An Investigation into the Performance
of Reduction Algorithms under Load Imbalance

Petar Marendié!2, Jan Lemeire!»2, Tom Haber?,
Dean Vuéinié!2, and Peter Schelkens!+?

! Vrije Universiteit Brussel (VUB), ETRO Dept.,
Pleinlaan 2, B-1050 Brussels, Belgium
petar .marendic@vub.ac.be
2 Interdisciplinary Institute for Broadband Technology (IBBT), FMI Dept., Gaston
Crommenlaan 8 (box 102), B-9050 Ghent
3 EDM, UHasselt, Diepenbeek
tom.haberQuhasselt.ac.be

Abstract. Today, most reduction algorithms are optimized for balanced
workloads; they assume all processes will start the reduction at about the
same time. However, in practice this is not always the case and significant
load imbalances may occur and affect the performance of said algorithms.
In this paper we investigate the impact of such imbalances on the most
commonly employed reduction algorithms and propose a new algorithm
specifically adapted to the presented context. Firstly, we analyze the
optimistic case where we have a priori knowledge of all imbalances and
propose a near-optimal solution. In the general case, where we do not
have any foreknowledge of the imbalances, we propose a dynamically
rebalanced tree reduction algorithm. We show experimentally that this
algorithm performs better than the default OpenMPI and MVAPICH2
implementations.

Keywords: MPI, imbalance, collective, reduction, process skew, bench-
marking.

1 Introduction

The reduction algorithm - extracting a global feature from distributed data such
as the sum of all values - is a common and important communication operation.
However, it has two downsides which degrade the performance of a parallel pro-
gram. Firstly, all of the reduction algorithms scale superlinearly as a function of
the number of processors, as shown later on in the text. Secondly, any reduction
operation breaks the independence of process execution, as it requires a global
process synchronization. Unless of course if the reduction could be performed in
the background, i.e. asynchronously - a case we will not consider here. Reduction
algorithms are vulnerable to load imbalances in the sense that if one process is
delayed before starting the reduction, the execution of part of the reduction will
also be delayed. One can however change the order in which process subresults
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are combined so that this concomitant delay is significantly reduced. In the ex-
treme case where the imbalance dwarfs the combination times, this delay can be
effectively eliminated.

1.1 Performance Cost Model

For analytical evaluation and comparison of various reduction algorithms we will
employ a simple flat model as defined by [I] wherein there are p participating
processes and each process has an input vector size of n bytes. We denote the
local computation cost for one binary operation on two vector bytes as v[sB™].
Communication time is modeled as a + nf, where « is per message latency and
B[sB~1] per byte transfer time.

We further assume that any process can send and receive one message at the
same time, so that p parallel processes can send p messages in parallel.

The next section discusses the state-of-the art on reduction algorithms and
the effect of load imbalances. In section 3 we present a static load balancing al-
gorithm, while in section 4 we propose a new dynamic load balancing algorithm.
Section 5 presents the experimental results.

2 Reduction

By definition, a reduction operation combines elements of a data vector residing
on each of the participating processes by application of a specified reduction
operation (e.g. maximum or sum), and returns the combined values in the output
vector of a distinguished process (the root).

All reduction operators are required to be associative, but not necessarily com-
mutative. However it is always beneficial to know whether a particular operator
is commutative as there are faster ways of performing a reduction in that case.

One interesting case where a non-commutative operator arises is in the image
compositing step of a distributed raytracing algorithm. In such an algorithm global
datais distributed across processes and each process generates an image of its share
of that data. To produce the final image, a composition needs to be performed on
the produced images. This composition is a complex reduction step using the so-
called ’over’ operator and needs to happen in the correct back-to-front order.

The reduction that we’ve thus far been talking about is actually known as
all-to-one reduction [2] since the end result is sent to one distinguished process.
Variants of the reduction operation are the allreduce and reduce-scatter

2.1 Related Work

The simplest implementation of an all-to-one reduce is to have all processes send
their local result to the root and the root combine these subresults in the next
step. This approach is known as Linear Reduction Algorithm. It usually results
in a bottleneck at the root process. Using our cost model, the complexity of this
algorithm can be expressed as:

T(n,p) = (p — 1)(a+nB+ny) (1)
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One straightforward way to eliminate this bottleneck is to employ a divide and
conquer strategy that will order all participating processes in a binary tree and
where at each step half of the processes will finish their work. This Binary
Tree Reduction algorithm is efficient for small message sizes but suffers from
suboptimal load balance, as the execution time is:

T(n,p) = [logy pl(a + nf + ny) (2)

Another variation on this idea is Binomial Tree Reduction where a binomial tree
structure is used instead of a binary tree. This structure has the advantage of
producing less contention on root nodes over that of the binary tree.

Other well known algorithms are Direct-Send and Scatter-Gather. In direct-
send, every process is responsible for ;th of the data vector and scatters the
remaining chunks to their corresponding processes. In the second stage, once
all processes have reduced the chunks they had received, a gather operation is
performed on these subresults to form the result vector at the root process.
This approach will result with maximal utilization of active computational re-
sources, and with only a single communication step. However, it will also gener-
ate p X (p— 1) messages to be exchanged among all participating processes. In a
communication network where each of the participating processes are connected
by network links, this will likely generate link contention as multiple processes
will simultaneously be sending messages to the same process [3]. The execution
time for direct-send is:

T(n,p) =px (p—1)(a+ me (3)

It should be noted that this only states the time to perform a Reduce-Scatter, i.e.
having the result vector scattered across participating processes. To implement
an All-to-One reduction we need to follow up the reduce-scatter step by a gather
to the root, which is typically performed with a binomial tree algorithm. Reduce-
scatter can be also be performed by other well known methods, such as Binary
Swap or Radiz-k algorithms. Another well-performing algorithm of this type is
Rabenseifner’s algorithm which was shown to perform well with longer message
sizes [4UTI5].

1
T(n,p) = 2logy pa+nf+ (1 — p)(nﬁ +ny), wherep=2% €N (4)

This algorithm is considerably more efficient than the binary tree reduction when
the complexity of the reduction operation is significant.

As far as we know, no work has been done on analyzing and optimizing re-
duction algorithms under load imbalances. We will show in the following chapter
that this leaves many real world scenarios unaccounted for.

2.2 Load Imbalances

We can identify three sources of imbalances:
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— (Type 1) imbalances in the phase that precedes reduction
— (Type 2) imbalances in the amount of data that is sent at each step
— (Type 3) imbalances in the completion time of the combination operation.

The distributed raytracing algorithm we previously mentioned is a nice example
of type 1, 2 and 3 imbalance occurrences. As it is typical for applications of
this sort to generate images in the multi megapixel range, compression schemes
are often employed to reduce the amount of data to be sent across the network.
The time to combine these images using the over operator is a linear function of
their size, where the effective size of the image is measured in non-black, that is
relevant only pixels. Since this size varies across processes, the time to combine
such images will vary as well.

3 Static Load Balancing under Perfect Knowledge

Here we assume perfect knowledge of the load imbalances and the time reduction
phases will be finished. We analyze which reduction scheme gives the minimal
completion time. For the communication and combination step we assume one
of the following two performance models. The one of Fig. [Il is based on three
parameters o, 7 and v, while the one of Fig. 2lis a simplification in which 7 = 0.
We assume that the three parameters are constant during the total reduction.
The parameters incorporate «, 8 and ~ discussed before. Parameter o denotes
the time which is consumed on the sending process. Parameter 7 denotes the
time in which the sending process has already started the communication, but
the receiving process does not yet have to participate, in the sense that no
cycles are consumed. This happens if the message has not arrived yet or part
of the receiving is performed in the background. These cycles can be used for
other computations, so during 7, the receiving process might be busy with other
things. We then assume that the receiving process is ready after 7. After that, it
consumed 1 cycles to finish the communication and combination phase. When
the receiving process would not be ready after 7, the phase will start when ready
and still consume . Not that ¢ includes the receiving and combination phase.

CPU; CPyY; CPy; CPy;

Fig. 1. Performance model of a communi- Fig. 2. Simplified performance model of a
cation and combination phase communication and combination phase

Under these assumptions, we propose the following algorithm. The algorithm
is executed by each process when it starts the reduction.
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Algorithm 1. The static optimized reduction algorithm

While step S2 has not been performed, do the following
C check if another process has sent its subresults to you

S1 if so, receive it and accumulate it with own subresult
S2 if not, send own subresult to the first process that will be executing check
C

Under the assumption of ‘perfect knowledge’ we know during step S2 which
process will be first to be ready to receive a message. Secondly, in step C we
assume that we can test without cost that there is a message on the way. We
neglect the fact that the test for an incoming message (a ‘MPI Probe call’) could
give a negative answer while process just has posted a message which is not yet
detectable by the receiving process.

The algorithm gives the optimal reduction when using the simplified perfor-
mance model.

Lemma 1. The static optimized reduction algorithm (Alg.[dl) gives the minimal
completion time under the simplified performance model.

Proof. At S2, a process has to decide to whom sending its subresults. By sending
it to the first process ready to receive (step C), say process 2 at 2, the receiving
and combination will be ready first, at ¢t + v. By sending it to another process,
ready at ts with t5 < t3, the merge step will only be ready later, at t3 + .
This would not give an advantage. Process 2 could start sending its subresults
at to to process 4, which will finish at ¢4 + ¢. But this is not faster than any
other process that would merge with process 4. The earliest that this can finish
is t4 + ®. In this way we have proven that no other choice of receiving process
can complete the reduction earlier.

Alg. [ is, however, not always optimal for the first communication model. In
some very specific cases, an alternative merge order gives a better completion
time. Consider the case shown in Fig. Bl P1 sends its data to P2 (the first one
to finish next) and P3 merges with P4. A better merge order is shown in Fig. [
Here P1 communicates with P3 instead and P2 with P4. The first message (P1
to P3) arrives later but the second one (P2 to P4) arrives earlier than in the
first scheme. Due to the configuration of the imbalances in P5, P6, P7 and PS,
this gives rise to a merge order which finishes 7 earlier.

Hence, the given algorithm is suboptimal. Nonetheless, it will be optimal in
most cases. Only in exceptional fine-tuned cases, alternative schemes will exist.
Moreover, the difference with the optimal completion time will be small because
we expect 7 to be quite small. Concluding, in most cases, the algorithm will
be optimal. In the exceptional, suboptimal cases the algorithm will be approxi-
mately optimal.
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Fig. 3. Case in which the static load balancing algorithm is not optimal
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Fig. 4. Alternative merge order which completes faster than the static load balancing
algorithm

It must be stressed that this algorithm is impractical, since the knowledge
on when processes will be ready will not be present (it is difficult to predict
and would in general lead to too much overhead to communicate). On the other
hand, the algorithm gives a hint of how the optimal reduction would have been.
Every solution can be compared to it.

4 Dynamic Load Balancing

Our initial idea was to take a regular binary tree reduction algorithm and augment
it by installing a timeout period at each node of the tree. Should at any time a
node time out waiting on data from its children, it would delegate these busy child
nodes to its parent, reducing the number of steps their messages will eventually
have to take on their way to the root. This process would continue until the root
node received contribution from all nodes. Benchmarking however showed that
this algorithm lacked robustness, as it was hard to pick a proper timeout value for
varying vector sizes, process numbers and operator complexities.

We therefore turned our attention to a more deterministic algorithm that
although tree-based was capable of dynamically reconfiguring its structure to
minimize the effect an imbalance might have. The algorithm allows neighbours
that are ready to start combining their subresults. The processes are ordered
in a linear sequence and will send their local subresult to their right neighbour
when finished, as described by Algorithm 21 Since the right neighbour might
already have terminated, first a handshake is performed by sending a completion
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message and waiting for the handshake message. Once a process is finished,
its left neighbour should be redirected to its ‘current’ right neighbour. This is
illustrated by the example run shown in Fig. Bl

Algorithm 2. Local reduction algorithm

S1 Initialize left and right neighbours according to the neighbours in the predefined
linear ordering of the processes. The processes at the head or tail do not have
left or right neighbour respectively.

S2 Send completion message to right neighbour.

S3 Wait for incoming messages.

S3.1 On receipt of completion message, initiate handshake.
S3.2 On receipt of redirect message, change right to new node.

S4 Complete handshake, exchange data and perform reduction. Change left to
sender’s left neighbour.

S5 If data was received goto 3

S6 Wait for message from right neighbour and redirect to left.

= =1 = =]

—
e —
- — -

completion handshake  data  redirect
——— — —

Fig. 5. Example run of the local reduction algorithm

5 Experimental Results

We devised an experiment with the primary purpose of ordering several well
known algorithms in terms of their performance under various conditions of
load imbalance. Our benchmarking scheme was as follows: before running the
actual timed benchmark for a given algorithm, we perform a single warm up
run; second, we synchronize the participating processes with a single call to
MPI::Barrier; third, we sleep each process for delay milliseconds, where delay is
a time offset that we distribute individually across participating processes using
one of the schemes enumerated below; then, we run the algorithm k times for
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each predefined operator, where k is a parameter to our benchmark program,
random shuffling the data vector between each iteration. Finally, we repeat this
process r times, each time random generating a new data vector and a new time
offset for each participating process.

5.1 Completion Time

In ideal conditions, where no load imbalances and process skew are present, the
completion time of a reduction operation should typically be measured from its
initiation till its termination at the root process, as this best reflects the time a
given user would have to wait before the results of a reduction operation become
available to him.

However, in real-life applications it is rarely the case that all participating pro-
cesses begin the reduction at the same time, even when they have been explicitly
synchronized with a call to MPIL::Barrier [6]. To compound matters, we explicitly
introduce process skew ensuring that participating processes will be initiating and
completing their share of the reduction operation at different time instances.

With this in mind, and having resolved to report only a single number as the
elapsed time of a reduction operation, several different schemes of reducing the
initiation and termination times at each process present themselves. [7] and [6]
enumerate the following approaches

T; the time needed at a designated process (termination - initiation time at
root)

T> maximum of the times on all participating processes

T3 the time between the initiation of the earliest process and the termination
of the last

T4 the average time of all processes

T5 minimimum of the times on all participating processes

One can however also take into account the imbalance time of a given process,
and treat both this time and the reduction time as one unit of interest, as would
be the case in image rendering where the imbalance time is the time required to
generate an image of the local data and the reduction time, the time to perform
image compositing that results with an image of global data. Thus we decided
to report the mean time 7; plus the imbalance time at root process, across r
iterations.

5.2 Benchmark Parameters

To study the performance of reduction algorithms we developed a test suite that
can create workloads controlled by the following parameters:

— Statistical imbalance distributions:
e a Gaussian distribution with mean m and standard deviation s.
e a Gamma distribution with mean m=6.k, where 6 is the scale parameter
and k the shape parameter. It is frequently used as a probability model
for waiting times.
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— data vectors sizes. No imbalances were generated (Type 2).
— reduction operator complexity. No imbalances were generated (Type 3), com-
pletion time was a function of vector size.

We decided to take into consideration imbalances of type 1 only, as it is our
opinion that they are most representative of real life scenarios.
We included the following algorithms into our analysis:

1. Binary Tree Reduction

2. OpenMPT’s and MPICH’s default implementation

3. All-to-All followed by local reductions and final gather to root
4. Our local reduction algorithm

The experiments were performed on a cluster machine available in the Intel
Exascience lab, Leuven. It is a 32 node cluster with 12 cores per node (2 x
Xeon X5660 processor with v = 1.79 10719 defined as 2/Rpear With Rpeak
the theoretical maximum floating point rate of the processing cores) and QDR
Infiniband interconnect (measured MPI bandwidth of ~ 3500MB/s, a = 3.13
us, 8 = 0.00263us)

5.3 Performance of Default Implementation

Our tests have shown that the default implementation of the reduction algo-
rithm under MVAPICH2, when tested without any load imbalances, is consis-
tently slower than our All-to-All reduce implementation. Even though we don’t
report the timings here, we have run the same battery of tests on OpenMPI as
well, but the ranking of the tested algorithms was unchanged. In addition, we
checked the performance of the default implemented Reduce-Scatter algorithm
and have confirmed that it too is faster than the default Reduce algorithm. This
leads us to believe that the default implementation is in fact a binomial tree re-
duction algorithm that performs well for small vector sizes only. This is a rather
surprising revelation considering that significantly better algorithms have been
published more than 5 years ago [4I115].

5.4 Impact of Data Size

For small vector sizes, the default implementation was regularly the fastest,
scaling very well with increasing number of processors which is indicative of
binomial tree reduction. On the other hand, for big and very big vectors the
All-to-All (and Reduce-Scatter) algorithms outperform everyone else thanks to
their linear  factor scaling (Eq. ). We should point out that All-to-All reduce
can only be applied if the data vector can be sliced - something that is not always
feasible with custom user defined data. In such case the only recourse is to revert
to the binomial tree algorithm. Our benchmarks have shown that for reasonably
big vectors the local reduce algorithm is of approximately the same performance
as the default implementation and considering its superior performance under
load imbalance we can confidently state that in this case it is the more robust
algorithm of the two.
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5.5 Impact of Reduction Operator’s Complexity

Reading the relevant literature, one cannot escape the sentiment that little re-
search has been performed in evaluating the performance of reduction algorithms
with operators of varying complexity. We decided therefore to include into our
tests two operators: std::plus and a special operator that is two orders of magni-
tude slower. Additionally, for sake of generality we assumed that both of these
operators are non-commutative. The significant disparity in complexity of these
two operators made it immediately apparent how inadequate the default im-
plementation is, as it was completely outperformed by All-to-All (and Reduce-
Scatter) implementations with execution times up to 6 times slower and with
significantly worse scaling as visible in Fig. [l It was however consistently faster
than our local reduce algorithm in test runs without imbalance.

5.6 Impact of Load Imbalances
To test the impact of load imbalances, we identified two interesting cases:

1. there is a single slow process.
2. imbalances are distributed according to a gamma distribution for which k=2
and 0=0.5, where the 90th percentile was 2.7 the mean imbalance.

In the first case where one of the processes is experiencing a slowdown, our local
reduction algorithm proves itself as the best performer, often exhibiting flat scal-
ing due to its ability to hide communication and computation overheads behind
the incurred imbalance (see Fig. B). The improvement we were able to achieve
with our algorithm is dependent on the ratio of imbalance time and the time to
reduce two vectors as is visible from Table [l However, when the imbalances are
distributed according to a gamma distribution law the local reduction algorithm
only remains competitive up to and including vector size of 4dMB (see Fig. [).
For a 40MB vector, the All-to-All implementation was the fastest.

Table 1. Speedup obviously depends on the imbalance time. Here, the time to reduce
two vectors was 4 ms. All runtimes are reported in seconds.

128 processors with a 1024000 elements vector

Imbalances in ms

Algorithm 10 20 30 40 60
LocalReduce 0.0466108 0.0458913 0.0466785 0.050597 0.0695058
Default 0.0502286 0.0599159 0.0696198 0.079698 0.0996538

Speedup 1.08 1.32 1.49 1.56 1.43
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6 Conclusions

We can establish two important conclusions: when designing reduction algo-
rithms one should take into account operators significantly more complex than
std::plus, as our tests have confirmed that algorithms well suited for cheap oper-
ations do not necessarily perform as well when expensive operations come into
play; secondly, load imbalances do impact the performance of state-of-the art
reduction algorithms and there are ways, as we have shown, to mitigate this.

The next step should be to investigate what benefits could be achieved by
using the ideas here presented in a real world scenario such as a distributed
raytracing algorithm that exhibits all three identified types of imbalances and
verifying whether the results obtained with these synthetic tests are indeed rel-
evant.
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