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Abstract. We consider the problem of implementing transactional memory in
d-dimensional mesh networks. We present and analyze MultiBend, a novel load
balanced directory-based protocol, which is designed for the data-flow distributed
implementation of software transactional memory. It supports three basic op-
erations, publish, lookup, and move, on a shared object. A pleasing aspect of
MultiBend is that it is load balanced (minimizes maximum node and edge uti-
lization) which is achieved by using paths of multiple bends in the mesh. This
protocol guarantees an O(d2 log n) approximation for the load and also for the
distance stretch of move requests, where n is the number of nodes in the network.
For fixed d, both the load and the move stretch are optimal within a constant and
a loglog factor, respectively. It also guarantees O(d2) approximation for lookup
requests which is optimal within a constant factor for fixed d. To the best of our
knowledge, this is the first distributed directory protocol that is load balanced.

1 Introduction

In distributed networked systems processors are the nodes of a network which com-
municate through a message passing environment. We assume that there is a shared
memory address space, which is equally split among the processors. Each processor
has its own cache, where copies of objects reside. In Transactional Memory (TM)
[10,9,16,8,12] a transaction represents a sequence of shared memory operations (i.e.,
reads and writes) that are all performed atomically. The individual entries at the shared
memory, called objects, can be shared by multiple transactions on different network
nodes. A transaction can either commit (i.e., take effect) or abort (i.e., have no effect
at all). If a transaction aborts, it is typically restarted until it commits. When a transac-
tion running at a processor node issues a read or write operation for a shared memory
location, the data object at that location is loaded into the processor-local cache.

We consider the data-flow distributed implementation of software transactional
memory (DTM) suggested by Herlihy and Sun [11], where transactions are immobile
(i.e., running at some particular node) and shared objects are moved to those nodes that
need them. In DTM, transactions can only operate on local shared objects and, if re-
mote shared objects are required, the transaction must communicate with one or more
remote processor nodes. Some distributed cache-coherence mechanism should ensure
that shared objects remain consistent, i.e., writing to an object automatically locates
and invalidates other cached copies of that object. A DTM protocol typically supports
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(a) Initially, owner v
publishes the object

(b) The request con-
tinues up phase

(c) The request con-
tinues down phase

(d) Object is moved
directly from v to u

Fig. 1. Illustration of MultiBend for a move request issued by node u for the object at node v,
where the nodes shown are leader nodes of the respective sub-meshes

three kinds of operations: (i) publish operation which allows a node which created an
object in its memory space to publish it so that other nodes in the network can find it;
(ii) lookup operation, the protocol should locate the current copy of the object and move
it to the requesting node’s cache (shared access), without modifying the old copy; (iii)
move operation, where a transaction attempts to access an object to update explicitly
the DTM protocol should locate the current cached copy of the object and move it to
the requesting node’s cache invalidating the old copy. [3,17] also studied DTM.

Typically the performance of a DTM protocol is measured with respect to the
communication cost, which is the total number of messages sent in the network. The
communication cost for an operation (resp. for a set of operations) is compared to the
optimal communication cost for that operation (resp. for that set of operations) to pro-
vide an approximation ratio, which is generally referred to as stretch. In the context of
DTM, previous approaches [6,17,3,11,15] focused only on stretch bounds for various
network topologies (Table 1 summarizes their properties) and they do not control the
congestion. The network congestion can also affect the overall performance of the al-
gorithm and sometimes it is a major bottleneck. We measure the network congestion as
the worst node or edge utilization (the maximum number of times the object requests
use any edge or node in the network while accessing the shared object).

Contributions. We present MultiBend, a DTM protocol that is suitable for d-
dimensional mesh networks and is load balanced in the sense that it minimizes the
congestion (maximum node and edge utilization), and at the same time maintains low
stretch. Mesh networks are appealing due to their use in parallel, distributed, and high-
performance computing. The low stretch is achieved through a novel labeled hierarchi-
cal directory-based approach which we first introduced in [15] for general networks and
we adapted it here appropriately for the mesh network. The load balancing is achieved
through an oblivious routing approach (e.g., [13,4,5]) for communication between dif-
ferent hierarchy level leader nodes. In particular, we use the oblivious routing algorithm
in Busch et al. [5] that gives near optimal congestion while maintaining small path
length stretch in the mesh networks.

For the performance analysis of MultiBend, we consider sequential and concurrent
execution of requests. For the move operations in both the cases, MultiBend guarantees
O(d2 logn) amortized stretch and O(d2 logn) approximation of the optimal conges-
tion on any node or any edge in d-dimensional mesh networks, where n is the number
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Table 1. Comparison of DTM protocols, where n, S∗, and D, respectively, are the number of
nodes, stretch, and the diameter of the network kind on which they operate

Protocol Stretch Network
Kind

Load Bal-
anced

Runs On

Arrow [6] O(SST ) = O(D) General No Spanning tree
Relay [17] O(SST ) = O(D) General No Spanning tree
Combine [3] O(SOT ) = O(D) General No Overlay tree
Ballistic [11] O(logD) Constant-

doubling
No Hierarchical directory with

independent sets
Spiral [15] O(log2 n · logD) General No Hierarchical directory with

sparse covers
MultiBend O(log n) 2-D mesh Yes Hierarchical decomposition
(this paper) O(d2 log n) d-D mesh of the mesh

of nodes in the mesh. For fixed d, the move stretch is optimal within a loglog factor
comparing to the Ω(log n/ log logn) lower bound by Alon et al. [1]; the congestion
approximation is also optimal within a constant factor in light of the Ω(C

∗
d logn) lower

bound on the approximation ratio of an oblivious algorithm due to Maggs et al. [13].
The communication cost of the publish operation is proportional to the diameter of the
network (i.e., O(n)) and it is a fixed initial cost which is only considered once and com-
pensated by the costs of the move (or lookup) operations which are issued thereafter.
Note that lookup operations have always O(d2) stretch even when considered individ-
ually while their overall congestion is O(d2 logn) approximation in the d-dimensional
mesh. To the best of our knowledge, this is the first DTM protocol that achieves low
stretch in a load balanced way. It has been shown that the stretch and the congestion
cannot be controlled simultaneously in general networks [5].

Techniques. For simplicity, consider an 2-dimensional n = m × m mesh network
and one shared object; the general case for d-dimensional mesh is given in Section 6.
(We consider transactions with only one shared object which is typical in the DTM
literature [3,11,17,6,15]. A protocol for one object can be generalized to accommodate
transactions with multiple objects by appropriately replicating that protocol in such a
way that the replication avoids livelock of transactions.) MultiBend is a directory-based
consistency protocol implemented on a hierarchy of sub-meshes (as clusters). There are
k + 1 = O(log n) levels such that side lengths of the sub-meshes increase by a factor
of 2 between two consecutive levels. In each sub-mesh one node is chosen to act as
a leader to communicate with different level sub-meshes. At the bottom level (level
0) each sub-mesh consists of individual nodes, while at the top level (level k) there
is a single sub-mesh for the whole graph with a special leader node called root. The
hierarchy forms a tree of leaders such that higher level leaders have as children the
lower level leaders. Only the bottom level nodes can issue requests (publish, lookup,
and move) for the shared object, while the nodes in higher levels are used to propagate
the requests in the graph. (The difference between Spiral [15] and MultiBend is that
Spiral uses sparse covers as clusters while MultiBend uses sub-meshes as clusters.)

The protocol maintains a directory path which is directed from the root to the bottom-
level node that owns the shared object. The directory path is updated whenever the
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object moves from one node to another. As soon as the object is created by some bottom
level node, it publishes the object by visiting its sequence of increasingly higher level
leaders path towards the root, making each parent pointing to its child leader (Fig. 1a).
These leader pointers correspond to path segment between the leaders and the concate-
nation of these path segments form the initial directory path. A move request from a
node is served by following leader ancestors of that node, setting downward links to-
ward it until it intersects the directory path to the owner node, and resetting the directory
path it follows while descending towards the owner (Figs. 1b−1c); the directory path
now points to the requesting node. As soon as the move reaches the owner, the object
is forwarded to the requester along some shortest path in the mesh (Fig. 1d). A lookup
operation is served similar to move without modifying the directory path.

In order to route the request between two consecutive leaders, we use multi-bend
paths. In the oblivious routing algorithm of [5] they use a one-bend path between pairs
of randomly selected nodes in the mesh. A one-bend path consists of two straight lines,
one line in each dimension which meet at a corner where the bend occurs. Following
[5], we use at most two-bend paths between leaders. The one-bend path is sufficient
when the parent sub-mesh completely contains the child sub-mesh (they are at different
level). There is an attribute in our algorithm where every level has actually two sub-
levels with possibly the same side length sub-meshes (at least one same side length).
For this a two-bend path is needed between the leaders of the same level sub-meshes.

The concatenation of the one-bend or two-bend paths form multi-bend paths. In or-
der to obtain low congestion, every time we access the leader node of the sub-mesh
we immediately replace it with another leader chosen uniformly at random among the
nodes in the sub-mesh. The directory is then updated appropriately with the new leader
information by updating the parent and children leaders. We note that the update cost
is low in comparison to the cost of serving the requests because only the information
in the nearby region needs to be updated due to the new leader. We argue that this step
is necessary to control the congestion. This is because when a fixed leader is used, the
node congestion on that leader is proportional to the number of requests that visit that
leader. Moreover, in the fixed leader case, edge congestion can also be proportional to
the number of requests as all the requests use fixed edges along the shortest path be-
tween two subsequent leaders. We also note that, using this random leader approach, if
the congestion requirement on edges (or nodes) can be relaxed by the factor of κ, then
leader change is only needed after every κ requests.

Outline of Paper. We proceed with network model and preliminaries in Section 2.
In Section 3, we give hierarchy construction for the 2-dimensional mesh. We present
MultiBend protocol in Section 4 and analyze it in Section 5. In Section 6, we extend
MultiBend for the d-dimensional mesh. (Many proofs and details are omitted due to
space restrictions.)

2 Network Model and Preliminaries

We begin with some necessary definitions which are adapted from [5,15]. We represent
a distributed network as a d-dimensional mesh. The d-dimensional mesh M = (V,E)
is a d-dimensional grid of nodes (network machines) V , where |V | = n, with side
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length mi in each dimension such that n =
∏d

i=1 mi, and edges (interconnection links
between machines) E ⊆ V ×V . Each computing node u ∈ V is connected with each of
its 2d neighbors (except the nodes at the boundaries of the mesh). We denote by |E| the
number of edges in M . A path p in M is a sequence of nodes with respective sequence
of edges connecting the nodes, such that the length of the path p, denoted length(p), is
the number of edges it uses. A sub-path of p is any path obtained by a subsequence of
consecutive edges in p; we may also refer to a sub-path as a fragment of p. Let dist(u, v)
denote the shortest path length (distance) between nodes u and v.

Consider a routing problem Π defined as a set of pairs of source and destination
nodes. A routing algorithm for Π provides paths from every source to its respective
destination. An algorithm is oblivious if the path choice for each pair of source desti-
nation is independent of the path choices of any other pair. The edge congestion C for
any set of paths is the maximum congestion on any edge (link) of the network. Let C∗

denote the optimal congestion attainable by any routing algorithm. We have symmetric
definitions for node congestion. For a sub-meshM ′ ⊆ M (i.e.,M ′ is any mesh that con-
tains inside M ), let out(M ′) denote the number of edges at the boundary of M ′, which
connect nodes in M ′ with nodes outside M ′. For routing problem Π , we define the
boundary congestion as follows. Consider some sub-mesh M ′ of the network M . Let
Π ′ denote the messages (pairs of sources and destinations) in Π which have either their
source or destination in M ′, but not both. All the messages in Π ′ will cross the bound-
ary of M ′. The paths of these messages will cause congestion at least |Π ′|/out(M ′).
Define the boundary congestion of M ′ to be B(M ′, Π) = |Π ′|/out(M ′). For problem
Π , the boundary congestion B = maxM ′⊆M B(M ′, Π). Clearly, C∗ ≥ B.

We bound the stretch of the MultiBend protocol, which is the ratio of the total com-
munication cost for a request (or for a set of requests) to the optimal cost for that oper-
ation (or for that set of requests). The congestion is the maximum number of times any
node or edge is used by the object requests. We assume that M represents a network
in which nodes do not crash, it implements FIFO communication between nodes (i.e.
no overtaking of messages occurs), and messages are not lost. We also assume that,
upon receiving a message, a node is able to perform a local computation and send a
message in a single atomic step. TM memory proxy module [11] at each node provides
interfaces both to the transactions at that node and to the proxies at other nodes on how
to publish and access shared objects (details in [11,15]). The conflicts, if any, between a
local transaction and a transaction running in some other node, in accessing the object,
is resolved using well-known contention managers, e.g., [7,2,14].

3 Hierarchical Directory for the 2-Dimensional Mesh

We describe how to represent the 2-dimensional mesh M with equal side lengths m =
2k, k ≥ 0, as a hierarchy of sub-meshes (we discuss the d-dimensional case later in
Section 6). We decompose M into two types of sub-meshes, type-1 and type-2 (see
Fig. 2), as given below, adapting some notions from [5].

− Type-1 sub-meshes. There are k + 1 levels of type-1 sub-meshes, � = 0, 1, · · · , k.
The mesh M itself is the only level k sub-mesh. Every level � sub-mesh can be par-
titioned into 4 sub-meshes by dividing each side by 2. Each resulting sub-mesh is a
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Fig. 2. Decomposition for the 23 × 23 2-dimensional mesh. The arrows show the parent sub-
meshes of a node u in its multi-bend path towards the root at level 3.

type-1 sub-mesh at level �−1. According to this decomposition, at level �, there are 22�

sub-meshes each with side length m� = 2k−�. Note that the level 0 sub-meshes are the
individual nodes of the mesh.

− Type-2 sub-meshes. There are k−1 levels of type-2 sub-meshes, � = 1, · · · , k−1.
The type-2 sub-meshes at level � are obtained taking the type-1 sub-meshes and shifting
them by m�/2 simultaneously in both dimensions. Some of the shifted sub-meshes may
have to be truncated at the borders of M .

We assign integer sub-levels to different type sub-meshes at each level. As there are
only two types of sub-meshes at any level 0 < � < k, we assign sub-level 1 to type-2
and sub-level 2 to type-1 sub-meshes (Fig. 2). For levels 0 and k we have only one
sub-level as there are only type-1 sub-meshes. (i, j) denotes the level i sub-level j.

We now define a hierarchy of leveled sub-meshes. The sub-mesh hierarchy Z =
{Z0, Z1, . . . , Zk}, is a hierarchy of k + 1 levels of sub-meshes such that: (i) At level k
all nodes in M belong to exactly one sub-mesh, i.e., mesh M itself is the only level k
sub-mesh; (ii) At level 0 each node in M is the one sub-mesh by itself; and (iii) In any
level i, 1 ≤ i ≤ k − 1, Zi contains type-1 and type-2 sub-meshes of level i.

Multi-bend Paths. We define a path p(u) for each node u ∈ V which is a “multi-bend”
path of u. The path p(u) is built by visiting the leader nodes in all the sub-meshes
that u belongs to starting from level 0 up to k. In each level, the sub-meshes are visited
according to the order of their sub-levels. From an abstract point of view, the path bends
(changes dimensions) multiple times while it visits sub-mesh leaders of higher levels.

In every sub-mesh X we choose a leader node arbitrarily at the initialization of Z
which we denote as �(X). If one node is the leader on many sub-level sub-meshes, we
add a virtual copy node of it and create a virtual link between the virtual copy and y
itself in subsequent sub-meshes. Denote the leader of sub-level (i, j) sub-mesh Xi,j(u)
as �i,j(u) = �(Xi,j(u)). Since the top most Zk consists of a single sub-level it has a
unique leader which we denote �k,0(u) = r (the root). Trivially, every node u ∈ V is a
leader of its own sub-mesh at level 0, �0,1(u) = u. Note that �(X) is changed for every
request by electing a new leader uniformly at random among the nodes of X . This step
is necessary to minimize the congestion among the nodes and edges.

For any pair of nodes u, v ∈ V , let s(u, v) denote a dimension-by-dimension
(i.e., change in path from one dimension to other dimension in every bend)
shortest path (an at most two-bend path) from u to v. For any set of nodes
u1, u2, . . . , uf ∈ V , let s(u1, u2, . . . , uf ) denote the concatenation of shortest paths
s(u1, u2), s(u2, u3), . . . , s(uf−1, uf). Formally, the multi-bend path of node u is:
p(u) = s(u, �1,1(u), �1,2(u), . . . , �k−1,1(u), �k−1,2(u), r).
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We say that two multi-bend paths intersect if they have a common node. We also say
that two multi-bend paths intersect at level i if they visit the same leader node at level i
(they may intersect outside leaders but we do not consider that). Therefore,

Lemma 1 (Sharma et al. [15]). For any two nodes u, v ∈ V , their multi-bend paths
p(u) and p(v) intersect at level at most min{k, �log(dist(u, v))�+ 1}.

Canonical Paths. We need later paths obtained from fragments of
multi-bend paths; the fragments are formed while the object moves.
These paths start at level 0 and may go up to the root. We will
refer to such paths as canonical. As shown in the figure on the
right, the newly formed path from w to v6 is a canonical path that
obtained from the fragment of p(w) from w to u2, the fragment
of p(u) from u2 to v4, and the fragment of p(v) from v4 to v6.
Formally, a canonical path q up to sub-level (α, β) ≤ (k, 1) is
q = s(x0,2, x1,1, x1,2, x2,1, x2,2, . . . , xα,β), such that xi,j’s are leader
nodes along the path. A canonical path can be either partial when the
top node is below level k (below the root), or full when the top node
is the root. A multi-bend path p(u) is a full canonical path. Any prefix
of a multi-bend path is a partial canonical path. The path q up to level α is the concate-
nation of paths constructed by the 2 bend dimension to dimension paths in sub-meshes
of (at least one) sides 21, 22, · · · , 2α, which sums at most length(q) ≤ 2α+3. Thus,

Lemma 2. For any canonical path q up to level α, length(q) ≤ 2α+3.

4 The MultiBend Algorithm

We present the MultiBend protocol (Algorithm 1) which implements a DTM for shared
objects over a 2-dimensional mesh graphM . Consider some shared object ξ. The proto-
col guarantees that any moment of time only one node holds the shared object ξ which
is the owner of the object. The owner is the only node who can modify the object (write
the object); the other nodes can only access the object for read.

The basic idea is to maintain a directory path in a sub-mesh hierarchy Z , which
is a directed path from the root node r to the bottom-level node that currently owns
the shared object ξ. Initially, the directory path is formed from the multi-bend path
p(v) of the creator node v when it issues the publish(ξ) operation by assigning pointers
along the edges of p(v) directed toward v (Fig. 1a shows hierarchy Z after a successful
publish operation). The pseudo-code for publish is given in Lines 1–2 of Algorithm 1.

We define the notion of parent node before giving details of lookup and move. We
denote parent node y of a node x in the multi-bend path p(u) as y = parentp(u)(x), i.e.,
if y is the sub-level (i, j) sub-mesh leader in p(u) then x is the leader of the immediate
lower sub-level sub-mesh leader. Note that the leader of a level 0 sub-mesh is the node
itself. Each node knows its parent in the hierarchy, except the root, whose parent is
⊥ (null). A node might have a link (a downward pointer) towards one of its children
(otherwise ⊥); the link at the root is not ⊥.

Lets assume a lookup(ξ) and a move(ξ) operation issued by a nodeu. Both operations
are implemented in two phases: (i) in the up phase, a request message is sent from u
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Algorithm 1. MultiBend protocol

1: When y receives m = 〈v, up, publish〉 from x: // Publish operation
2: set y.link = x; if y is not a root node then send m to parentp(v)(y);

3: When y receives m = 〈u, phase, lookup〉 from x: // Lookup operation
4: if m = 〈u, up, lookup〉 then // lookup up phase
5: if y.link = ⊥ then
6: if y.slink list is empty then
7: elect a leader w at sub-mesh containing parentp(u)(y); send m to w;
8: else elect a leader w at sub-mesh containing first pointer of y.slink list; send

〈u, down, lookup〉 to w;
9: else elect a leader w at sub-mesh containing y.link; send 〈u,down,lookup〉 to w;

10: if m = 〈u, down, lookup〉 then // lookup down phase
11: if y is a leaf node then
12: send the read-only copy of ξ to u and remember u;
13: else elect a leader w at sub-mesh containing y.link; send m to w;

14: When y receives m = 〈u, phase, move〉 from x: // Move operation
15: if m = 〈u, up, move〉 then // move up phase
16: assign oldlink ← y.link and set y.link = x;
17: add y in slink list of y’s special patent;
18: if oldlink = ⊥ then
19: elect a leader w at sub-mesh containing parentp(u)(y); sendm to w;
20: else send 〈u, down, move〉 to oldlink;
21: if m = 〈u, down, move〉 then // move down phase
22: if y is in the slink list then erase y from slink;
23: if y is not a leaf node then oldlink ← y.link; y.link ← ⊥; sendm to oldlink;
24: else send the writable copy of ξ to u;
25: invalidate(ξ) from the owner node v and the read-only copies from other nodes;

26: Leader election procedure:
27: select a node w in the sub-mesh containing leader z uniformly at random;
28: copy information at old leader z to new leader w;
29: inform the parent and child of z about the new leader w;
30: construct a sub-path pi from wi−1 to w by picking a dimension by dimension

shortest path (where the sub-path is either one-bend or two-bend);

upward in the hierarchy Z along the multi-bend path p(u) towards the root r until the
request intersects at a node (i.e. node x) with the directory path; (ii) in the down phase,
the request message follows the directory path from node x to the object owner; then
the owner sends a copy of ξ to u (along some shortest path in M ). For the lookup it is
a read-only copy of ξ without modifying the hierarchy (see Lines 3–13 of Algorithm
1). But, for the move it is a writable copy invalidating the old copy of ξ and modifying
the directory path (Figs. 1b−1d). In the up phase, the move sets the directions of the
edges in the fragment of p(u) between u and x to point toward u. In the down phase
it deletes the downward pointers (or links) in the fragment of the directory path from
x to v. Now the new directory path points toward u. When the down phase reaches
v, u obtains a copy of the object (see Lines 14–25 of Algorithm 1). This process has
resulted to a canonical directory path that consists of two multi-bend path fragments, a
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fragment of u’s multi-bend path between r and x and a fragment of v’s multi-bend path
between x and u. Subsequent move operations may result into further fragmentation of
the directory path into multiple (more than two) multi-bend path fragments.

Need of Special Parent. A lookup request may not find immediately the directory path
to ξ, even if the lookup originates near the owner node of ξ. This is because after several
move operations the directory path may become highly fragmented. The notion of a
special parent node helps to avoid this situation and guarantee efficient lookups, such
that whenever a downward link is formed at a node z the special parent of z is also
informed about z holding a downward pointer. A special-parent node of y, denoted as
sparentp(u)(y), at sub-level (i, j) in the multi-bend path p(u) is the leader node of one
of the sub-meshes X ∈ Zη(u) at level η, where η = i+ 4, i.e., sparentp(u)(y) is some
ancestor node of y at level η in p(u). Every node knows its special parent and has slink
(downward pointer) towards special-child node from its special-parent sparentp(u)(y)
(otherwise it is ⊥). We maintain a list of slink pointers if one node is the special parent
for several sub-meshes. The special parent is selected in such a way that any nearby
lookup, close to z will either reach z or its special parent. We will prove that lookups
are always efficient using special parents (see Lines 6,8,17, and 22 of Algorithm 1).

Load Balancing. MultiBend (Algorithm 1) uses a leader election procedure (Lines 26–
30 of Algorithm 1) such that lookup and move requests can be served in a load balanced
way. The procedure works as follows: Let z be a leader node of the sub-mesh M ′ in Z .
We elect a new leader at M ′ by selecting a node w ∈ M ′ uniformly at random. After
the leader is elected, the information at old leader z is moved to new leader w and the
parent and child of z are informed about the new leader w. The pointers inside M ′ are
also updated to point to the new leader. After that, sub-path pi from wi−1 (a leader of
the sub-mesh that is sending a message to M ′) to w is formed by picking a dimension by
dimension shortest path; the sub-path pi is one-bend if sub-mesh containing w and the
sub-mesh containing wi−1 are both type-1 sub-meshes, otherwise, pi is of at most two
bend path. If the sub-path is the two-bend path then it is picked by a random ordering
of dimensions on a random node. The lookup uses this procedure in Lines 7,8,9, and 13
of Algorithm 1. The move invokes it at Line 19 of Algorithm 1.

We observe that at any time a request locks at most three nodes (level prev(i, j),
(i, j), and next(i, j)) along the multi-bend path or a downward path. In concurrent
situations this may be a problem; but we describe how we handle concurrent requests
efficiently later in Sections 5 and 6. Note also that the special parent node doesn’t need
to be locked because only one specific slink pointer value needs to be updated.

5 Performance

We give the stretch and congestion analysis of MultiBend for sequential executions; the
stretch and congestion analysis for concurrent executions is deferred to the full paper
due to space limitations. Moreover, the correctness proof is omitted as it can be extended
from [3,11,15].
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Move Cost. We now give the analysis of MultiBend in sequential executions. Lets
define a sequential execution of a set E of l+ 1 object ξ requests E = {r0, r1, · · · , rl},
where r0 is the initial publish request and the rest are the subsequent move requests.

For the sake of analysis, similar as in [15], we define a two-dimensional array B
of size (k + 1) × (l + 1), where k + 1 and l + 1 are the number rows and columns,
respectively. The k+1 rows of B can be denoted as {row0, row1, · · · , rowk} , and the
l + 1 columns of B can be denoted as {col0, col1, · · · , col l}. All the locations of the
array are initially empty (⊥). We fix that [0, 0] is the lower left corner element and [k, l]
be the upper right corner element. The levels visited by each request ri in the hierarchy
Z while searching for the object are registered in each col i, 0 ≤ i ≤ l. The maximum
level reached by a request ri in Z is called the peak level for that request. We have
that l ≤ k. The peak level reached by r0 (the publish request) is always k and r0 is
registered at all the locations of col0 starting from col0[0] to col0[k].

Let A∗(E) denote the optimal cost for serving requests in E and A(E) de-
note the total communication cost using the MultiBend. We will bound the stretch
maxE A(E)/A∗(E). For any c, d, 0 ≤ c < d ≤ l, a valid pair W j

(c,d) of two non-

empty entries in row j , 0 ≤ j ≤ h is defined as W j
(c,d) = (row j [c], row j [d]), such that

row j [c] 	= ⊥ and row j [d] 	= ⊥, and ∀e, c < e < d, row j [e] = ⊥. In other words,
W j

(c,d) is a pair of two subsequent non-empty entries in a row. Moreover, we denote by
Sj the total count of the number of entries row j [i], 0 ≤ i ≤ l, such that row j [i] 	= ⊥,
and byWj the total number of non-empty pairs (W j

(c,d)) in it. We have that Wj = Sj−1.

Theorem 1. The move stretch of MultiBend is O(logn) for sequential executions.

Proof (sketch). Let A∗
h(E) be the optimal communication cost for level h in the hierar-

chy Z . According to the execution setup, Sh are the number of requests in E that reach
level h, and Wh are the total number of valid pairs at that level. For any two subsequent
requests that originate from nodes u and v and reach level h, dist(u, v) ≥ 2h−1 (accord-
ing to Lemma 1), since otherwise their multi-bend paths would intersect at level h− 1
or lower. Therefore A∗

h(E) ≥ Wh2
h−1 ≥ (Sh− 1)2h−1, as Wh = Sh− 1. Considering

all the levels from 1 to k, A∗(E) ≥ max1≤h≤k A
∗
h(E) ≥ max1≤h≤k(Sh − 1)2h−1.

Similarly, let Ah(E) be the total communication cost of MultiBend for all the re-
quests in E that reach level h in the hierarchy Z , while probing the shared object in
their up phase. We have that Ah(E) ≤ (Sh − 1)2h+3 (Lemma 2). By combining the
cost for each level, A(E) = ∑k

h=1Ah(E) ≤
∑k

h=1(Sh − 1)2h+3. We do not need to
consider level 0 for A∗(E) and A(E) because there is no communication at that level.

Since the execution E is arbitrary and
∑k

h=1(Sh − 1)2h+3 ≤ k ·max1≤h≤k(Sh −
1)2h+3, maxE A(E)/A∗(E) ≤ 16 · k = O(log n), as k = �logn�+ 1. ��

Congestion. We relate the congestion of the paths selected by MultiBend to the optimal
congestion C∗. In particular, we prove the following theorem (this bound is valid for
both move and lookup operations, as both do random leader change in the same way):

Theorem 2. MultiBend achieves O(log n) approximation on congestion w.h.p.

Proof (sketch). Recall that every request to predecessor nodes are routed by MultiBend
by selecting some paths. Precisely, these paths are the multi-bend paths. Let e denote an
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edge in the mesh graph M and C(e) denote the load on e (the number of times the edge
e is used by the paths of the requests). We bound the probability that some multi-bend
path uses edge e. Consider the formation of a sub-path pi from a sub-mesh M1 to a
sub-mesh M2, such that M1 ⊆ M2 and e is a member of M2. If M1 is of type-1 then all
of its sides are equal to m�, where � is the level of M1. Then the sub-path pi uses edge
e with probability at most 2/m�. Moreover, a one-bend sub-path is enough to route the
request from M1 to M2.

Let P ′ be the set of paths that go from M1 to M2 (or vice-versa). Let C′(e) denote
the congestion that the messages P ′ cause on e. Using the similar argument as given
in previous paragraph for an edge e, the upper bound in C′(e), denoted as E[C′(e)],
is bounded by E[C′(e)] ≤ 2|P ′|/m�. Moreover, from the definition of the boundary
congestion B ≥ B(M1, Π) ≥ |P ′|/out(M1). Thus, C∗ ≥ |P ′|/out(M1). Since M1

has all sides of length m� nodes, out(M1) ≤ 4m�. Therefore, E[C′(e)] ≤ 8C∗. We
charge this congestion to sub-mesh M2. Between every sub-level (i, 2) sub-meshes,
1 ≤ i ≤ k − 1, as M1 of sub-level (i, 2) is completely contained in M2 of sub-level
(i + 1, 2) and there are at most k < logn + 2 levels, the expected congestion on edge
e, denoted as E[C(e)], is bounded by E[C(e)] ≤ 8C∗(logn+ 2).

According to our construction, there is one type-2 sub-mesh M ′
1 between every two

type-1 sub-meshes M1 and M2 in the sub-mesh hierarchy. As the type-2 sub-mesh M ′
1

may not be the proper subset of M2, the set of paths from M1 to M ′
1 may go through

four possible type-2 sub-meshes and they may bend at most two times before they reach
to the leader node of M2. This will increase the congestion by at most the factor of 4
between every two type-1 sub-meshes M1 and M2. Moreover, as we know only sub-
meshes up to level k < logn+2 can contribute to the congestion on edge e and there are
at most (logn+2) levels of type-2 sub-meshes, E[C(e)] increases by a constant factor
only due to the type-2 sub-meshes. As every request selects its path independently of
every other request (Lines 26–30 of Algorithm 1), using standard Chernoff bound, we
obtain a concentration result on the congestion C. ��

Publish Cost. We can prove the following theorem for any publish operation.

Theorem 3. The publish operation has communication cost O(n).

Lookup Cost. It can be shown that a lookup request r from w finds either the directory
path to the owner v (dist(w, v) ≤ 2i) or a slink to the directory path towards v at level
at most η, where η = i+ 4. Therefore, we obtain:

Theorem 4. The stretch of MultiBend is constant for a lookup operation.

6 Extension to the d-Dimensional Mesh

We outline the alternative decomposition that has O(d2 logn) approximation for both
the path stretch and the congestion in d-dimensional mesh networks. The decom-
position will have type-1 sub-meshes and other shifted sub-meshes. We set λ =
max{1,m�/2

�log d+1�}, where m� is the side length of the level � type-1 sub-mesh.
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The type-1 sub-meshes are shifted by (j− 1)λ nodes in each dimension to get the type-
j sub-meshes. According to this decomposition, there will be at most 2(d+1) different
types of sub-meshes at any level. The hierarchy Z is formed similar to 2-dimensional
mesh but now there will be 2d+ 1 sub-levels. The multi-bend and canonical paths can
also be defined similar to Section 3. We summarize the performance bounds below:

Theorem 5. In d-dimensional mesh networks, MultiBend has O(d2 logn) amortized
stretch for move operations and O(d2 logn) approximation on congestion w.h.p. More-
over, the publish operation has cost O(n) and the lookup operation has stretch O(d2).
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