
On-the-Fly Task Execution for Speeding Up
Pipelined MapReduce

Diana Moise1, Gabriel Antoniu1, and Luc Bougé2

1 INRIA Rennes - Bretagne Atlantique / IRISA, France
2 ENS Cachan - Brittany / IRISA, France

Abstract. The MapReduce programming model is widely acclaimed as a key
solution to designing data-intensive applications. However, many of the compu-
tations that fit this model cannot be expressed as a single MapReduce execu-
tion, but require a more complex design. Such applications consisting of multiple
jobs chained into a long-running execution are called pipeline MapReduce ap-
plications. Standard MapReduce frameworks are not optimized for the specific
requirements of pipeline applications, yielding performance issues. In order to
optimize the execution on pipelined MapReduce, we propose a mechanism for
creating map tasks along the pipeline, as soon as their input data becomes avail-
able. We implemented our approach in the Hadoop MapReduce framework. The
benefits of our dynamic task scheduling are twofold: reducing job-completion
time and increasing cluster utilization by involving more resources in the compu-
tation. Experimental evaluation performed on the Grid’5000 testbed, shows that
our approach delivers performance gains between 9% and 32%.

Keywords: MapReduce, pipeline MapReduce applications, intermediate data
management, task scheduling, Hadoop, HDFS.

1 Introduction

The MapReduce abstraction has revolutionized the data-intensive community and has
rapidly spread to various research and production areas. Google introduced MapRe-
duce [8] as a solution to the need to process datasets up to multiple terabytes in size on
a daily basis. The goal of the MapReduce programming model is to provide an abstrac-
tion that enables users to perform computations on large amounts of data.

The MapReduce abstraction is inspired by the “map” and “reduce” primitives com-
monly used in functional programming. When designing an application using the
MapReduce paradigm, the user has to specify two functions: map and reduce that are
executed in parallel on multiple machines. Applications that can be modeled by the
means of MapReduce, mostly consist of two computations: the “map” step, that applies
a filter on the input data, selecting only the data that satisfies a given condition, and the
“reduce” step, that collects and aggregates all the data produced by the first phase. The
MapReduce model exposes a simple interface, that can be easily manipulated by users
without any experience with parallel and distributed systems. However, the interface is
versatile enough so that it can be employed to suit a wide range of data-intensive ap-
plications. These are the main reasons for which MapReduce has known an increasing
popularity ever since it was introduced.

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 526–537, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On-the-Fly Task Execution for Speeding Up Pipelined MapReduce 527

An open-source implementation of Google’s abstraction was provided by Yahoo!
through the Hadoop [5] project. This framework is considered the reference MapRe-
duce implementation and is currently heavily used for various purposes and on several
infrastructures. The MapReduce paradigm has also been adopted by the cloud comput-
ing community as a support to those cloud-based applications that are data-intensive.
Cloud providers support MapReduce computations so as to take advantage of the huge
processing and storage capabilities the cloud holds, but at the same time, to provide the
user with a clean and easy-to-use interface. Amazon released ElasticMapReduce [2], a
web service that enables users to easily and cost-effectively process large amounts of
data. The service consists of a hosted Hadoop framework running on Amazon’s Elastic
Compute Cloud (EC2) [1]. Amazon’s Simple Storage Service (S3) [3] serves as stor-
age layer for Hadoop. AzureMapReduce [9] is an implementation of the MapReduce
programming model, based on the infrastructure services the Azure cloud [6] offers.
Azure’s infrastructure services are built to provide scalability, high throughput and data
availability. These features are used by the AzureMapReduce runtime as mechanisms
for achieving fault tolerance and efficient data processing at large scale.

MapReduce is used to model a wide variety of applications, belonging to numer-
ous domains such as analytics (data processing), image processing, machine learning,
bioinformatics, astrophysics, etc. There are many scenarios in which designing an ap-
plication with MapReduce requires the users to employ several MapReduce processing.
These applications that consist of multiple MapReduce jobs chained into a long-running
execution, are called pipeline MapReduce applications. In this paper, we study the char-
acteristics of pipeline MapReduce applications, and we focus on optimizing their exe-
cution. Existing MapReduce frameworks manage pipeline MapReduce applications as
a sequence of MapReduce jobs. Whether they are employed directly by users or through
higher-level tools, MapReduce frameworks are not optimized for executing pipeline ap-
plications. A major drawback comes from the fact that the jobs in the pipeline have to
be executed sequentially: a job cannot start until all the input data it processes has been
generated by the previous job in the pipeline.

In order to speed up the execution of pipelined MapReduce, we propose a new mech-
anism for creating “map” tasks along the pipeline, as soon as their input data becomes
available. Our approach allows successive jobs in the pipeline to overlap the execution
of “reduce” tasks with that of “map” tasks. In this manner, by dynamically creating and
scheduling tasks, the framework is able to complete the execution of the pipeline faster.
In addition, our approach ensures a more efficient cluster utilization, with respect to
the amount of resources that are involved in the computation. We implemented the pro-
posed mechanisms in the Hadoop MapReduce framework [5] and evaluated the benefits
of our approach through extensive experimental evaluation.

In section 2 we present an overview of pipelined MapReduce as well as the scenarios
in which this type of processing is employed. Section 3 introduces the mechanisms we
propose and shows their implementation in Hadoop. Section 4 is dedicated to the exper-
iments we performed; we detail the environmental setup and the scenarios we selected
for execution in order to measure the impact of our approach. Section 5 summarizes the
contributions of this work and presents directions for future work.

528 D. Moise, G. Antoniu, and L. Bougé

2 Pipeline MapReduce Applications: Overview and Related Work

Many of the computations that fit the MapReduce model, cannot be expressed as a sin-
gle MapReduce execution, but require a more complex design. These applications that
consist of multiple MapReduce jobs chained into a long-running execution, are called
pipeline MapReduce applications. Each stage in the pipeline is a MapReduce job (with
2 phases, “map” and “reduce”), and the output data produced by one stage is fed as
input to the next stage in the pipeline. Usually, pipeline MapReduce applications are
long-running tasks that generate large amounts of intermediate data (the data produced
between stages). This type of data is transferred between stages and has different char-
acteristics from the meaningful data (the input and output of an application). While the
input and output data are expected to be persistent and are likely to be read multiple
times (during and after the execution of the application), intermediate data is transient
data that is usually written once, by one stage, and read once, by the next stage.

However, there are few scenarios in which users directly design their application as a
pipeline of MapReduce jobs. Most of the use cases of MapReduce pipelines come from
applications that translate into a chain of MapReduce jobs. One of the drawbacks of the
extreme simplicity of the MapReduce model is that it cannot be straightforwardly used
in more complex scenarios. For instance, in order to use MapReduce for higher-level
computations (for example, the operations performed in the database domain) one has
to deal with issues like multi-stage execution plan, branching data-flows, etc. The trend
of using MapReduce for database-like operations led to the development of high-level
query languages that are executed as MapReduce jobs, such as Hive [14], Pig [12],
and Sawzall [13]. Pig is a distributed infrastructure for performing high-level analy-
sis on large data sets. The Pig platform consists of a high-level query language called
PigLatin and the framework for running computations expressed in PigLatin. PigLatin
programs comprise SQL-like high-level constructs for manipulating data that are inter-
leaved with MapReduce-style processing. The Pig framework compiles these programs
into a pipeline of MapReduce jobs that are executed within the Hadoop environment.

The scenarios in which users actually devise their applications as MapReduce
pipelines, involve binary data whose format does not fit the high-level structures of the
aforementioned frameworks. In order to facilitate the design of pipeline MapReduce
applications, Cloudera recently released Crunch [4], a tool that generates a pipeline of
MapReduce jobs and manages their execution. While there are several frameworks that
generate pipeline MapReduce applications, few works focus on optimizing the actual
execution of this type of applications. In [11], the authors propose a tool for estimat-
ing the progress of MapReduce pipelines generated by Pig queries. The Hadoop Online
Prototype (HOP) [7] is a modified version of the Hadoop MapReduce framework that
supports online aggregation, allowing users to get snapshots from a job as it is being
computed. HOP employs pipelining of data between MapReduce jobs, i.e., the reduce
tasks of one job can optionally pipeline their output directly to the map tasks of the next
job. However, by circumventing the storing of data in a distributed file system (DFS)
between the jobs, fault tolerance cannot be guaranteed by the system. Furthermore, as
the computation of the reduce function from the previous job and the map function of
the next job cannot be overlapped, the jobs in the pipeline are executed sequentially.

On-the-Fly Task Execution for Speeding Up Pipelined MapReduce 529

3 Introducing Dynamic Scheduling of Map Tasks in Hadoop

3.1 Motivation

In a pipeline of MapReduce applications, the intermediate data generated between the
stages represents the output data of one stage and the input data for the next stage. The
intermediate data is produced by one job and consumed by the next job in the pipeline.
When running this kind of applications in a dedicated framework, the intermediate data
is usually stored in the distributed file system that also stores the user input data and the
output result. This approach ensures intermediate data availability, and thus, provides
fault tolerance, a very important factor when executing pipeline applications. However,
using MapReduce frameworks to execute pipeline applications raises performance is-
sues, since MapReduce frameworks are not optimized for the specific features of in-
termediate data. The main performance issue comes from the fact that the jobs in the
pipeline have to be executed sequentially: a job cannot start until all the input data it
processes has been generated by the job in the previous stage of the pipeline. Conse-
quently, the framework runs only one job at a time, which results in inefficient cluster
utilization and basically, a waste of resources.

3.2 Executing Pipeline MapReduce Applications with Hadoop

The Hadoop project provides an open-source implementation of Google’s MapReduce
paradigm through the Hadoop MapReduce framework [5,15]. The framework was de-
signed following Google’s architectural model and has become the reference MapRe-
duce implementation. The architecture is tailored in a master-slave manner, consisting
of a single master jobtracker and multiple slave tasktrackers. The jobtracker’s main
role is to act as the task scheduler of the system, by assigning work to the tasktrackers.
Each tasktracker disposes of a number of available slots for running tasks. Every active
map or reduce task takes up one slot, thus a tasktracker usually executes several tasks
simultaneously. When dispatching “map” tasks to tasktrackers, the jobtracker strives at
keeping the computation as close to the data as possible. This technique is enabled by
the data-layout information previously acquired by the jobtracker. If the work cannot be
hosted on the actual node where the data resides, priority is given to nodes closer to the
data (belonging to the same network rack). The jobtracker first schedules “map” tasks,
as the reducers must wait for the “map” execution to generate the intermediate data.

Hadoop executes the jobs of a pipeline MapReduce application in a sequential man-
ner. Each job in the pipeline consists of a “map” and a “reduce” phase. The “map”
computation is executed by Hadoop tasktrackers only when all the data it processes is
available in the underlying DFS. Thus, the mappers are scheduled to run only after all
the reducers from the preceding job have completed their execution. This scenario is
also representative for a Pig processing: the jobs in the logical plan generated by the
Pig framework are submitted to Hadoop sequentially. In consequence, at each step of
the pipeline, at most the “map” and “reduce” tasks of the same job are being executed.
Running the mappers and the reducers of a single job involves only a part of the cluster
nodes. The rest of the computational and storage cluster capabilities remains idle.

530 D. Moise, G. Antoniu, and L. Bougé

3.3 Our Approach

In order to speed-up the execution of pipeline MapReduce applications, and also to
improve cluster utilization, we propose an optimized Hadoop MapReduce framework,
in which the scheduling is done in a dynamic manner. For a better understanding of
our approach, we first detail the process through which “map” and “reduce” tasks are
created and scheduled in the original Hadoop MapReduce framework.

Client Jobtracker
submit job

create Map
and Reduce tasks

add job to
scheduling queue

dispatch

tasks

Fig. 1. Job submission process in Hadoop

Figure 1 displays the job submission process. The first step is for the user to specify
the “map” and “reduce” computations of the application. The Hadoop client generates
all the job-related information (input and output directories, data placement, etc.) and
then submits the job for execution to the jobtracker. On the jobtracker’s side, the list
of “map” and “reduce” tasks for the submitted job is created. The number of “map”
tasks is equal to the number of chunks in the input data, while the number of “reduce”
tasks is computed by taking into account various factors, such as the cluster capacity,
the user specification, etc. The list of tasks is added to the job queue that holds the jobs
to be scheduled for execution on tasktrackers. In the Hadoop MapReduce framework,
the “map” and “reduce” tasks are created by the jobtracker when the job is submitted
for execution. When they are created, the “map” tasks require to know the location of
the chunks they will work on.

In the context of multiple jobs executed in a pipeline, the jobs are submitted by the
client to the jobtracker sequentially, as the chunk-location information is available only
when the previous job completes. Our approach is based on the remark that a “map”
task is created for a single input chunk. It only needs to be aware of this very chunk
location. Furthermore, when it is created, the only information that the “map” task
requires, is the list of nodes that store the data in its associated chunk. We modified
the Hadoop MapReduce framework to create “map” tasks dynamically, that is, as soon
as a chunk is available for processing. This approach can bring substantial benefits to
the execution of pipeline MapReduce applications. Since the execution of a job can start
as soon as the first chunk of data is generated by the previous job, the total runtime is
significantly reduced. Additionally, the tasks belonging to several jobs in the pipeline
can be executed at the same time, which leads to a more efficient cluster utilization.

The modifications and extensions of the Hadoop MapReduce framework that we
propose, are further presented and summarized on Figure 2.

On-the-Fly Task Execution for Speeding Up Pipelined MapReduce 531

Fig. 2. Dynamic creation of “map” tasks

Algorithm 1. Report output size (on tasktracker)
1: procedure COMMITTASK

2: (size, files)← tasktracker.writeReduceOutputData()
3: jobtracker.transmitOutputInfo(size, files)
4: end procedure

Job-Submission Process

Client side. On the client side, we modified the submission process between the Hadoop
client and the jobtracker. Instead of waiting for the execution to complete, the client
launches a job monitor that reports the execution progress to the user. With this ap-
proach, a pipeline MapReduce application employs a single Hadoop client to run
the application. The client submits all the jobs in the pipeline from the beginning,
instead of submitting them sequentially, i.e., the modified Hadoop client submits
the whole set of jobs job1...jobn for execution.

Jobtracker side. The job-submission protocol is similar to the one displayed on Fig-
ure 1. However, at submission time, only the input data for job1 is available in
the DFS. Regarding job2...jobn, the input data has to be generated throughout the
pipeline. Thus, the jobtracker creates the set of “map” and “reduce” tasks only for
job1. For the rest of the jobs, the jobtracker creates only “reduce” tasks, while
“map” tasks will be created along the pipeline, as the data is being generated.

Job Scheduling

Tasktracker side: For a jobi in the pipeline, the data produced by the job’s “reduce”
phase (reducei) represents the input data of jobi+1’s “map” task (mapi+1). When
reducei is completed, the tasktracker writes the output data to the backend storage.
We modified the tasktracker code to notify the jobtracker whenever it successfully
completes the execution of a “reduce” function: the tasktracker informs the job-
tracker about the size of the data produced by the “reduce” task.

532 D. Moise, G. Antoniu, and L. Bougé

Algorithm 2. Update job (on jobtracker)
1: procedure TRANSMITOUTPUTINFO(size, files)
2: invoke updateJob(size, files) on taskscheduler
3: end procedure

4: procedure UPDATEJOB(size, files)
5: for all job ∈ jobQueue do
6: dir ← job.getInputDirectory()
7: if dir = getDirectory(files) then
8: if writtenBytes.contains(dir) = False then
9: writtenBytes.put(dir, size)

10: else
11: allBytes← writtenBytes.get(dir)
12: writtenBytes.put(dir, allBytes+ size)
13: end if
14: allBytes← writtenBytes.get(dir)
15: if allBytes ≥ CHUNK SIZE then
16: b← job.createMapsForSplits(files)
17: writtenBytes.put(dir, allBytes− b)
18: else
19: job.addToPending(files)
20: end if
21: end if
22: end for
23: end procedure

Jobtracker side: In our modified framework, the jobtracker keeps track of the out-
put data generated by reducers in the DFS. This information is important for the
scheduling of the jobs in the pipeline, as the output directory of jobi is the in-
put directory of jobi+1. Each time data is produced in jobi’s output directory, the
jobtracker checks to see if it can create new “map” tasks for jobi+1. If the data
accumulated in jobi+1’s input directory is at least of the size of a chunk, the job-
tracker creates “map” tasks for the newly generated data. For each new chunk, the
jobtracker creates a “map” task to process it. All the “map” tasks are added to the
scheduling queue and then dispatched to idle tasktrackers for execution.

The modifications on the tasktracker side are described in Algorithm 1. We extended
the code with a primitive that sends to the jobtracker the information about the “reduce”
output data: the files written to the DFS and the total size of the data. Algorithm 2
shows the process of updating a job with information received from tasktrackers. The
algorithm is integrated in the jobtracker code, mainly in the scheduling phase. The
jobtracker also plays the role of task scheduler. It keeps a list of data written to the
input directory of each job. For each received update, the jobtracker checks if the data
in the job’s input directory reaches at least a chunk in size (64 MB default). If it is the
case, “map” tasks will be created, one per each new data chunk. Otherwise, the job’s
information is stored for subsequent processing. The mechanism of creating “map”
tasks is presented in Algorithm 3, executed by the jobtracker, and integrated into the job

On-the-Fly Task Execution for Speeding Up Pipelined MapReduce 533

Algorithm 3. Create map tasks (on job)
1: procedure ADDTOPENDING(files)
2: pendingF iles.addAll(files)
3: end procedure

4: function CREATEMAPSFORSPLITS(files) returns splitBytes
5: pendingF iles.addAll(files)
6: splits← getSplits(pendingF iles)
7: pendingF iles.clear()
8: newSplits← splits.length
9: jobtracker.addWaitingMaps(newSplits)

10: for i ∈ [1..newSplits] do
11: maps[numMapTasks+ i]← newMapTask(splits[i])
12: end for
13: numMapTasks← numMapTasks+ newSplits
14: notifyAllReduceTasks(numMapTasks)
15: for all s ∈ splits do
16: splitBytes← splitBytes+ s.getLength()
17: end for
18: return splitBytes
19: end function

code. We extended the code so that each job holds the list of files that were generated
so far in the job’s input directory. When the jobtracker computes that at least a chunk of
input data has been generated, new “map” tasks are created for the job. The data in the
files is split into chunks. A “map” task is created for each chunk and the newly launched
tasks are added to the scheduling queue. The jobtracker also informs the “reduce” tasks
that the number of “map” tasks has changed. The reducers need to be aware of the
number of mappers of the same job, as they have to transfer their assigned part of the
output data from all the mappers to their local disk.

4 Evaluation

We validate the proposed approach through a series of experiments that compare the
original Hadoop framework with our modified version, when running pipeline applica-
tions.

4.1 Environmental Setup

The experiments were carried out on the Grid’5000 [10] testbed. The Grid’5000 project
is a widely-distributed infrastructure devoted to providing an experimental platform
for the research community. The platform is spread over 10 geographical sites located
through on French territory and 1 in Luxembourg. For our experiments, we employed
nodes from the Orsay cluster of the Grid’5000. The nodes are outfitted with dual-core
x86 64 CPUs and 2 GB of RAM. Intra-cluster communication is done through a 1 Gbps

534 D. Moise, G. Antoniu, and L. Bougé

Ethernet network. We performed an initial test at a small scale, i.e., 20 nodes, in order to
assess the impact of our approach. The second set of tests involves 50 nodes belonging
to the Orsay cluster.

4.2 Results

The evaluation presented here focuses on assessing the performance gains of the opti-
mized MapReduce framework we propose, over the original one. To this end, we de-
veloped a benchmark that creates a pipeline of n MapReduce jobs and submits them to
Hadoop for execution. Each job in the pipeline simulates a load that parses key-value
pairs from the input data and outputs 90% of them as final result. In this manner, we
manage to obtain a long-running application that generates a large amount of data, al-
lowing our dynamic scheduling mechanism to optimize the execution of the pipeline.
The computation itself is not relevant in this case, as our goal is to create a scenario
in which enough data chunks are generated along the pipeline so that “map” tasks can
be dynamically created. We run this type of application first with the original Hadoop
framework, then with our optimized version of Hadoop. In both cases, we measure the
pipeline completion-time and compare the results.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5 6 7 8 9

T
im

e
(s

)

No of jobs

Original Hadoop
Modified Hadoop

Fig. 3. Completion time for short-running pipeline applications

Short-Running Pipeline Applications

In a first set of experiments, we run the benchmark in a small setup involving 20 nodes,
on top of which HDFS and Hadoop MapReduce are deployed as follows: a dedicated
machine is allocated for each centralized entity (namenode, jobtracker), a node serves
as the Hadoop client that submits the jobs, and the rest of 17 nodes represent both
datanodes and tasktrackers. At each step, we keep the same deployment setup and we
increase the number of jobs in the pipeline to be executed. The first test consists in
running a single job, while the last one runs a pipeline of 9 MapReduce jobs. The
application’s input data, i.e., job1’s input data, consists of 5 data chunks (a total of
320 MB). Jobi keeps 90% of the input data it received from jobi−1. In the case of the
9-job pipeline, this data-generation mechanism leads to a total of 2 GB of data produced
throughout the pipeline, out of which 1.6 GB account for intermediate data.

On-the-Fly Task Execution for Speeding Up Pipelined MapReduce 535

Figure 3 shows the execution time of pipeline applications consisting of an increasing
number of jobs (from 1 to 9), in two scenarios: when running on top of the original
Hadoop, and with the pipeline-optimized version we proposed. In the first case, the
client sequentially submits the jobs in the pipeline to Hadoop’s jobtracker, i.e., waits for
the completion of jobi before submitting jobi+1. When using our version of Hadoop,
the client submits all the jobs in the pipeline from the beginning, and then waits for the
completion of the whole application. As expected, the completion time in both cases
increases proportionally to the number of jobs to be executed. However, our framework
manages to run the jobs faster, as it creates and schedules “map” tasks as soon as a chunk
of data is generated during the execution. This mechanism speeds-up the execution of
the entire pipeline, and also exhibits a more efficient cluster utilization. Compared to
the original Hadoop, we obtain a performance gain between 26% and 32%.

 1500

 2000

 2500

 3000

 3500

 10 15 20 25 30 35

T
im

e
(s

)

No of jobs

Original Hadoop
Modified Hadoop

Fig. 4. Completion time for long-running pipeline applications

Long-Running Pipeline Applications

The first experiment we presented was focused on pipeline applications that consist of a
small up to a medium number of jobs (1 to 9). Due to the long-running nature of pipeline
applications and considering the significant size of the intermediate data our benchmark
generates, we performed experiments with larger applications and larger datasets in a
different setup, including 50 nodes. HDFS and Hadoop MapReduce are deployed as for
the previous experiment, employing thus 47 tasktrackers. The size of the input data for
each pipeline application amounts to 2.4 GB (40 data chunks). We vary the number of
jobs to be executed in each pipeline, from 10 to 35. For the longest-running application,
the generated data add up to a total of 24.4 GB.

The results for this setup are displayed on Figure 4. Consistently with the previous
results, our approach proves to be more efficient for long-running applications as well.
The performance gains vary between 9% and 19% in this scenario. The benefits of
our optimized framework have a smaller impact in this case, because of the data size
involved in the experiment. Since more chunks are used as input, and substantially more
chunks are being generated throughout the pipeline, a large part of the tasktrackers is
involved in the current computation, leaving a smaller number of resources available
for dynamically running created “map” tasks.

536 D. Moise, G. Antoniu, and L. Bougé

 700

 750

 800

 850

 900

 950

 1000

 1050

 10 15 20 25 30 35 40 45

T
im

e
(s

)

No of nodes

Original Hadoop
Modified Hadoop

Fig. 5. Impact of deployment setup on performance

Scaling Out

In the context of pipeline applications, the number of nodes involved in the Hadoop
deployment can have a substantial impact on completion time. Furthermore, consider-
ing our approach of dynamic scheduling “map” tasks, the scale of the deployment is
an important factor to take into account. Thus, we performed an experiment in which
we vary the number of nodes employed by the Hadoop framework. At each step, we
increase the number of nodes used for the deployment, such that the number of task-
trackers that execute “map” and “reduce” tasks is varied from 10 to 45. In each setup,
we run the aforementioned benchmark with a fixed number of 7 jobs in the pipeline.
The input data is also fixed, consisting of 25 chunks of data, i.e., 1.5 GB.

Figure 5 shows the completion time of the 7-job pipeline when running with both
original Hadoop and modified Hadoop, while increasing the deployment setup. As the
previous experiments also showed, our improved framework manages to execute the
jobs faster than the original Hadoop. In both cases, as more nodes are added to the
deployment, the application is executed faster, as more tasktrackers can be used for
running the jobs. However, increasing the number of nodes yields performance gains up
to a point, which corresponds to 25 tasktrackers for the original Hadoop. This number is
strongly related to the number of chunks in the input data, since the jobtracker schedules
a tasktracker to run the “map” computation on each chunk. For the modified Hadoop,
the point after which expanding the deployment does not prove to be profitable any
longer, is higher than for the original Hadoop. The reason for this behavior lies in the
scheduling approach of both frameworks: in original Hadoop, the scheduling of jobs is
done sequentially, while in modified Hadoop, the “map” tasks of each job are scheduled
as soon as the data is generated. The completion time starts to increase in both cases
after a certain point, as the overhead of launching and managing a larger number of
tasktrackers overcomes the advantage of having more nodes in the deployment.

5 Conclusions

In this paper we address a special class of MapReduce applications, i.e., applications
that consist of multiple jobs executed in a pipeline. In this context, we focus on

On-the-Fly Task Execution for Speeding Up Pipelined MapReduce 537

improving the performance of the Hadoop MapReduce framework when executing
pipelines. Our proposal consists mainly of a new mechanism for creating tasks along
the pipeline, as soon as their input data become available. This dynamic task scheduling
leads to an improved performance of the framework, in terms of job completion time.
In addition, our approach ensures a more efficient cluster utilization, with respect to the
amount of resources involved in the computation. The approach presented in this paper
can be further extended so as to allow the overlapping of several jobs in the pipeline.
However, this aspect would require careful tuning of the scheduling of tasks in MapRe-
duce frameworks. Deciding whether to execute reducers for the current job or to start
mappers for the next jobs is a crucial aspect that requires complex metrics. As future
direction, we also plan to validate the proposed approach through experiments with
higher-level frameworks in the context of pipelined MapReduce, such as Pig.

Acknowledgments. This work was supported in part by the Agence Nationale de
la Recherche (ANR) under Contract ANR-10-SEGI-01 (MapReduce Project). The
experiments presented in this paper were carried out using the Grid’5000 testbed,
an initiative of the French Ministry of Research through the ACI GRID incen-
tive action, INRIA, CNRS and RENATER and other contributing partners (see
http://www.grid5000.org/).

References

1. Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/
2. Amazon Elastic MapReduce, http://aws.amazon.com/elasticmapreduce/
3. Amazon Simple Storage Service (S3), http://aws.amazon.com/s3/
4. Crunch, https://github.com/cloudera/crunch
5. The Hadoop MapReduce Framework, http://hadoop.apache.org/mapreduce/
6. The Windows Azure Platform, http://www.microsoft.com/windowsazure/
7. Condie, T., Conway, N., Alvaro, P., et al.: Mapreduce online. In: Procs. of NSDI 2010, Berke-

ley, CA, USA, p. 21. USENIX Association (2010)
8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commu-

nications of the ACM 51(1), 107–113 (2008)
9. Gunarathne, T., Wu, T.-L., Qiu, J., Fox, G.: MapReduce in the Clouds for Science. In: Procs.

of CLOUDCOM 2010, Washington, DC, pp. 565–572 (2010)
10. Jégou, Y., Lantéri, S., Leduc, J., et al.: Grid’5000: a large scale and highly reconfigurable

experimental Grid testbed.. Intl. Journal of HPC Applications 20(4), 481–494 (2006)
11. Morton, K., Friesen, A., Balazinska, M., Grossman, D.: Estimating the progress of MapRe-

duce pipelines. In: Procs. of ICDE, pp. 681–684. IEEE (2010)
12. Olston, C., Reed, B., Srivastava, U., et al.: Pig Latin: a not-so-foreign language for data

processing. In: Procss of SIGMOD 2008, pp. 1099–1110. ACM, NY (2008)
13. Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the data: Parallel analysis with

Sawzall. Scientific Programming Journal 13, 277–298 (2005)
14. Thusoo, A., Sarma, J.S., Jain, N., et al.: Hive: A warehousing solution over a MapReduce

framework. In: Procs. of VLDB 2009, pp. 1626–1629 (2009)
15. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc. (2009)

http://www.grid5000.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/s3/
https://github.com/cloudera/crunch
http://hadoop.apache.org/mapreduce/
http://www.microsoft.com/windowsazure/

	On-the-Fly Task Execution for Speeding Up Pipelined MapReduce
	Introduction
	Pipeline MapReduce Applications: Overview and Related Work
	Introducing Dynamic Scheduling of Map Tasks in Hadoop
	Motivation
	Executing Pipeline MapReduce Applications with Hadoop
	Our Approach

	Evaluation
	Environmental Setup
	Results

	Conclusions
	References

