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Abstract. Rapid advancements in multi-core processor architectures
along with low-cost, low-latency, high-bandwidth interconnects have made
clusters of multi-core machines a common computing resource. Unfortu-
nately, writing good parallel programs to efficiently utilize all the re-
sources in such a cluster is still a major challenge. Programmers have to
manually deal with low-level details that should ideally be the responsi-
bility of an intelligent compiler or a run-time layer. Various programming
languages have been proposed as a solution to this problem, but are yet
to be adopted widely to run performance-critical code mainly due to
the relatively immature software framework and the effort involved in
re-writing existing code in the new language. In this paper, we motivate
and describe our initial study in exploring CUDA as a programming
language for a cluster of multi-cores. We develop CUDA-For-Clusters
(CFC), a framework that transparently orchestrates execution of CUDA
kernels on a cluster of multi-core machines. The well-structured nature
of a CUDA kernel, the growing number of CUDA developers and bench-
marks along with the stability of the CUDA software stack collectively
make CUDA a good candidate to be considered as a programming lan-
guage for a cluster. CFC uses a mixture of source-to-source compiler
transformations, a work distribution runtime and a light-weight software
distributed shared memory to manage parallel executions. Initial results
on running several standard CUDA benchmark programs achieve impres-
sive speedups of up to 7.5X on a cluster with 8 nodes, thereby opening
up an interesting direction of research for further investigation.
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1 Introduction

Clusters of multi-core nodes have become a common HPC resource due to their
scalability and attractive performance/cost ratio. Such compute clusters typ-
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ically have a hierarchical design with nodes containing shared-memory multi-
core processors interconnected via a network infrastructure. While such clusters
provide an enormous amount of computing power, writing parallel programs to
efficiently utilize all the cluster resources remains a daunting task. For example,
intra-node communication between tasks scheduled on a single node is much
faster than inter-node communication, hence it is desirable to structure code
in a way so that most of the communication takes place locally. Interconnect
networks have large bandwidth and are suitable for heavy, bursty data transfers.
This task of manually orchestrating the execution of parallel tasks efficiently
and managing multiple levels of parallelism is difficult. A popular programming
choice is a hybrid approach [13][27] using multiple programming models like
OpenMP[8] (intra-node) and MPI[24] (inter-node) to explicitly manage locality
and parallelism. The challenge lies in writing parallel programs that can readily
scale across systems with steadily increasing numbers of both cores per node and
nodes. Various programming languages and models that have been proposed as
a solution to this problem [15][14] are yet to be adopted widely due to the effort
involved in porting applications to the new language as well as the constantly
changing software stack supporting the languages.

The use of GPUs for general purpose computing applications, often called
GPGPU[2] (General Purpose computing on GPUs), has been facilitated mainly
by NVIDIAs CUDA (Compute Unified Device Architecture [6]) and OpenCL [7].
In particular, CUDA has become a popular language as evident from an increas-
ing number of users [6] and benchmarks [9] [16]. The semantics of CUDA enforce
a structure on parallel kernels where communication between parallel threads is
guaranteed to take place correctly only if the communicating threads are part of
the same thread block, through some block-level shared memory. From a CUDA
thread ’s perspective, the global memory offers a relaxed consistency that guar-
antees coherence only across kernel invocations, and hence no communication
can reliably take place through global memory within a kernel invocation. Such
a structure naturally exposes data locality information that can readily bene-
fit from the multiple levels of hardware-managed caches found in conventional
CPUs. In fact, previous works such as [26][25] have shown the effectiveness us-
ing CUDA to program multi-core shared memory CPUs, and similar research
has been performed on OpenCL as well [20][19]. More recently, a compiler that
implements CUDA on multi-core x86 processors has been released commercially
by the Portland Group [10]. CUDA has evolved into a very mature software
stack with efficient supporting tools like debuggers and profilers, making ap-
plication development and deployment easy. We believe that CUDA provides a
natural and convenient way of exposing data locality information and expressing
multi-level parallelism in a kernel.

Considering the factors of programmability, popularity, scalability, support
and expressiveness, we believe that CUDA can be used as a single language to ef-
ficiently program a cluster of multi-core machines. In this paper, we explore this
idea and describe CFC, a framework to execute CUDA kernels can be efficiently
and in a scalable fashion on a cluster of multi-core machines. As the thread-
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level specification of a CUDA kernel is too fine grained to be profitably executed
on a CPU, we employ compiler techniques described in [26] to serialize threads
within a block and transform the kernel code into a block-level specification.
The independence and granularity of thread blocks makes them an attractive
schedulable unit on a CPU core. As global memory in CUDA provides only a
relaxed consistency, we show it can be realized by a lightweight software dis-
tributed shared memory (DSM) that provides an abstraction of a single shared
address space across the compute cluster nodes. Finally, we describe our work-
partitioning runtime that distributes thread blocks across all cores in the cluster.
We evaluate our framework using several standard CUDA benchmark programs
from the Parboil benchmark suite [9] and the NVIDIA CUDA SDK [5] on an
experimental compute cluster with eight nodes. We achieve promising speedups
ranging from 3.7X to 7.5X compared to a baseline multi-threaded execution
(around 56X compared to a sequential execution). We claim that CUDA can be
successfully and efficiently used to program a compute cluster and thus motivate
further exploration in this area.

The rest of this paper is organized as follows: Section 2 provides the necessary
background on CUDA programming model and the compiler transformations
employed. In Section 3, we describe the CFC framework in detail. In Section
4, we describe our experimental setup and evaluate our framework. Section 5
discusses related work. In section 6 we discuss possible future directions and
conclude.

2 Background

2.1 CUDA programming model

The CUDA programming model provides a set of extensions to the C program-
ming language enabling programmers to execute functions on a GPU. Such func-
tions are called kernels.Each kernel is executed on the GPU as a grid of thread
blocks, the sizes of which are specified by the programmer during invocation.
Data transfer between the main memory and GPU DRAM is performed explic-
itly using CUDA APIs. Thread-private variables are stored in registers in each
SM. Programmers can declare read-only GPU data as constant if it is read-only.
Programmers can use shared memory - which is a low-latency, user-managed
scratch pad memory - to store frequently accessed data. Shared memory data
is visible to all the threads within the same block.The syncthreads construct
provides barrier synchronization across threads within the same block.

Each thread block in a kernel grid gets scheduled independently on the
streaming multiprocessor (SM) that it is assigned to. The programmer must
be aware that a race condition potentially exists if two or more thread blocks
are operating on the same global memory address and at least one of them is
performing a write operation. This is because there is no control over when the
competing blocks will get scheduled. CUDA’s atomic primitives can be used only
to ensure that the accesses are serialized.
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2.2 Compiler Transformations

As the per-thread code specification of a CUDA kernel is too fine grained to be
scheduled profitably on a CPU, we first transform the kernel into a per-block
code specification using transformations described in the MCUDA framework
[26]. Logical threads within a thread block are serialized, i.e., the kernel code is
executed in a loop with one iteration for each thread in the block. Barrier syn-
chronization across threads is implemented using a technique called deep fission,
where the single thread loop is split into two separate loops, thereby preserving
CUDA’s execution semantics. Thread-private variables are replicated selectively,
avoiding unnecessary duplication while preserving each thread’s instance of the
variable. [26] has further details on each transformation.

3 CUDA for Clusters (CFC)

In this section, we describe CFC in detail. Section 3.1 describes CFC’s work
partitioning runtime scheme. Section 3.2 describes CFC-SDSM, the Software
DSM that used to realize CUDA global memory in a compute cluster.
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dim3 dg(4,2);
dim3 db(128);
kernel<<<dg,db>>>(params)

for(i=0; i<8;i++)
perBlockCCode(params,i,db,dg)
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Fig. 1. Structure of the CFC framework. The pseudo-code for kernel invocation at each
stage is shown on the right for clarity.

3.1 Work distribution

Executing a kernel involves executing the per-block code fragment for all block
indices, as specified in the kernel’s execution configuration (dg, in Figure 1). In
this initial work, we employ a simple work distribution scheme that divides the
set of block indices into contiguous, disjoint subsets called block index intervals.
The number of blocks assigned to each node is determined by the number of
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executing nodes, which is specified as a parameter during execution. For the
example in Figure 1, the set of block indices 0 – 7 has been split into four
contiguous, disjoint subsets {0, 1}, {2, 3}, {4, 5} and {6, 7}, which are scheduled
to be executed by nodes N1, N2, N3 and N4 respectively. OpenMP is used
within each node to execute the set of work units within the block index interval
in parallel on multiple cores. For example, in Figure 1, within each node the
assigned blocks are executed in parallel using multiple threads on cores P1 and
P2. The thread blocks are thus distributed uniformly irrespective of the size of
the cluster or number of cores in each cluster node.

3.2 CFC-SDSM

In the recent past, software DSMs have re-emerged as an popular choice to
exploit parallelism on distributed and heterogeneous parallel systems [23][18].
This trend suggests that an efficient implementation of a software DSM which
enforces appropriate consistency semantics as required by the target environment
can actually provide the desired performance and scalability.

CFC supports CUDA kernel execution on a cluster by providing the global
CUDA address space through a software abstraction layer, called CFC-SDSM.
Recall that under CUDA semantics on a GPU, if two or more thread blocks
operate on the same global memory address with at least one of them performing
a write, then there is a potential race as there is no guarantee on the order in
which thread blocks get scheduled for execution. CUDA kernels with data races
produce unpredictable results on a GPU. However, global data is coherent at
kernel boundaries; all thread blocks see the same global data when a kernel
commences execution. We therefore enforce a relaxed consistency semantics[11]
in CFC-SDSM that ensures coherence of global data at kernel boundaries. Thus,
for a data-race free CUDA program, CFC-SDSM guarantees correct execution.
For programs with data races inside a kernel, CFC-SDSM only ensures that
the writes by the multiple competing thread blocks are ordered in some order.
Constant memory is read-only, and hence is maintained as separate local copies
on every node.

As the size of objects allocated in global memory can be large (we have seen
arrays running to hundreds of pages in some programs), CFC-SDSM operates at
page-level granularity. Table 1 describes the meta information stored by CFC-
SDSM for each page of global data in its page table.

Table 1. Structure of a CFC-SDSM page table entry

Field Description

pageAddr Starting address1 of the page.
pnum A unique number (index) given to each page, used during synchronization.
written 1 if the corresponding page was written, else 0.
twinAddr Starting address of the page’s twin.
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CFC-SDSM Operation Global data is identified at allocation time. CFC-
SDSM treats all memory allocated using cudaMalloc as global data. Each al-
location call typically populates several entries in the CFC-SDSM table. Every
memory allocation is performed starting at a page boundary using mmap. At
the beginning of any kernel invocation, CFC-SDSM sets the read permission and
resets the write permission for each global memory page. Thus, any write to a
global page within the kernel results in a segmentation fault which is handled by
CFC-SDSM’s SIGSEGV handler. The segmentation fault handler first examines
the address causing the fault. The fault could either be due to (i) a valid write
access to a global memory page that is write-protected, or (ii) an illegal address
caused by an error in the source program. In the latter case, the handler prints
a stack trace onto standard error and aborts execution. If the fault is due to the
former, the handler performs the following actions:

– Set the written field of the corresponding CFC-SDSM table entry to 1.
– Create a replica of the current page, called its twin. Store the twin’s address

in the corresponding CFC-SDSM table entry.
– Grant write access to the corresponding page and return.

In this way, at the end of the kernel’s execution, each node is aware of the
global pages it has modified. Note that within each node, the global memory
pages and CFC-SDSM table are shared by all executing threads, and hence all
cores. So, the SEGV handler overhead is incurred only once for each global page
in a kernel, irrespective of the number of threads/cores writing to it. Writes
by a CPU thread/thread block are made visible to other CPU threads/thread
blocks executing in the same node by the underlying hardware cache coherence
mechanism, which holds across multiple sockets of a node. Therefore, no special
treatment is needed to handle shared memory.

The information of which global pages have been modified within a kernel is
known within a single node of the cluster, and has to be made globally known
across the cluster by communication at kernel boundaries. To accomplish this,
each node constructs a vector called writeVector specifying the set of global
pages written by the node during the last kernel invocation. The writeVectors are
communicated with other nodes using an all-to-all broadcast. Every node then
computes the summation of all writeVectors. We perform this vector collection-
summation operation using MPI Allreduce[24]. At the end of this operation,
each node knows the number of modifiers of each global page. For instance,
writeV ector[p] == 0 means that the page having pnum = p has not been
modified, and hence can be excluded from the synchronization operation.

Pages having writeVector[pnum] == 1 have just one modifier. For such pages,
the modifying node broadcasts the up-to-date page to every other cluster node To
reduce broadcast overheads, all the modified global pages at a node are grouped
together in a single broadcast from that node. The actual page broadcast is
implemented using MPI Bcast.

Let us now consider the case where a page has been modified by more than
one node. Each modifier must communicate its modifications to other cluster
nodes. CFC-SDSM accomplishes this by diff ing the modified page with its twin
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page. Recall that a twin would have been created in each of the modifying cluster
nodes by the SIGSEGV handler. In CFC-SDSM, each modifier node other than
node 0 computes the diff s and sends them to node 0, which collects all the diff s
and applies them to the page in question. Node 0 then broadcasts the up-to-date
page to every other node. The coherence operation ends by each node receiving
the modified pages and updating the respective pages locally.

We show in section 4 that centralizing the diff ing process at node 0 does not
cause much of a performance bottleneck mainly because the number of pages
with multiple modifiers are relatively less. For pages with multiple modifiers,
CFC-SDSM assumes that the nodes modified disjoint chunks of the page. This
is true for most of the CUDA programs we analyzed. If multiple nodes have
modified overlapping regions in a global page the program has a data race, and
under CUDA semantics the results are unpredictable.

3.3 Lazy Update

Broadcasting every modified page to every other node creates a high volume of
network traffic, which is unnecessary most of the times. We therefore implement
a lazy update optimization in CFC-SDSM where modified pages are sent to
nodes lazily on demand. CFC-SDSM uses lazy update if the total number of
modified pages across all nodes exceeds a certain threshold. We have found that
a threshold of 2048 works reasonably well for many benchmarks (see section
4). In lazy update, global data is updated only on node 0 and no broadcast is
performed. Instead, in each node n, read permission is set for all pages p that
were modified only by n (since the copy of page p is up-to-date in node n), and
the write permission is reset as usual. If a page p has been modified by some
other node(s), node n’s copy of page p is stale. Hence, CFC-SDSM invalidates p
by removing all access rights to p in n. Pages which have not been modified by
any node are left untouched (with read-only access rights). At the same time,
on node 0, a server thread is forked to receive and service lazy update requests
from other nodes. In subsequent kernel executions, if a node tries to read from an
invalidated page (i.e. a page modified by some other block/node in the previous
kernel call), a request is sent to the daemon on node 0 with the required page’s
pnum. In section 4, we show that the lazy update scheme offers appreciable
performance gains for a benchmark with a large number of global pages.

4 Performance Evaluation

In this section, we evaluate CFC using several representative benchmarks from
standard benchmark suites.

4.1 Experimental Setup

For this study, we performed all experiments on an eight-node cluster, where
each node is running Debian Lenny Linux. Nodes are interconnected by a high-
bandwidth Infiniband network. Each node is comprised of two quad-core Intel
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Xeon processors running at 2.83GHz, thereby having eight cores.

Compiler framework Figure 2 shows the structure the CFC compiler
framework. We use optimization level O3 in all our experiments.

  

CUDA source

OpenMP parallelization

g++

mpic++

CFC-SDSM
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Distribution 
Library

Cluster
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Source-to-source 
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Fig. 2. Structure of the compiler framework.

Benchmarks We used five benchmark applications and one kernel. Four
are from the Parboil Benchmark suite [9]. Blackscholes and the Scan kernel are
applications from the NVIDIA CUDA SDK[5]. Table 2 briefly describes each
benchmark.

Table 2. Benchmarks and description.

Benchmark Description

cp Coulombic potential computation over one plane in a 3D grid, 100000 atoms
mri-fhd FHd computation using in 3D MRI reconstruction, 40 iterations
tpacf Two point angular correlation function
blackscholes Call and put prices using Black-Scholes formula, 50000000 options, 20 iterations
scan Parallel prefix sum, 25600 integers, 1000 iterations
mri-q Q computation in 3D MRI reconstruction, 40 iterations

Performance Metrics In all our experiments, we keep the number of
threads equal to the number of cores on each node (8 threads per node in our
cluster). We define speedup of an n node execution as:

speedup =
tbaseline

tCLUSTER
, (1)

where tbaseline represents the baseline multi-threaded execution time on one
node, and tCLUSTER represents execution time in the CFC framework on n
nodes. Observe that the speedup is computed for a cluster of n nodes (i.e., 8n
cores) relative to performance on 1 node (i.e., 8 cores). In effect, for n = 8, the
maximum obtainable speedup would be 8.
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4.2 Results

Table 3 shows the number of pages of global memory as well as the number of
modified pages. Our benchmark set has a mixture of large and small working sets
along with varying percentages of modified global data, thus covering a range
of GPGPU behavior suitable for studying an implementation such as ours.

Table 3. Number of pages of global memory declared and modified in each benchmark.

Benchmark Global pages Modified

Cp 1024 1024

Mri-fhd 1298 510

Tpacf 1220 8

BlackScholes 244145 97658

Mri-q 1286 508

Scan 50 25
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Fig. 3. Comparison of execution times of various benchmark applications on our sys-
tem. (a) shows normalized speedups on a cluster with 8 nodes without lazy update.
(b) shows the performance of BlackScholes with the lazy update optimization.

Benchmark speedups are shown in Figure 3. Figure 3(a) shows speedups with
the lazy update optimization disabled for all the benchmarks, while 3(b) shows
speedups for the BlackScholes benchmark when the lazy update optimization is
enabled. We make the following observations:

– Our implementation has low runtime overhead. Observe the speedups for
n = 1, i.e., the second bar. In almost all cases, this value is close to the
baseline. BlackScholes slows down by about 14% due to its large global
data working set.
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– The Cp benchmark shows very high speedups in spite of having a high
percentage of global data pages being modified. Cp is a large benchmark
with lots of computations that can utilize many nodes efficiently.

– The Scan benchmark illustrates the effect of a CUDA kernel design on its
performance on a cluster. Originally, the Scan kernel is small where only 512
elements are processed per kernel. Spreading such a small kernel’s execution
over many nodes was an overkill and provided marginal performance gains
comparable to Blackscholes in figure 3(a). However, after the kernel was
modified (coarsened or fattened) to processes 25600 elements per kernel, we
achieve the speedups shown in 3(a).

– The BlackScholes benchmark shows scalability, but low speedups. However,
this application suffers from numerous broadcasts during synchronization
and hence gains from the lazy update optimization. On a cluster with 8
nodes, we obtain a speedup of 3.7X with lazy update, compared to 2.17X
without lazy update. This suggests that the performance gained by reducing
interconnect traffic compensates for the overheads incurred by creating the
daemon thread. We have observed that for this application, invalidated pages
are never read in any node.

– Across the benchmarks, our runtime approach to extend CUDA programs
to clusters has achieved speedups ranging from 3.7X to 7.5X on an 8 node
cluster.

In summary, we are able to achieve appreciable speedup and a good scaling
efficiency (upto 95%) with number of nodes in the cluster.

5 Related Work

We briefly discuss a few previous works related to programming models, using
CUDA on non-GPU platforms and software DSMs. The Partitioned Global Ad-
dress Space family of languages (X10[15], Chapel[14] etc.) aims to combine the
advantages of both message-passing and shared-memory models. Intel’s Cluster
OpenMP[1] extended the OpenMP programming language to make it usable on
clusters, but has been deprecated [3]. Intel’s Concurrent collections [4] is an-
other shared memory programming model that aims to abstract the description
of parallel tasks.

Previous works like [26], [10] and [17] use either compiler techniques or binary
translation to execute kernels on x86 CPUs. In all the works mentioned here,
CUDA kernels have been executed on single shared-memory hardware.

Various kinds of software DSMs have been suggested in literature like [21]
[12] [22] [18] etc. CFC-SDSM differs from the above works in the sense that
locks need not be acquired and released explicitly by the programmer. All global
memory data is ‘locked’ just before kernel execution and ‘released’ immediately
after, by definition. Also, synchronization operation proceeds either eagerly or
lazily, depending on the total size of global memory allocated. This makes our
DSM very lightweight and simple.



XI

6 Conclusions and Future Work

With the rise of clusters of multi-core machines as a common and powerful HPC
resource, there exists a necessity for a unified language to write efficient, scalable
parallel programs easily. Here, we have presented an initial study in exploring
CUDA as a language to program such clusters. We have implemented CFC,
a framework that uses a mixture of compiler transformations, work distribu-
tion runtime and a lightweight software DSM to collectively implement CUDA’s
semantics on a multi-core cluster. We have evaluated our implementation by
running six standard CUDA benchmark applications to show that there are
promising gains that can be achieved.

Many interesting directions can be pursued in the future. One direction could
be in building a static communication cost estimation model that can be used by
the runtime to schedule blocks across nodes appropriately. Another interesting
and useful extension to this work would be to consider GPUs on multiple nodes
as well along with multi-cores. Also, kernel coarsening and automatic kernel ex-
ecution configuration tuning could be performed. Further reduction the DSM
interconnect traffic could also be achieved by smarter methods that track global
memory access patterns.
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