A Fault-Tolerant Cache Service
for Web Search Engines: RADIC Evaluation

Carlos GémeZ-Pantojalvz, Dolores Rexachs®,
Mauricio Marin®*, and Emilio Luque®

! Universidad Andres Bello, Santiago, Chile
2 DCC, University of Chile, Santiago, Chile
3 University of Santiago of Chile
4 Yahoo! Research Latin America, Santiago, Chile
5 University Autonoma of Barcelona, Barcelona, Spain

Abstract. Large Web search engines are constructed as a collection of services
that are deployed on dedicated clusters of distributed-memory processors. In par-
ticular, efficient query throughput heavily relies on using result cache services
devoted to maintaining the answers to most frequent queries. Load balancing
and fault tolerance are critical to this service. A previous paper [7] described
the design of a result cache service based on consistent hashing and a strategy
for enabling fault tolerance. This paper goes further into implementation details
and experiments related to the basic scheme to support fault-tolerance which is
critical for overall performance. To this end, we evaluate the performance of the
RADIC scheme [14] for fault-tolerance under demanding scenarios imposed in
the caching service.

1 Introduction

Data centers for large Web search engines (WSEs) contain thousands of processors
arranged in high-communicating groups called services. Usually each service is devoted
to a single specialized operation related to the processing of user queries. Typically a
WSE is composed by three relevant services: Front-End/Broker Service (FS), Caching
Service (CS) and Index Service (IS). The FS receives queries and handles query routing;
the CS keeps results for frequent queries; and the IS uses an inverted index to calculate
top K results when the query results are not in the CS. The CS plays a key role in
enabling high query throughput [1] as the cost of searching a query in the CS and
returning the answer stored in the respective cache entry, is by far less costly in running
time than computing the query answer from the IS.

The traffic generated by WSE users is not uniform neither constant, it is variable,
unpredictable and follows Zipfian distributions [3]]. It means that users always gener-
ate new queries and a few very popular queries can have a huge impact in performance
degradation since they can cause imbalance. In addition, failing nodes can affect perfor-
mance as it is necessary to distribute the load assigned to them on the remaining nodes.
The service that is most exposed to imbalance situations is the CS. This is because it
splits queries into disjoint sets using hash functions so that each query is allocated to
only one partition. Therefore, bursty queries can overload partitions.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 298-B10] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

A Fault-Tolerant Cache Service for Web Search Engines: RADIC Evaluation 299

The literature related to caching is extensive, but it lacks of efficient solutions for
the problem relevant to this paper. A noticeable exception is the Amazon Dynamo [4]
system. Almost all of previous work propose eviction algorithms, admission policies
and query invalidation strategies to improve the performance of individual cache nodes
[LU1146]. We aim at a distributed system suitable for clusters of processors. Peer-to-
Peer (P2P) systems using consistent hashing [8] -like Chord [15]- assume uniform key
distribution, which tends to favour static assignments of keys to nodes. It is important
to bear in mind that our application domain is radically different from load balancing
P2P systems [[16], which means that not all solutions from this domain are applicable
to our setting. In our case, queries must be solved in a few tens of milliseconds and
thereby there is no room for approaches based on data movement across processors
[[12]], extra messages to locate processors [[15], or the like. A fairly similar idea, though
fully distributed, is proposed for P2P systems in [2]. This work does not balance the
load caused by stored items or their popularity. They indirectly try to do this by making
similar the range of keys that each node is responsible for. We do the opposite by using
ranges of variable length as a function of node popularity. Our proposal is intended to
form part of dedicated search services where homogeneous processors are not shared by
other applications and no virtualization technology is used for load balancing because
of its overheads.

We propose a dynamic load balancing algorithm upon consistent hashing in order to
cope with imbalance in CS nodes. The balancing process is reactive in the sense that
it is triggered when imbalance is detected. We also propose to mitigate the effects of
node failures by using a protection system for frequent queries. For this purpose we
use the RADIC approach [[14]]. Here, a cache p; selects a set of pairs <query, answer>
according to a criteria, and then these queries are sent to a secondary cache p;. In case
of failure of cache p;, all of its requests are redirected to p; (the protector of p;). The
protection of selected cache entries is a proactive action.

The remainder of this paper is organized as follows. Section [2] describes the system
architecture. Section [3] presents our proposal. Section Ml presents experimental results
using simulation, and Section[3 presents results of our RADIC implementation. Finally,
Section [6] presents conclusions.

2 System Architecture

The Front-End Service (FS) comprises several replicated nodes. Each FS node receives
and routes user queries, and sends back the top K results to users. After a query arrives
to a FS node b;, it asks the Caching Service (CS) to determine whether the query result
has been previously stored there. A baseline CS cluster architecture is formed by an
array of P, x D, processors (or CS nodes). A scheduling method in FS carries out the
distribution of queries onto the P, partitions. When a partition p; has been selected, one
of its D, replicas is chosen at random to search for the query. If the query is cached, the
CS node sends the query answer to b;. Afterwards b; sends the results to the user. If the
query is not found in cache, the CS node sends a hit-miss message to b;. At this point,
b; sends the query to the Index Service (IS).

For the IS, the standard cluster architecture is an array of P; x D, processors or
index search nodes, where P; indicates the level of text collection partitioning and D;

300 C. Gémez-Pantoja et al.

(b)

Fig. 1. (a) Consistent hashing assignment; (b) Our proposal for load balancing

the level of text collection replication. The use of this 2D array is as follows: each
query is sent to all of the P; partitions and, in parallel, a random replica in each partition
determines the local top K query results. These results are then collected together by the
FS to determine the global top K results for the query. Each index search node contains
an inverted file which is a data structure used to efficiently map from query terms to
relevant documents.

The FS and IS do not experience significant imbalance. Newly arriving queries are
evenly distributed on the FS nodes. When a query is solved in the IS, all partitions work
in parallel to produce the local top K results in each partition, so a query generates
almost the same load in all IS partitions. Neither of these two services face serious risks
of imbalance. Given the access pattern to CS partitions and the bias of user queries, the
probability of significant imbalance is high in this service as we show below.

The only service in which data (inverted index and text) must be distributed before
the operation is the IS. The CS populates its distributed memory with query results
on-the-fly, and the FS only handles small data related to current query routing.

3 Caching Service

All memory space of CS nodes is divided into blocks (typically 4KB), and each block
stores query terms and their associated top K results (HTML page). Each CS node
follows an eviction policy when it is full.

The distribution of items is implemented with consistent hashing [9], which parti-
tions the query space into P independent subsets (each subset can be seen as a non-
overlapping arc in a ring (see Figure [[(a)). The idea is that each partition handles all
queries (each query is assigned to one point in the ring by means of hashing) that inter-
sect its arc. Figure [[(a) illustrates an assignment following an equidistant distribution
of points (please ignore for now the small white ovals), and the assignment indicates
that partition P1 serves queries g1 and ¢2.

The decision of how many partitions depends on the hit ratio we want to reach and the
global set of queries (namely, the number of distincts queries in skewed distributions).

A Fault-Tolerant Cache Service for Web Search Engines: RADIC Evaluation 301

The more diverse the query space, the more partitions are needed because each node
holding a partition has limited capacity. But dimensioning the number of partitions is
not the only decision, also it is necessary to consider the volume of queries per unit of
time that one node can accept. To cope with this later issue, replication is introduced as
a form to spread the load of a particular partition; also it helps to provide fault-tolerance.
This translates into D replicas for each partition. The underlying idea is to select one of
the P partitions via consistent hashing, and then select one of its D replicas at random.

To reach a consistent state (all replicas of one partition), we can use an optimistic
protocol [13] in each partition where replicas are guaranteed to converge after a period
of time. We choose this kind of protocol instead of a protocol that provides strong
consistency, because this later solution can saturate the network.

The first baseline approach we study, called Baseline DAC (Amazon Dynamo and
Chord), can be seen as a matrix of P x D nodes. The location process works as fol-
lows: consistent hashing to select a partition, then we select one random replica. Each
partition runs an optimistic consistency protocol.

The previous strategy has a configuration that can be prone to variations in the user
query traffic (for example, bursty queries) and nodes failures. To control the load im-
balance produced by Baseline DAC, we can use a Greedy algorithm to move replicas
between partitions. The key idea is to measure the utilization at partition level each
A units of time, and then we decide whether one partition needs more replicas taking
into consideration the output of the Greedy algorithm. We call this strategy Baseline
DR (Dynamic Reallocation). The location process is the same as Baseline DAC. Also
each partition runs an optimistic protocol. We use these two strategies as a basis for
comparison. More details can be found in [7]].

Having fixed points in the CHR is not a good policy. Our solution consists in using
the same P x D matrix and a CHR at partition level (i.e., P partitions/arcs), but allowing
arc lengths to dynamically change in size to split traffic between neighboring partitions.

Firstly, the ring is divided into small equally-sized buckets to discretize the range
covered by each arc. Each partition covers an arc of size 1/P of the ring and is re-
sponsible of a disjoint set of adjacent buckets as shown in Figure[Tla). Like the strategy
Baseline DR, the service utilization is reported every A units of time to the FS. If the
efﬁciency@ is less than a predefined threshold 7', a load balancing algorithm that consid-
ers each partition utilization is triggered in the FS. The output of the algorithm is a set of
bucket movements between neighboring partitions. This prevents all cache entries from
being invalidated because only a small number of queries change of partition. Namely,
those inside the buckets moved.

The threshold 7" used in our proposal and the DR strategy defines the maximum
degree of imbalance to be tolerated. When the efficiency is below the threshold 7, the
balancing process is triggered.

Our proposal starts with an initial uniform distribution of the buckets as shown in
Figure[Il(a). Each partition handles four contiguous buckets. When measuring utilization,
we detect that partition P1 is processing half of the system load. Figure[Ib) shows the
effect of moving one bucket from P1 to P0 and one from P1 to P2 (neighbors of P1).

! Consistent hashing ring.
2 The efficiency is defined as the average load divided by the maximum load.

302 C. Gémez-Pantoja et al.

The arc a belongs to PO and arc b belongs to P2, meaning that PO and P2 are now in
charge of more queries which decreases the load of P1. An advantage of this strategy
is that only little portions of cache entries are invalidated when buckets are moved.
Namely, those with consistent hashing values falling in the range of the buckets moved
to neighboring partitions.

The method to re-distribute the buckets is a diffusion algorithm and it is based on
the Sender Initiated Diffusion (SID) algorithm presented in [17]. In this algorithm each
overloaded partition distributes excess of load to neighbors with less load. The authors
show that in a system with P partitions and load L unevenly distributed, the algorithm
will eventually converge to load L/ P in each partition and also it is stable.

Replicas associated with each partition are handled as follows. When a FS node
selects partition A for query g, we apply a second hash function over the query terms to
select one replica from A. This strategy increases the total number of entries available
for caching different items across the replicas. This increases overall hit ratio but also
node failures are expected to enhance its effects on hit ratio reduction.

To provide fault-tolerance, we use the RADIC framework [[14] to efficiently replicate
selected queries. It is based on two components: Protectors and Observers which we
propose to use as follows.

Each partition runs a separate RADIC process. Every ¢ units of time all Observers
send their checkpoint to the corresponding Protector. If node m; belonging to partition
A fails, all requests to m; are re-directed to its Protector m; allocated in the same parti-
tion. In this case, m; processes its own queries and those originally directed to m;. The
load increment in partition A is not a severe problem due to the balancing algorithm we
apply on the partitions. The imbalance generated by a faulty node m; will be corrected
decreasing the range of partition A. Performance degradation is also controlled as the
most frequent entries of node m; are likely to be already checkpointed in its Protector
m; when the failure takes place, so this node will cover the most important queries.

As said, only the most frequent queries in all nodes m; are protected. Copying all
cache entries to the Protector and doubling the number of entries in each node, is not
feasible. For the purpose of comparison, to be fair to other strategies, we decrease the
available cache entries in each node to make space to hold the checkpoints. From empir-
ical evidence, we conclude that the best distribution in each CS node is 70% of memory
space to hold cache entries and the remaining 30% of space to hold checkpoints.

Note that queries tend to be the same between checkpoints in any particular node,
since the queries selected to be part of the checkpoint are the most accessed of that
node. Hence, instead of forcing the sending of all cache entries to its Protector, only the
modifications are sent to it. To this end, each node can log only modifications: priority
change, entry eviction and item insertion. This decreases communication.

4 Evaluation through Simulation

To simulate the strategies described above, we have modeled and implemented discrete
event simulators that are able to precisely predict a set of metrics. The methodology
to build the simulator is based on the facts that (i) the major operations in our context
are coarse-grained, and (ii) given our architectural design, a request in any of the nodes

A Fault-Tolerant Cache Service for Web Search Engines: RADIC Evaluation 303

of a specific service takes almost the same amount of resources. The first step is the
identification of the most important operations evolved in query processing (resource
utilization). Then, we profile these operations and insert their costs to a discrete event
simulator. We have previously used and validated this claim in [[10]. In conclusion, we
simulate trace-driven events, where the traces are benchmarked from real executions on
a search engine using query logs of commercial WSEs.

We perform the experiments using a one-day real query log from a commercial
search engine (as on April 1st, 2011). The query log comprises 68,019,311 queries.
We configured the WSE as follows: (i) the FS comprises 10 replicas; (ii) the CS has
P = 20 partitions and D = 4 replicas; and (iii) the IS possesses 50 partitions and 20
replicas (in order to simulate a complete inverted file loaded into RAM). Each CS node
has 100,000 entries for cache. The time interval A to measure the partition utilization
is 5 minutes and the efficiency threshold 7' is set to 95%. In our proposal, the service
checkpoint is passed every = 10 minutes.

Two of the most important metrics are Average Query Response Time and Hit Ratio
of the CS. The first metric shows how the strategies behave under the occurrence of
failures, while the second indicates the percentage of answers found in cache. We do
not only show the cases of failure, but as well the results without failures for compar-
ison purposes. We start the evaluation with 1, 2 and 3 random failures of CS nodes.
Furthermore, we examine a special case, where 10% of CS nodes fail.

In all experiments, failures occur between x = 640 and x = 800. Note that the
nodes where failures were injected are randomly chosen and are not re-incorporated by
the service. The measurement starts with the first injected failure.

We labeled the curves in the following figures as “Baseline DAC”, which is the
Baseline Amazon Dynamo and Chord, and “Baseline DR”, which stands for Baseline
Dynamic Reallocation.

Figure[2la) shows the average query response while no failures were triggered. Three
different trends can be clearly identified in steady state (from = = 480): (i) the Baseline
DR strategy shows an average of 98 [ms], (ii) the Baseline DAC shows an average of 95
[ms] and (iii) our approach outperforms both with an average of 83 [ms]. This presents
15.3% and 12.6% better query response time than the Baseline DAC and Baseline DR,
respectively.

Figure 2i(c) shows the results in the case that three failures occur. Here, as well as in
Figure 2Ib) and (d), it can be observed that the Baseline DR has the worst performance.
The reason of this behavior is that the movements of machines between partitions is a
disproportionate action, which implies that all entries of the moving nodes are lost (they
are not useful for the new partition). The figures reflect the impact. On the other hand,
the Baseline DAC as well as our approach present small variations in performance.

A special case is shown in Figure 2(d), in which 8 nodes are randomly chosen to
stop. This is an extreme case, since 10% of CS nodes are lost. In this case, the be-
havior of Baseline DAC remains almost constant. While it is true that our approach
experiences an increase of 9% (from 85 to 93 [ms]), it still outperforms the Baseline
DAC. Moreover, our approach of dynamic load balancing helps to reduce the average
query time. For this reason, a decrease of query time can be observed towards the end of
FigureP(d). Considering this metric, we have demonstrated that the proper combination

304 C. Gémez-Pantoja et al.
0.120 ! ! ! ! ! e . 0.120 — .
Baseline DAC . Baseline DAC .
2 Baseline DR s : Baseline DR s
= 015y Proposal] = 015y Proposal »
E o110t 1 E 01104
=) s = .
2 o105 £ o105
z 1105 F %, E .
2 7 . 2
C 0100 F* SR 4o L% 5 2 0.100
% © Wedusaatnnd 2
£z N o o 2
g 0095 e NI P S0 g 0095
o . o
& &
g 000 g o000
2 2
<0085+ < 0085
0.080 . , 0.080
0 160 320 480 640 800 960 1120 1280 1440 0 160 320 480 640 800 960 1120 1280 1440
Time [min] Time [min]
(a) (b)
0.120 ! ! ! ! ! e . 0.120 — .
Baseline DAC . Baseline DAC .
2 Baseline DR s : Baseline DR s
= 015 Proposal -+ | = 015 Y Proposal +]
2 o 2 o
E 0110 t& E 0110
S < S
2 0u0s . % U T S £ o105
£ . [asaa kS a4 £ .
2 N -'ﬁﬁ;.t: o - ::‘1&% band, g
S 0100 F* WER .4 % L4 - - S 0.100
e Lo SigEesey . %
ERUCEY SN NS S 0095
1) . o
& 0090 F E & 0.090
2 2
<0085+ — < 0085
0.080 0.080
0 160 320 480 640 800 960 1120 1280 1440 0 160 320 480 640 800 960 1120 1280 1440
Time [min] Time [min]

(©)

(d)

Fig. 2. Evaluation of Average Query Response Time: (a) zero, (b) one, (c) three and (d) eight
failures (10%). In cases of failure, they are triggered between x = 640 and x = 800 minutes.

of dynamic load balancing and a methodology to protect valuable information (RADIC)
is important to consider during the design and deployment of caching services. Table [T]
summarizes the improvements that we achieved through our approach in all aforemen-
tioned cases.

The Figure Bl a) illustrates the hit ratio considering the different options. The perfor-
mance of Baseline DAC and Baseline DR is similar, having a hit rate between 25% and
30% once the steady state is reached. The optimized utilization of cache entries by our
strategy is another important fact. Using our strategy almost all entries show higher hit
ratio, while information is only replicated for protection purpose. The proactive repli-
cation of queries helps to keep a similar hit rate in case of faults, even in situations
where more than one failure occurs (Figure B(b), (¢) and (d)). Despite the failures, our
proposal outperforms the other strategies in all cases and is in addition just slightly af-
fected. Figure Blc) shows the same behavior as before (hit ratio improved by 25% on
average compared to Baseline DAC).

Figure3(d) shows results with greater variation in all cases. This is due to imbalance
issues that emerge when a large number of machines fail. The objective of reaching
(and keeping) a better hit ratio compared to other strategies is accomplished, despite
the high number of failures. See Table[Il for more results.

A Fault-Tolerant Cache Service for Web Search Engines: RADIC Evaluation

305

Table 1. Percentage of improvements of our Proposal against Baseline DAC and Baseline DR
considering Figure 2land B Values are obtained while the services were in a steady state (after
failures).

0.45

0.40

0.35

0.30

Hit Ratio [%]
o
¥
]

020 *

0.15

0.10

0.05

0.45

0.40

0.35

0.30

Hit Ratio [%]
j=]
¥
]

0.20

0.15

0.10

0.05

Average Query Time
Baseline DAC Baseline DR Baseline DAC Baseline DR

Zero Failures 12.6% 15.3%
One Failure 8.4% 13.0%
Three Failures 8.4% 16.3%
Eigth Failures 7.2% 12.7%
r s f- ST NG u- S
ﬂﬁm wwﬂwﬁfﬁ waw)
<
°
,"g]
¢ BaselineDAC ¢
N Baseline DR s B
Proposal
0 160 320 480 640 800 960 1120 1280 1440
Time [min]
(a)
:
B <
F 2 =
2
E3
Baseline DAC
k Baseline DR s B
Proposal
0 160 320 480 640 800 960 1120 1280 1440
Time [min]
(©)

0.45

0.40

0.35

0.30

020 *

0.15

0.10

0.05

0.10

Hit Ratio
31% 46%
27% 60%
32% 94%
37% 105%
" RN SN .-v.-
L . mM&A 2 y 1
7‘ &A) z@ A%@A}%uﬁ% |
o .
,é]
¢ Baseline DAC
k Baseline DR 4 1
Proposal
0 160 320 480 640 800 960 1120 1280 1440
Time [min]
(b)

e

%

&£ Baseline DAC W28

P Baseline DR 1

b Proposal

.

0 160 320 480 640 800 960 1120 1280 1440

Time [min]

Fig. 3. Evaluation of Average Hit Ratio: (a) zero, (b) one, (c) three, and (d) eight failures (10%).
In case of failures, they are triggered between x = 640 and x = 800 minutes.

4.1 Analysis

We have shown that a better organization of resources, by taking proactive actions (pro-
tect important queries) and dynamically balancing load, are important aspects to reach
lower response time and higher hit ratios. We argue that the most important factor to
achieve a high throughput is a suitable load balancing strategy. Nevertheless, perfor-
mance grows even more when cache entries are better administered and the consistency
protocol is avoided. This technique in conjunction with the protection of queries, im-
proves the performance in all aspects as examined above through the average query

306 C. Gémez-Pantoja et al.

time and hit ratio. Finally, this two techniques help to decrease the impact of failures in
case that an organization is used, which exploits all available memory.

Also, the previous results demonstrated the benefits and limits of our proposal. At
first, our strategy diminishes its performance in case of failures, but the dynamic load
balancing helps to overcome this situation quickly. Moreover, it remains the best strat-
egy. Secondly, the baseline DAC is almost not affected by failures because of the repli-
cation, but at the same time it does not utilize the resources properly, and hence this
strategy does not attain the best results. Finally, there is a trade-off between repli-
cation and performance, and our proposal certainly points in the following direction:
only replicate the most frequent queries and use them in case of failures following the
RADIC approach.

5 RADIC Implementation

This section describes our RADIC [14]] implementation and how it works in a real
setting. As we mentioned above, this strategy allows us to integrate the protection of
important queries to be used in case of failures. To test RADIC performance, we have
implemented a C++/MPI prototype of a CS with RADIC. First of all, each processing
node or processor can be seen as a container of entries with a limited capacity that
follows an eviction policy when it is full. Well-known algorithms for this purpose are
LRU, LFU, SDC and PDC [11]]. Regardless of the strategy, in all cases important cache
entries can be identified. To decide which is the next entry to be replaced, all algorithms
use a priority queue. Memcached (3] follows the LRU policy by default (other strategies
can be used).

In our service, we designed a priority queue in conjunction with a hash table to
implement a LFU strategy. The choice of the LFU strategy is made to simplify the
selection of the most frequent queries, which are the ones to be protected by RADIC.

Following the WSE architecture, only one node of the Front-End Service is respon-
sible for triggering the checkpoint process (the decision is centralized at the FS side).
Namely, each ¢ units of time the FS node sends a message to all CS nodes indicating
that they must start the checkpoint process. This process consists of three stages in each
node C'S;: (i) C'S; gets the most important queries from its memory, which translates
into N pairs <query,answers>; (ii) C'S; sends them to its protector node using MPI;
(iii) C'S; waits for the checkpoint (N pairs) from the node that it is protecting; and
(iv) C'S; stores the received checkpoint in its memory (a separate area of memory). All
these phases do not affect the query processing in the node (we control the concurrent
access to the structures). As we mentioned above, a node only protects a node of its own
partition, in this way the protection on each particion (and their replicas) is independent
of other partitions.

To study the behaviour in case of failures, we did not need a fault-tolerant version
of MPI, because the routing and handling of queries belongs to the FS and only this
service needs to know when a node falls. Failing nodes are selected randomly and, for
the sake of simplicity, we “simulate” a failure sending a MPI message to the failing
nodes (to stop the processing), and then updating the state of active nodes in the FS
(routing tables). Once a failure is detected in the FS, all requests to failing nodes are

A Fault-Tolerant Cache Service for Web Search Engines: RADIC Evaluation 307

12000 T T T T 1 T
Radic
No Radic -

10000 | 0s

8000

6000

Time [msec]
Hit Ratio [%]

4000

0.2

2000

Radic
No Radi¢ -

. . 0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Step Step

Fig.4. Real deployments to evaluate overhead with failures: (a) running time of the complete
caching service, and (b) hit ratio of a single partition of the caching service

routed to the protector of them following the RADIC algorithms/tables. As the protector
maintains information regarding the failing nodes (checkpoint), it starts to process the
redirected requests taking into account this information. This helps to preserve the hit
ratio in case of faults.

5.1 RADIC Overheads

An important performance metric in a fault-tolerant system is the overhead imposed
by the protection scheme relative to the same system without a fault tolerance strategy.
Hereinafter, we evaluate the RADIC overheads through an actual implementation run-
ning in our CS service. The implementation is therefor deployed to a cluster of proces-
sors (cluster composed of 20 nodes connected by an InfiniBand switch). To effectively
measure overheads and to therefor achieve a situation in which there are no queries that
cause imbalance, we implemented the baseline approach (namely, the P x D matrix
described in Subsection[3) with the RADIC system running in background.

We ran the complete log described in Sectiondlin a caching service with P=5 parti-
tions and D=4 replicas. We measured the time required to finish a set of queries and the
resulting hit ratio (each measurement is a point in the X -axis, and only the first 10,000
points are plotted). Furthermore, we injected two failures in the system (z=1,500 and
£=6,000). After the failures, nodes are re-inserted in the service after 100 y 500 steps,
respectively. Note, that the implementation without RADIC has 100,000 cache entries
per node, while the implementation with RADIC has 95,000 cache entries and 5,000
for checkpoints.

Figure dla) shows the time required to finish the queries. The overhead imposed by
RADIC is 1.8% on average, what does not represent a big impact on the service. The
checkpoint takes place approximately every 1,000 steps and only the top 5% of the
most important queries are checkpointed. We optimized the checkpointing process by
processing it through a pipeline: multiple steps are used to send the checkpoint to the
Protector. The overhead and the checkpoints become important when failures occur and
when queries are protected. Figure d(b) displays the results in terms of average hit ratio
inside a partition when failures occur in the same partition (D=4). It is clear that the hit
ratio is less affected by failures since the implementation of RADIC allows to continue

308 C. Gémez-Pantoja et al.

0.8 |

0.6

Partition Load

Throughput [queries/s]

04 F o
© Nothing —+—
Radic-1 v 0.2
0.2 1 Radic-10 -~ - 7
Optimistic-1 ©
0 . . . Optimistic-10 --&-- o
2 3 4 5 0 1000 2000 3000 4000 5000 6000 7000
Replicas Time [min]

Fig. 5. (a) Evaluation of a real implementation of the Optimistic Protocol and the RADIC Pro-
posal (Section[3)) to test the scalability of one partition. (b) Load assignment to 20 partitions when
we run 300 millions of queries issued during May 1-5, 2011.

the operation using the checkpointed query results in the Protector of the failing node.
The average hit ratio of the partition using RADIC is 47.2% and 46% without RADIC
(an increase of 2.6% in the presence of failures). We would like to remark that the results
of this section were obtained with the same baseline strategy, which was extended with
RADIC to expose its inherent overheads relative to the same strategy operating without
RADIC.

Figure Bla) shows results obtained with actual implementations of the consistency
protocols. We ran these experiments in a cluster of processors connected by a commod-
ity switch, taking care that each replica is allocated to a different processing node so
that communication among processors takes place through the communication network.
The purpose of these experiments is to evaluate the effects of extra communication re-
quired to keep consistency across the replicas of each partition at running time. The
curve labeled “nothing” is the best that a protocol can do as in this case no communi-
cation bandwidth is used to replicate cache entries. They just arrive to a target replica
and a search in the cache is executed. Here it is not relevant whether there is a cache hit
for any query or not. Note that each replica is assumed to receive the same number of
queries. This implies that as the number of replicas grows, more queries are processed
in total. The remaining curves are showing the results of RADIC and the optimistic
protocol for cases in which the consistency protocol is executed each 1 and 10 minutes.
In both cases, the RADIC protocol outperforms the optimistic one. For 10 minute inter-
vals the RADIC protocol achieves a performance quite similar to the optimal case. The
overhead in terms of memory consumed by checkpoints is negligible because hit rate is
not affected significantly keeping constant the total number of cache entries.

6 Conclusions

We conclude by referring to Figure[5lb) which shows that queries tend to produce sig-
nificant imbalance when no strategy is used to load balance the amount of queries that
receive each CS node.

We have shown that load balancing and protection of queries can help to improve
the performance of WSEs. On the one hand, we use a load balancing algorithm to

A Fault-Tolerant Cache Service for Web Search Engines: RADIC Evaluation 309

cope with user query variations and faulty nodes, this is a reactive action. Then, we
move forward proposing the application of RADIC methodology to protect valuable
information, which is a proactive action.

The objective of this paper was twofold: (i) analyze the resilience of our proposal,
and (ii) analyze the performance and usefulness of RADIC framework. In section[4] the
experimental results show that our proposal outperforms the commonly used baseline
alternatives by a wide margin as shown in Figure 2 and 3 ((a) no failures; (b), (¢), (d)
with failures). This is because our proposal is able to significantly reduce the imbalance
shown in Figure [5(b). Notice that our proposal can be easily extended to clusters with
heterogeneous nodes since load balance is made considering only the utilization of
processors, which can be determined by performing benchmarks on individual nodes
and stablishing a relationship between incomming query traffic and utilization.

Finally, in sectionBlwe evidence that our RADIC implementation imposes a very low
overhead to the query processing tasks, which shows its competitiveness and usefulness
in the context of caching services. To the best of our knowledge, there are no previous
works that addresses the protection of queries.

Acknowledgements. This research has been supported by the MICINN Spain under
contract TIN2007-64974 and the MINECO (MICINN) Spain under contract TIN2011-
24384, and partially funded by FONDEF project D0911185. The first author (CG) has
been supported by a Chilean PhD scholarship from CONICYT.

References

1. Baeza-Yates, R., Gionis, A., Junqueira, F., Murdock, V., Plachouras, V., Silvestri, F.: The
impact of caching on search engines. In: SIGIR 2007, pp. 183-190 (2007)

2. Bienkowski, M., Korzeniowski, M., auf der Heide, FEM.: Dynamic Load Balancing in Dis-
tributed Hash Tables. In: Castro, M., van Renesse, R. (eds.) IPTPS 2005. LNCS, vol. 3640,
pp. 217-225. Springer, Heidelberg (2005)

3. Breslau, L., Cue, P., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and zipf-like
distributions: Evidence and implications. In: INFOCOM, pp. 126-134 (1999)

4. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Siva-
subramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly available key-value
store. SIGOPS 41, 205-220 (2007)

5. Fitzpatrick, B.: Distributed caching with memcached. Linux J. (2004)

6. Gan, Q., Suel, T.: Improved techniques for result caching in web search engines. In: WWW
2009, pp. 431-440 (2009)

7. Gomez-Pantoja, C., Gil-Costa, V., Rexachs, D., Marin, M., Luque, E.: A fault-tolerant cache
service for web search engines. In: ISPA 2012 (to appear, 2012)

8. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Consistent hash-
ing and random trees: distributed caching protocols for relieving hot spots on the world wide
web. In: ACM STOC 1997, pp. 654-663 (1997)

9. Karger, D., Sherman, A., Berkheimer, A., Bogstad, B., Dhanidina, R., Iwamoto, K., Kim,
B., Matkins, L., Yerushalmi, Y.: Web caching with consistent hashing. In: WWW 1999,
pp- 1203-1213 (1999)

10. Marin, M., Gil-Costa, V., Gomez-Pantoja, C.: New caching techniques for web search
engines. In: HPDC 2010, pp. 215-226 (2010)

11. Perego, T.E.R., Silvestri, F., Orlando, S.: Boosting the performance of web search engines:
Caching and prefetching query results by exploiting historical usage data. In: ACM TOIS
2006, pp. 51-78 (2006)

310

12.

13.
14.

C. Gémez-Pantoja et al.

Raiciu, C., Huici, F., Rosenblum, D.S., Handley, M.: ROAR: Increasing the flexibility and
performance of distributed search. In: SIGCOMM 2009, pp. 291-302 (2009)

Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37, 42-81 (2005)
Santos, G., Duarte, A., Rexachs, D., Luque, E.: Providing Non-stop Service for Message-
Passing Based Parallel Applications with RADIC. In: Luque, E., Margalef, T., Benitez, D.
(eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 58-67. Springer, Heidelberg (2008)

. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-

to-peer lookup service for internet applications. SIGCOMM 31, 149-160 (2001)

. Surana, S., Godfrey, B., Lakshminarayanan, K., Karp, R., Stoica, I.: Load balancing in dy-

namic structured peer-to-peer systems. Perform. Eval. 63, 217-240 (2006)

. Willebeek-LeMair, M., Reeves, A.: Strategies for dynamic load balancing on highly parallel

computers. IEEE Transactions on Parallel and Distributed Systems 4(9), 979-993 (1993)

	A Fault-Tolerant Cache Service forWeb Search Engines: RADIC Evaluation
	Introduction
	System Architecture
	Caching Service
	Evaluation through Simulation
	Analysis

	RADIC Implementation
	RADIC Overheads

	Conclusions
	References

