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Abstract. With an increase in the number of processors on a single
chip, programming environments which facilitate the exploitation of par-
allelism on multicore architectures have become a necessity. StarSs is a
task-based programming model that enables a flexible and high level
programming. Although task synchronization in StarSs is based on data
flow and dependency analysis, some applications (e.g. reductions) require
locks to access shared data.

Transactional Memory is an alternative to lock-based synchronization
for controlling access to shared data. In this paper we explore the idea of
integrating a lightweight Software Transactional Memory (STM) library,
TinySTM , into an implementation of StarSs (SMPSs). The SMPSs run-
time and the compiler have been modified to include and use calls to
the STM library. We evaluated this approach on four applications and
observe better performance in applications with high lock contention.

1 Introduction

Over the past decade, single-core processors ran into three walls, namely ILP
(Instruction Level Parallelism), power and memory. The ensuing stalemate led
to the trend of placing multiple slower processors on a single chip. But achieving
good performance on these architectures is hard. It often requires programmers
to rewrite the code or implement algorithms anew. In multi-core programming,
the programmer’s efforts are directed towards hardware details, such as move-
ment of data between processors and synchronization, than on the details of the
algorithm. Every new architecture additionally comes with its associated SDK,
which raises the issue of portability. Hence, what is needed now are programming
environments, i.e. sets of compilers, runtimes and communication libraries, that
make multi-core programming easier while achieving maximum performance.
The effectiveness of such a programming model can be evaluated using the fol-
lowing measures:
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– Performance of an application using the programming model versus the na-
tive SDK

– Level of complexity exposed to the programmer.
– Increase in number of lines compared to sequential program
– Use of specific API calls

– Ease of portability of applications.

OpenMP [5] is a widely used programming model for share memory archi-
tectures. It supports multi-platform multiprocessor programming in C, C++,
and Fortran. Cilk [7] is a similar programming model developed at MIT. Both
OpenMP and Cilk support task-based and loop-based parallelism but neither
performs task-based data dependence analysis. Magma [4] is a programming
language designed to investigate algebraic, geometric and combinatorial struc-
tures. It is not intended for general-purpose programming since its structure is
preconditioned for linear algebra problems.

StarSs[9] is a programming environment for parallel architectures such as
Symmetric Multiprocessors (SMP), the Cell Broadband Engine (Cell B./E.),
Graphical Processing Units (GPU) and clusters. An application written with
this programming model, can be executed on any of the architectures mentioned
above with no change to the code, effectively achieving portability. In this paper
we focus on SMPSs [10], the implementations of StarSs for SMP.

SMPSs allows programmers to write sequential applications, while the runtime
exploits the inherent concurrency and schedules tasks to different cores of an
SMP. We will have more to say on this topic in Section 2. In order to protect the
atomicity of shared memory locations, SMPSs uses locks. But locks suffer from
the traditional drawbacks of:

– Deadlock - two tasks trying to lock two different objects, each getting access
to one and waiting for the other one to be released.

– Livelock - similar to deadlock, except that the state of a livelocked process
changes constantly, although without progressing.

– Priority Inversion - a high-priority thread blocked by a low-priority thread.

Software Transactional Memory (STM) is an alternative method to lock-based
synchronization for accessing shared-memory locations. To this end a program
wraps operations (i.e., reads and writes) in a transaction and STM guarantees
that either all the operations in the transaction occur or none. It is a non-
blocking approach where a transaction tentatively updates shared memory. If
successful it makes the changes permanent and visible to other transactions, else
the transaction aborts and restarts [8]. This opportunistic strategy helps us in
avoiding problems arising from locks.

There are many TM systems available which allow programmers to access and
modify data through transactions. The Intel C++ STM compiler provides exten-
sions to its C++ compiler with support for STM language extensions [1]. RSTM
is a set of STM systems available from the Rochester Synchronization Group. It
consists of different library implementations and a smart-pointer API for rela-
tively transparent access to STM, and requires no compiler changes. TinySTM
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[6] is a word-based STM implementation of the LSA algorithm, available from
the University of Neuchatel. In this paper we explore the idea of integrating
TinySTM into SMPSs, as a replacement to locks for synchronizing simultaneous
access to critical memory locations. The rest of the paper is organized as follows:
Section 2 explains the basic framework of SMPSs, Section 3 discusses STM and
TinySTM, Section 4 presents our idea of integrating TinySTM in SMPSs, Sec-
tion 5 evaluates and characterizes the performance of our idea. section 6 presents
the conclusions and section 7 discusses the future work that we intent to do.

2 SMPSs

SMP Superscalar (SMPSs) consists of a source-to-source compiler and a run-
time library. The programmer annotates the sequential code and marks tasks or
units of computation using pragmas provided by the SMPSs compiler. During
execution, the SMPSs runtime analyzes the data accesses of these tasks, but
does not immediately perform the corresponding computation. Instead it builds
a Task Dependency Graph(TDG), where each node represents a task instance,
and edges denote dependencies between tasks. SMPSs uses the TDG to schedule
tasks to cores. Independent tasks, i.e. tasks without incoming edges can execute
in parallel.

2.1 SMPSs Syntax

As mentioned previously, the programmer typically annotates the functions using
pragmas and declares tasks:

1 #pragma css task [clauses ]
2 function definition / function declaration

Listing 1.1. Syntax of a Task Declaration

The clauses indicate the type of access that a task performs for each parameter.
Every task parameter must appear in one of the clause, along with its dimensions.
SMPSs supports the following clauses in the task pragma:

1 The list of main clauses is the following:
2 input ([list of parameters])
3 output ([list of parameters])
4 inout ([list of parameters])
5 reduction ([ list of parameters])

The runtime builds a TDG based on the directionality of the parameters. Shown
below is an example of a task pragma:

1 #pragma css task input(A[NB][NB],B[NB][NB],NB) inout(C[NB][NB])
2 void matmul(float *A, float *B, float *C, unsigned long NB)
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2.2 The Reduction Clause

Although the SMPSs runtime only schedules independent tasks for parallel ex-
ecution, the programming model supports a reduction-clause which allows par-
allel updates to a specified memory regions. The runtime does not insert an
edge in the TDG in this case. Responsibility falls on the programmer to access
shared memory in the critical section using lock and unlock pragmas provided
by SMPSs, for example:

1 #pragma css task input (n, j, a[n]) inout (results ) reduction (results )
2 void nqueens_ser_task(int n, int j, char *a, int *results )
3 {
4 ....
5 #pragma css mutex lock (results )
6 *results = *results + local_sols;
7 #pragma css mutex unlock (results )
8 .....
9 }

Listing 1.2. Example of reduction

In the above Listing 1.2, the reduction applies to the variable results, which
implies the latter can be updated simultaneously by different tasks. Hence the
atomicity of the updates need to be guaranteed by lock and unlock pragmas.

3 Software Transactional Memory

Software Transactional Memory (STM) is an optimistic approach to manage
concurrent accesses to shared memory locations. When two different transac-
tions simultaneously try to update the same memory location, STM detects a
conflict and allows only one of the transactions to complete successfully. The
other transaction is either delayed or aborted. The delaying or aborting of the
transaction is also called rollback and the transaction is called the conflicting
transaction. The idea was first implemented by Shavit and Touitou [12]. STM
simplifies the implementation of shared memory access since each transaction
can now be viewed as an isolated series of operations. Every transaction is com-
posed of 4 basic steps:

1. Start of a transaction.
2. Load values from memory into the current transactional environment.
3. Store values back to memory.
4. Commit the results.

Different STM libraries check for conflicts at different steps, depending on their
implementation and design. Conflicts can be handled in various ways. The deci-
sion of which transaction should be allowed to complete and which should roll
back, depends on the contention manager being used.

STM places limitations on the kind of operations that can be executed in
a transaction. Only operations that can be rolled back should be employed,
whereas for example I/O operations (like printf(””) in C) cannot be included
in a transaction. The use of STM implies a performance degradation due to the
overhead incurred in the roll back of transactions.
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3.1 TinySTM

TinySTM[6] is a word based STM library based on the atomic ops library[3]. It
implements a single version, word-based variant of the Lazy Snapshot
Algorithm(LSA)[11]. Like most STM implementations TinySTM uses a shared
array of locks to manage concurrent memory accesses. It maps addresses to
locks, via a hash function, and uses a shared counter to maintain the timestamp
validity of memory locations in transactions. It has three strategies to access
memory:

1. WRITE BACK ETL - locks are acquired during encounter time.
2. WRITE BACK CTL - locks are only acquired during commit.
3. WRITE THROUGH - directly updates memory and maintains an undo log

for rollbacks.

In order to decide which transaction should roll back in case of a conflict,
TinySTM has several built in contention managers:

1. CM SUICIDE - Abort the transaction that detects the conflict.
2. CM DELAY - Similar to CM SUICIDE, but the rolled back transaction waits

until the contended lock has been released.
3. CM BACKOFF - Like CM SUICIDE, but delay restarting the transaction

for a random time.
4. CM AGGRESSIVE - Kill the other transaction.

We use WRITE BACK CTL to access memory with TinySTM in SMPSs.
This choice is in line with our future work, where we plan to introduce the

speculative execution of tasks in SMPSs. Tasks will execute speculatively, but the
committing of the results is postponed to later stages. For handling conflicts we
use the CM DELAY contention manager. CM DELAY restarts the rolled back
transaction when the contended lock is released. As such we avoid the possibility
of a transaction being rolled back repeatedly because of the same contention.

4 Integrating TinySTM in SMPSs

In order to incorporate TinySTM library calls in SMPSs applications, the library
in question has to be initialized and threads have to be made as transactional
threads. The initialization of TinySTM library (stm init) takes place in the main
thread of SMPSs and each SMPSs thread registers itself as a transactional thread
(stm init thread). In order to replace locks with STM, the operations executed
between lock and unlock pragmas must be wrapped in a transaction. The mem-
ory locations accessed in this region must be updated using STM calls. An SMP
thread finally must commit the result of these operations and make them per-
manent. For example, the code of Listing 1.2 is transformed into :
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1 #pragma css task input (n, j, a[n]) inout (results ) reduction ( results )
2 void nqueens_ser_task(int n, int j, char *a, int *results )
3 {
4 ....
5 sigjmp_buf* jump = stm_start(NULL); // start the transaction
6 if(jump != NULL)
7 setjmp (*jump , 0); // save stack context
8 int buffer += stm_load_int(results ) + local_sols;
9 stm_store_int(results , buffer);

10 stm_commit(); // commit transaction
11 ...
12 }

Listing 1.3. Implementation of Listing 1.2 with TinySTM library calls

As soon as a transaction starts (line 5 of Listing 1.3), the stack context is saved
using a call to setjmp (line 7 of Listing 1.3). Critical memory locations are loaded
into the current transactional context via calls to TinySTM (line 8 of Listing
1.3). The SMP thread performs the updates and at the end, stores the results and
commits the transaction (lines 9 and 10). If it detects a conflict while commit-
ting the results, then it performs a longjmp and the execution is restarted from
the location of the associated setjmp. In Listing 1.3., we inserted the transac-
tional calls to the TinySTM library manually. But our objective is to implement
transactional access to shared memory locations in SMPSs, without burdening
the programmer with these implementation details. TinySTM calls then have to
be performed from the SMPSs runtime or inserted by the compiler. Instead of
adding new pragmas for this purpose, we decided to modify the implementation
of the existing lock and unlock pragmas.

When The SMPSs compiler processes the lock and unlock pragmas, it replaces
them with runtime calls to css lock and css unlock respectively. css lock locks the
parameter passed to the lock pragma while css unlock unlocks it. The basic idea
is to start a transaction when a lock pragma is encountered and to commit the
results with the corresponding unlock pragma. Its implementation in the SMPSs
library is troublesome, due to the use of stack calls of setjmp and longjmp by
TinySTM. This restricts the start and end of a transaction to the same stack
frame.

As the locking pragmas map to different functions in the SMPSs runtime, the
stack context changes between the occurrence of a lock and its associated unlock.
If we modify the runtime such that a transaction is started from css lock and the
results committed in css unlock, conflicting transaction will not be rolled back
correctly.

Instead the SMPSs compiler was modified to insert transactional calls to the
TinySTM library. A transaction is started when a thread acquires a lock and the
address to be locked is loaded into the transactional environment. The compiler
creates a local variable and assigns it the memory address passed to the lock
pragma. All updates are performed on this local variable. When the thread re-
leases the lock for the memory location, i.e. at the location of an unlock pragma,
the value of the local variable is stored back into the memory address and the
transaction is committed. If another thread, and hence a different transaction,
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has modified the shared memory location since the time it was loaded into the
local variable, the transaction is rolled back and restarted.

Below we show how the compiler transforms lock and unlock pragmas for
Listing 1.2:

Fig. 1. Compiler generated code of Listing 1.2

The local variable is private to the thread and its scope is the task scope, i.e.,
this variable is alive only within this instance of the task.

We observed that in some applications it is more efficient to load multiple
shared memory addresses into a single transaction rather than to generate a
separate transaction for every address. Therefore we extended the lock pragma to
accept more than one address and load them into a single transactional context.
An example of multiple memory locations passed to a single lock pragma is
shown in Listing 1.4.

5 Results

To evaluate the performance of our implementation, we executed 4 benchmark
programs and the results are compared between SMPSs applications using locks
and STM. The applications chosen are:

– NQueens - of placing chess queens on a n*n board such that no queens attack
each other. The problem size of the results presented is a chess board of size
14*14 . The problem can have more than one unique solution. The critical
section in this application was when updating the number of unique solutions
that the problem has.

– Gmeans - a data mining algorithm to find clusters in a dataset. It returns the
number of Gaussian distributions and their centers contained in the dataset.
The atomicity in this application is required while updating the centers of
clusters in the data set.The problem size is a data set of 10 million points
of 10 dimensions each. It was observed that the application was not scaling
with more than 8 threads.



Transactional Access to Shared Memory in StarSs 521

– Matrix Multiplication - In this application the values of resultant matrix are
simultaneously updated by different tasks. Hence, while storing the results
a lock needs to be acquired on element of the matrix. The dimensions of the
matrix are (128*16) * (128*16).

– Specfem3D - the algorithm simulates seismic wave propagation in sedimen-
tary basins or any other regional geological model. In this application, locks
are used in two different stages, once while localizing the data in tasks from
global vectors and again while summing the values from each tasks in the
global mesh. The global mesh is accessed both directly and indirectly which
leads to conflicting accesses of the same position some times.

5.1 Performance Evaluation

The performance evaluation is shown below:

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5 6 7 8 10 12 16 20 24

T
im

e[
se

co
nd

s]

Number of threads

NQueens: transactions vs locks
STM

LOCKS

 100

 105

 110

 115

 120

 125

 130

 135

1 2 3 4 5 6 7 8

T
im

e[
se

co
nd

s]

Number of threads

Gmeans: transactions vs locks
STM

LOCKS

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5 6 7 8 10 12 16 20 24

T
im

e[
se

co
nd

s]

Number of threads

Matrix Multiplication: transactions vs lock
STM

LOCKS

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3 4 5 6 7 8 10 12 16 20 24

T
im

e[
se

co
nd

s]

Number of threads

Specfem3D: transactions vs locks
STM

LOCKS

Fig. 2. Performance comparison between SMPSs examples using Transactions and
Locks

The above mentioned applications were executed on an Intel(R) Xeon(R)
E7450@2.40GHz machine with 24 cores. Thread affinity was controlled by as-
signing one thread to each core. From Fig.2., we observe that in Nqueens and
Gmeans applications STM performs better than locks, whereas in matrix multi-
plication example, the execution timings are nearly similar. In Specfem3D, even
though locks perform better than STM, we observe that the STM version scales.
We hope that with further optimizations and better hardware support, STM
will have higher performance.
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5.2 Performance Characterization

While using STM, with increasing number of threads there is a higher probability
of transactions conflicting with each other. Since more threads try to simultane-
ously update the shared memory locations, more conflicts occur resulting in more
rollbacks. Hence we analyzed the behavior of above mentioned applications with
increasing number of threads. We used Paraver[2], a flexible visualization tool
to analyze characteristics of transactions generated while running the applica-
tions. SMPSs runtime generates performance trace-files if tracing flag is enabled
during compilation. These traces can be analyzed using paraver. Transaction
specific events such as time spent in executing operations in a transaction, time
spent in commit and rollback were added to paraver tracefile. Shown below is
analysis of time spent by applications in different phases of transaction when
executed with varying number of threads.

Fig. 3. Time spent in different phases of transaction

From Fig.3., we can observe that in NQueens and Gmeans applications, time
spent in rollback is minimal. This is the main reason for their better performance
when compared to their lock based implementations. We can also observe that
in Gmeans application, threads spend longer time in commit compared to oper-
ations executed in transactions. The reason is, since every point in the data set
is of multiple dimensions, while committing the results of updated centers the
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value of each dimension has to be committed. This leads to higher amount of time
being spent in commit. We can also observe that matmul and specfem3D spend
significantly more time in rollback, compared to the other two benchmarks. As
rollback contributes to run-time overhead and thus to the overall execution time,
the performance decreases accordingly. However, the rollback overhead does not
increase linearly with the number of threads. The potential for contention, and
hence rollback, of an application is bounded by the amount of parallelism it
admits. The latter is a characteristic of the TDG of an application, not of the
number of resources (like the number of threads) with which one chooses to ex-
ecute. This observation gives us optimism that, with further optimizations and
better hardware support, we can further improve the performance of our parallel
programming model using STM.

As mentioned earlier sometimes it is more efficient to update multiple shared
memory locations in a single transaction compared to generating one transaction
for every single address. The trade-off is, to create multiple smaller transactions
and thus spend more time in start and commit of transactions versus longer
transactions and hence longer time in rollbacks in case of a conflict. In Specfem3D
instead of updating 3 different memory locations separately we updated all 3 in
a single transaction. Shown below is a snippet of the code.

1 //3 Transactions
2 #pragma css mutex lock((temp_x ))
3 *(temp_x) += sum_terms[elem][k][j][i][X];
4 #pragma css mutex unlock (( temp_x))
5
6 #pragma css mutex lock((temp_y ))
7 *(temp_y) += sum_terms[elem][k][j][i][Y];
8 #pragma css mutex unlock (( temp_y))
9

10 #pragma css mutex lock((temp_z ))
11 *(temp_z) += sum_terms[elem][k][j][i][Z];
12 #pragma css mutex unlock (( temp_z))
13
14 //1 big transaction
15 #pragma css mutex lock(temp_x,temp_y ,temp_z)
16 *(temp_x) += sum_terms[elem][k][j][i][X];
17 *(temp_y) += sum_terms[elem][k][j][i][Y];
18 *(temp_z) += sum_terms[elem][k][j][i][Z];
19 #pragma css mutex unlock(temp_x ,temp_y ,temp_z)

Listing 1.4. Specfem3D

We observed that it was more optimal to update three different shared memory
locations in a single transaction compared to creating a transaction for each of
them. Shown in Fig.4., is how in Specfem3D these two approaches affected the
number of rollbacks:

While in this case longer transactions performed better, sometimes they can
degrade the performance due to longer rollback time.
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Fig. 4. Specfem3D : Number of rollbacks

6 Conclusion

To keep pace with Moore’s law, the trend in the processor industry is to place
multiple processors on a single chip. To completely utilize this power, the need of
the hour is of programming models offering an easier way to exploit parallelism.
StarSs is one such programming model for widely used multicore architectures. It
uses lock based synchronization during simultaneous updates of shared memory.
STM is an alternative shared memory synchronization technique. It is optimistic
in nature and simplifies concept of concurrent access to shared memory. We in-
tegrate TinySTM, a lightweight STM library with SMPSs (one implementation
of StarSs) and replace locks with transactions in SMPSs applications. The re-
sults were optimistic with higher performance in applications with high lock
contention.

7 Future Work

We plan to use STM to speculatively execute tasks. SMPSs provides program-
mers with synchronization constructs such as barriers and wait-on(wait for a
particular variable or memory location to be updated before continuing execu-
tion). Such constructs lead to problems of load balancing. Hence we plan to
introduce speculation using STM. In cases where there is a control dependency
between tasks and not data dependency, we can use STM to speculate and ex-
ecute tasks but postpone the committing of their results till the dependency is
resolved.
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