a mnew approach for automatic parallelization of
DOACROSS loops. It is based on a compiler and runtime optimization (“depen-
dence folding”) which bounds the number of synchronization variables needed
to control cross-iteration dependences. Furthermore, the authors present a cost
analysis for determining the profitability of parallelization, and additional tech-
niques (unrolling, chunking) that increase granularity and reduce synchroniza-
tion overhead. These characteristics render their approach practical, compared
to prior similar efforts. Their approach was evaluated using 4 benchmarks on
a 32-core machine. The auto-parallelization of DOACROSS loops offered

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 204-05] 2012.
(© Springer-Verlag Berlin Heidelberg 2012



Topic 4: High-Performance Architecture and Compilers 205

significant speedups (compared both to sequential execution and DOALL au-
tomatic parallelization) but only when cost analysis and granularity control was
enabled.

The paper “Exploiting Semantics of Virtual Memory to Improve the Efficiency
of the On-Chip Memory System” by Bin Li, Zhen Fang, Li Zhao, Xiaowei Jiang,
Lin Li, Andrew Herdrich, Ravishankar Iyer, and Srihari Makineni proposes two
hardware-based mechanisms that exploit stack memory’s characteristics to op-
timize on-chip memory. The first mechanism reduces TLB misses by 10% — 20%
by automatically creating large pages (“superpages”) to host stack memory con-
tents. The second technique treats stack accesses in a distributed shared cache
in a different way than regular ones, by routing them to each core’s local cache
slice. The benefit of this approach is reduced interconnect power consumption
by more than 14%. Both techniques are evaluated using a simulation framework
and the SPEC CPU 2000 benchmarks.

Finally, the paper “From Serial Loops to Parallel Execution on Distributed
Systems” by George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Her-
ault, and Jack Dongarra, presents a compiler front-end for the DAGuE runtime
system, to analyze annotated serial loops of tiled dense linear algebra algorithms,
in order to provide symbolic information to the runtime system for the efficient
execution on distributed memory machines.



	Topic 4: High-Performance Architecture and Compilers



