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Abstract. Adams–Bashforth methods are a well-known class of explicit
linear multi-step methods for the solution of initial value problems of or-
dinary differential equations. This article discusses different data-parallel
implementation variants with different loop structures and communica-
tion patterns and compares the resulting locality and scalability. In par-
ticular, pipelining of time steps is employed to improve the locality of
memory references. The comparison is based on detailed runtime exper-
iments performed on parallel computer systems with different architec-
tures, including the two supercomputer systems JUROPA and HLRB II.

1 Introduction

Many time-dependent processes can be modeled by initial value problems (IVPs)
of ordinary differential equations (ODEs):

y′(t) = f(t,y(t)), y(t0) = y0, (1)

where y(t) ∈ IRn is the solution function to be computed for the interval t ∈
[t0, te], y0 is the given initial value, i.e., the initial state of the process to be
simulated at time t0, and f : IR×IRn → IRn is the given right-hand-side function,
which describes the rates of change of the process to be simulated.

This article considers Adams–Bashforth (AB) methods [2,5,6] on an equidis-
tant grid. At each time step κ = 0, 1, 2, . . ., these methods compute an approxi-
mation yκ+1 to the solution function at time tκ+1, y(tκ+1), using function results
of the last k preceding time steps and weights β1, . . . , βk according to the scheme

yκ+1 = yκ + h

k∑

l=1

βlf(tκ−l+1,yκ−l+1). (2)

AB methods belong to the class of explicit linear k-step or, more generally,multi-
step methods and are suitable for nonstiff IVPs (see [2,5,6] for a discussion of
stiffness and explicit vs. implicit methods).

Many parallel IVP solution methods have been proposed. An overview of the
fundamental work and further references can be found in [1]. Recent work on
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parallel ODE methods includes variants of iterated Runge–Kutta methods [4]
and peer two-step methods [12]. Many of the parallel ODE methods proposed
concentrate on parallelism across the method, i.e., they provide a small number of
independent coarse-grained computational tasks inherent in the computational
structure of the method, for example, independent stages. Examples are Par-
allel Adams–Bashforth (PAB) and Parallel Adams–Moulton (PAM) methods
[13], which belong to the class of general linear methods [2]. Different parallel
execution schemes for these methods are investigated and discussed in [11].

This article focuses on the parallelism across the ODE system available
in classical k-step AB methods (2), i.e., the computation of the components
yκ+1,1, . . . , yκ+1,n of yκ+1 is distributed across the processing elements and per-
formed in data-parallel style. Different loop structures for (2) and correspond-
ing communication patterns for ODE systems with arbitrary coupling and for
ODE systems with a special coupling structure called limited access distance
are described, and the influence on locality and scalability is discussed. Double-
precision implementations have been written in C for shared and distributed
address space using POSIX Threads (Pthreads) and MPI, respectively. Starting
point were Pthread implementations [10], which have, for this article, been opti-
mized for NUMA (non-uniform memory access) architectures and been comple-
mented by MPI implementations. Scalability and locality have been investigated
using runtime experiments on several computer systems with different architec-
tures, including the two supercomputer systems HLRB II and JUROPA.

2 Parallel Implementation of General AB Solvers

2.1 Possible Loop Structures

Equation (2) leads to a doubly nested, fully permutable loop structure, since
one iteration over the summands βlf(tκ−l+1,yκ−l+1) for l = 1, . . . , k and one
iteration over the system dimension j = 1, . . . , n is required. It is sufficient to
compute one evaluation of the right-hand-side function f(tκ,yκ) per time step if
the function results of the previous k − 1 time steps are kept in memory. These
considerations lead to the following three loop structures:

j–l. The j-loop over the large system dimension is chosen as outer loop. The
l-loop to compute the j-th component of the vector yκ+1, yκ+1,j = yκ,j +

h
∑k

l=1 βlFl,j with Fl,j := fj(tκ−l+1,yκ−l+1) runs inside the j-loop. This
results in a high temporal locality for this vector component since its storage
location is reused in the partial sum updates.

l–j. The l-loop over the k steps of the AB method is chosen as outer loop. In each
iteration of the l-loop, a j-loop over the system dimension is executed, which
accesses the two vectors Fl := f(tκ−l+1,yκ−l+1) and yκ+1. This results in a
high spatial locality since cache lines of these two vectors can be reused for
subsequent vector components once they have been loaded into the cache.
Moreover, this loop structure can benefit from hardware prefetching, and its
access pattern is easily predictable by the hardware prefetcher.
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Tiling. Since the two loops are fully permutable, they can also be tiled to
create an additional working space that fits in the cache. This leads to a
triply nested loop structure, where the outermost loop (j-loop) iterates over
the system dimension with stride B (tile size or block size). Inside the j-loop
runs the l-loop, which iterates over the k steps. The innermost loop (jj-
loop) again iterates over the system dimension and accesses the components
j, . . . , j+B− 1 of the two vectors Fl and yκ+1. Thus, a high spatial locality
results from the innermost loop iterating over two vectors with stride 1, but
also a high temporal locality results from the reuse of a block of size B of
the vector yκ+1 in successive iterations of the l-loop.

2.2 Parallelization

In data-parallel implementations, the system dimension 1, . . . , n is partitioned
among the processing elements. For highest spatial locality, a blockwise distri-
bution is appropriate, such that each of the p processing elements is assigned a
block of n/p consecutive components. As data structures, k − 1 function results
and the two approximation vectors yκ and yκ+1 have to be stored in memory. In
a sequential implementation, the function results can be stored in a (k − 1)× n
2D array that is used in a cyclic fashion such that f(tm+k−1,ym+k−1) overwrites
f(tm,ym). Similarly, yκ and yκ+1 can be stored in two 1D arrays of size n, the
pointers to which are swapped at each time step.

The 2D array holding the function results can be distributed to the processing
elements such that each processing element stores locally a partition of size
(k−1)×n/p of this 2D array. This is necessary in an MPI implementation because
of the separate address spaces. But even for shared address space, a distributed
storage of the function results in separate, thread-local (k − 1)× n/p 2D arrays
often is preferable, because it ensures that all function results associated with
a thread can be stored in local memory of the processing element on which
the thread is executed. This is particularly important on NUMA architectures.
Though the “first touch” policy applied by modern operating systems to support
NUMA will also move memory pages of shared arrays to local memory of the
thread that first writes to the page, shared data structures may lead to sharing
of memory pages and thus to remote memory accesses at the borders of the
data ranges of the threads. At a finer grained level, sharing of cache lines may
decrease performance even on UMA (uniform memory access) architectures.

For the two vectors yκ and yκ+1, distributed storage is not always possible or
preferable, because the function f has to be evaluated for yκ and, in the general
case, this function evaluation may use all components of yκ. Therefore, the gen-
eral shared-address-space implementations considered in this article implement
these two vectors as shared data structures. One barrier operation is required per
time step to prevent that threads start the function evaluation before all other
threads have computed their share of the argument vector. The MPI implemen-
tations require a replicated storage of the argument vector. Since each of the MPI
processes computes n/p components of the argument vector, it must be gathered
by all processes using a multibroadcast operation (MPI Allgatherv()). The
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for (i = k - 1; i < steps; i++)
{

MPI_Allgatherv(Y_cur + first_elem, num_elems, MPI_DOUBLE,
Y_arg, counts, offsets, MPI_DOUBLE, MPI_COMM_WORLD);

for (j = first_elem; j <= last_elem; j += B)
{

for (jj = j; jj < j + B; jj++) Y_new[jj] = b[k - 1] * F[i % (k - 1)][jj];

for (l = 1; l < k - 1; l++)
for (jj = j; jj < j + B; jj++) Y_new[jj] += b[j] * F[(i - l) % (k - 1)][jj];

for (jj = j; jj < j + B; jj++) F[i % (k - 1)][jj] = f(jj, t0 + i * h, Y_arg);
for (jj = j; jj < j + B; jj++) Y_new[jj] += b[0] * F[i % (k - 1)][jj];
for (jj = j; jj < j + B; jj++) Y_new[jj] = Y_cur[jj] + h * Y_new[jj];

}

swap_vectors(&Y_new, &Y_cur);
}

Listing 1. General parallel MPI implementation with tiled loop structure

implementations considered in this article therefore store in each process n/p
components of yκ and yκ+1 and one additional array of size n, in which yκ is
gathered and which is then used as argument vector for the function evaluation.

Listing 1 shows a code fragment of a general parallel implementation of one
time step of an AB method with tiled loop structure that uses MPI as program-
ming environment. The loop structures j–l and l–j can be interpreted as special
cases of the tiled loop structure using B = 1 and B = n, respectively.

3 Reducing Parallel Overhead through Specialization

There are many sparse ODE systems where the components of yκ accessed by
a component function fj(tκ,yκ) are located nearby the index j. Examples are
ODE systems resulting from a spatial discretization of PDE systems by the
method of lines. This property is measured by the access distance d(f), which
is the smallest value b, such that all component functions fj(tκ,yκ) access only
the components {yκ,j−b, . . . , yκ,,j+b}. We say d(f) is limited if d(f) � n.

For ODE systems with limited access distance, data-parallel implementations
with a blockwise data distribution only need to exchange d(f) components of yκ

at the left and at the right border of their data range. Using MPI as programming
environment, the expensive multibroadcast operation MPI Allgatherv() (cf.
Fig. 1) can be replaced by non-blocking single transfer operations (MPI Isend()
and MPI Irecv()), thus potentially overlapping communication with compu-
tations. Replicated storage of the argument vector for the function evaluation
using an array of size n is no longer required. Instead, the two arrays holding
the local parts of yκ and yκ+1 of size n/p are enlarged by d(f) at each border
to store the data received from the neighbor processes (ghost cells).

In shared-address-space implementations, it is desirable to avoid the high
costs of the global barriers (cf. Fig. 2). If the ODE system has a limited access
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Fig. 1. Execution time of the commu-
nication operation MPI Allgatherv()
for 8 · 106 vector elements on HLRB II
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Fig. 2. Comparison of the execution time
of barrier operations on HLRB II (barrier
based on condition variables, Pthread
barrier, barrier based on busy waiting)

distance, only data from neighbor threads are required for the function evalua-
tion. Hence, it is sufficient to use locks for synchronization between neighbors.
Similar to the way communication and computation could be overlapped in an
MPI implementation, no waiting times for acquiring the locks occur if all threads
process the ODE components synchronously at the same speed.

While shared data structures are needed in general implementations where the
function evaluation may access all components of its argument vector, implemen-
tations specialized in a limited access distance can store the vectors yκ and yκ+1

in a distributed fashion similar to the MPI implementations, thus avoiding page
and cache line sharing. In this case, the data required from neighbor threads
have to be copied to ghost cells, which consumes CPU time.

4 Pipelining of Time Steps

The loop structures considered in Section 2.1 allow that the evaluation of the
right-hand-side function f(tκ,yκ) accesses all components of yκ. Next, a pipeline-
like loop structure covering several time steps of the AB method is described that
can be used for ODE systems with limited access distance to increase locality.
A similar approach has been proposed for the stages of embedded Runge–Kutta
methods [8], the corrector steps of iterated Runge–Kutta methods [7], and the
micro-steps of extrapolation methods [9].

The pipeline-like loop structure is based on a subdivision of all n-vectors into
nB = �n/B� blocks of size B. This subdivision is similar to the subdivision for
loop tiling, but, for the pipelining scheme to work, the block size must be larger
than the access distance, i.e., B ≥ d(f), and the number of blocks, nB, must be
at least as large as the pipeline length L.

Given this subdivision, the function evaluation of a block J ∈ {1, . . . , nB} of
yκ uses only components of the blocks J − 1, J , and J + 1 of yκ if these blocks
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t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

P0 P1 P2 P3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 12 24 47 711 1115 1519 1923 23

3 35 58 812 1216 1620 2024 2427 27

6 69 913 1317 1721 2125 2528 2830 30

10 1014 1418 1822 2226 2629 2931 3132 32

23 2319 1915 1511 117 74 42 21 1

27 2724 2420 2016 1612 128 85 53 3

30 3028 2825 2521 2117 1713 139 96 6

32 3231 3129 2926 2622 2218 1814 1410 10

33 3334 3436 3639 3943 4347 4751 5155 55

35 3537 3740 4044 4448 4852 5256 5659 59

38 3841 4145 4549 4953 5357 5760 6062 62

42 4246 4650 5054 5458 5861 6163 6364 64

55 5551 5147 4743 4339 3936 3634 3433 33

59 5956 5652 5248 4844 4440 4037 3735 35

62 6260 6057 5753 5349 4945 4541 4138 38

64 6463 6361 6158 5854 5450 5046 4642 42

L

L

k

Fig. 3. Illustration of the pipeline-like processing of time steps in a data-parallel im-
plementation for nB = 32, p = 4, k = 3, and L = 4. Blocks that need to be exchanged
between processing elements are highlighted by thick borders.

exist, i.e., if 1 < J < nB. Now, due to the dependence pattern of the blocks,
a sequence of L successive time steps can be computed in a single sweep over
the system dimension using the block computation order displayed in Fig. 3.
In a data-parallel implementation, neighbor processing elements process their
pipelines in opposite directions so that during the initialization and the finaliza-
tion of the pipelines all data that have to be received from neighbor processing
elements are available before they are needed for a function evaluation.

Data-parallel implementations of the pipeline-like loop structure can use the
same distributed data structures and the same efficient communication pat-
terns as the specialized implementations optimized for limited access distance
described in Section 3.

A modification of the computation order to support ODE systems where the
access distance is limited only in a cyclic sense as it occurs in discretized PDE
systems with periodic boundary conditions is possible but not discussed here.

5 Storage and Working Spaces

Sequential implementations store k − 1 function results and the two vectors yκ

and yκ+1, which amounts to a total storage space of

Sseq(k, n) = (k + 1)n. (3)

All parallel implementations store n/p components of the k− 1 function results
per processing element. Differences in the storage space between the parallel
implementations result from how yκ and yκ+1 are handled. The general and
specialized shared-address-space implementations with shared storage of yκ and
yκ+1 require the same storage space as sequential implementations:

Ssas,ys(p, k, n) = p

[
(k − 1)

n

p

]
+ 2n = (k + 1)n. (4)
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General MPI implementations store n/p components of yκ and yκ+1 in local
arrays, the pointers to which are swapped at every time step. Additionally, one
array of size n to collect yκ is used, which amounts to a total storage space of

Sdas,mbcast(p, k, n) = p

[
(k − 1)

n

p
+ 2

n

p
+ n

]
= (p+ k + 1)n. (5)

Specialized implementations for distributed address space which use neighbor-
to-neighbor communication and specialized implementations for shared address
space which store yκ and yκ+1 in a distributed fashion, need additional storage
space, compared with the sequential implementations, only for the ghost cells:

Sdas,single(p, k, n, d(f)) = Ssas,yd(p, k, n) = p

[
(k − 1)

n

p
+ 2

(
n

p
+ 2d(f)

)]

= (k + 1)n+ 4d(f)p.

(6)

Since all implementations iterate over all their data structures during one time
step, the storage space they require per processing element constitutes the most
significant working space of their loop structures. If the ODE system is large so
that not all data used by a processing element per time step fits in the cache,
the tiled or the pipeline-like loop structure can be expected to be more efficient,
because they create additional smaller working spaces that allow temporal reuse
of cache data.

The working space created by loop tiling, i.e., the size of one tile, consists
of k − 1 blocks of size B of the function results, one block of size B of yκ+1

computed in the current time step, and one block of size B + 2d(f) of yκ for
which the function is evaluated:

Wtile(k, d(f), B) = (k + 1)B + 2d(f). (7)

The most important working space created by the pipeline-like loop structure
using pipeline length L is the working space of one pipelining step, i.e., the
computation of one diagonal consisting of L blocks. This working space can be
viewed as being built up of L loop tiling working spaces, but components within
the access distance of the function evaluation partially overlap. The resulting
size of the working space is

Wpipe(k, d(f), B, L) = L(k + 1)B + 4d(f). (8)

6 Experimental Results and Discussion

6.1 Experimental Setup

In this article, we present selected experimental results measured on three com-
puter systems. Sequential jobs needed for empirical search of optimal block sizes
and pipeline lengths were run on a small cluster system consisting of 32 2-way
AMD Opteron DP 246 nodes with 64KB L1 data cache and 1024KB L2 cache.
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Fig. 4. Sequential runtime and locality behavior of the tiled and the pipeline-like loop
structur on AMD Opteron DP 246. k = 4. Test problem: BRUSS2D-MIX. For the tiled
loop structure, the problem size is varied. For the pipeline-like loop structure, results
for problem size N = 130 (n = 33 800) are shown. Dark color indicates better behavior.

To compare the sequential and parallel implementations, results measured on the
two supercomputer systems JUROPA and HLRB II are shown. JUROPA (Jülich
Supercomputing Centre (JSC)) consists of 2 208 compute nodes equipped with
two quad-core Intel Xeon X5570 (Nehalem-EP) processors running at 2.93GHz
and interconnected by an Infiniband QDR network. The L1 data cache has a size
of 32KB; the L2 cache size is 256KB. The L3 cache is shared between the four
cores and has a size of 8MB. HLRB 2 (Leibniz Supercomputing Centre (LRZ)
Munich) is an SGI Altix 4700 system based on dual-core Itanium2 9040 (Mon-
tecito) processors running at 1.6GHz with a total number of 9 728 CPU cores.
The system is interconnected by an SGI NUMAlink 4 network and is divided
into 19 shared-memory partitions containing 512 cores. The L1 data cache has
a size of 16KB, but does not store floating point data. The L2 and the L3 cache
have a size of 256KB and 9MB, respectively. All cache levels are non-shared.

The test problems considered are BRUSS2D-MIX (2D Brusselator reaction-
diffusion equation [1,5]), which is derived from a first order 2D PDE system with
two variables using an N ×N grid and which has a system size of n = 2N2 and
an access distance of d(f) = 2N , and STRING (mechanical vibration of a string
[5]), which is derived from a second order 1D PDE system with one variable and
which has a system size of n = 2N and an access distance of d(f) = 3.

6.2 Choosing Blocksize and Pipeline Length

For the tiled loop structure, the runtime depends on the block size B. The upper
part of Fig. 4 illustrates the influence of the block size on the sequential runtime
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Fig. 5. Comparison of the normalized runtime of the sequential implementations

on an AMD Opteron DP 246 processor for the test problem BRUSS2D-MIX,
k = 4 and varying system sizes between n = 200 and n = 500 000. For this
example, small block sizes up to ≈ 1000 deliver the smallest execution time. But
the block size should not be too small, i.e., B � 100, so that it spans several
cache lines. This observation conforms with the working space model (7), which
suggests maximum block sizes between 1630 (n = 200) and 1238 (n = 500 000)
for a tile to fit in the L1 cache. In fact, Fig. 4 shows that in the ranges of the
block size with best execution times the smallest numbers of L1 misses occur.

The execution time of the pipeline-like loop structure is influenced by two
parameters: the block size and the pipeline length. The lower part of Fig. 4
illustrates this influence for the test problem BRUSS2D-MIX with problem size
N = 130 (n = 33 800) and k = 4 on an AMD Opteron DP 246 processor. Though
according to (8) it is possible to fit the working space of a pipelining step in the
L1 cache using pipeline length 5 or smaller, best performance, in this example,
is obtained for a pipeline length between about 10 and 20 and block sizes up to
1000. Generally, an area of good performance is framed by the working space
model (8) applied to the size of the L2 cache, but within this area neither the
block size nor the pipeline length should be chosen too large.

6.3 Influence of the Working Spaces on Sequential Performance

Figure 5 compares the sequential implementations on one processor core of
HLRB II and JUROPA using normalized runtime, i.e., the execution time per
step and component. For the loop tiling and the pipelining implementations, a
set of block sizes and pipeline lengths were precomputed using their working
space models, and the runtime of the best parameter choice is shown. Since the
function evaluation costs per component for the two test problems are indepen-
dent of the system size, an increase in the normalized runtime is usually caused
by working spaces of loops growing larger than a cache level. For small system
sizes, where all data structures used in a time step fit in the cache, general imple-
mentations can obtain a good performance. For larger system sizes, loop tiling
or pipelining is required for best performance. Pipelining performs best in the
range of system sizes where the pipelining working space (8) fits in the cache
but the overall working space of a time step (3) is too large to fit in the cache.
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Fig. 6. Strong scalability of the Pthread and MPI implementations

6.4 Parallel Performance on Different Architectures

To investigate the strong scalability of the parallel implementations, Fig. 6 shows
selected experimental results measured on HLRB II and JUROPA. The compar-
ison is based on efficiency, i.e., execution time of the fastest sequential imple-
mentation divided by the execution time of the parallel implementation and
the number of processing elements. Thus, an efficiency of 1 is optimal. A set of
block sizes and pipeline lengths is precomputed and the best efficiency is shown,
similarly to the comparison of the sequential implementations.

The general MPI implementations, which need to use MPI Allgatherv(),
do not scale. The MPI pipelining implementation obtains a very high, nearly
constant efficiency (measured for STRING up to 4096 cores on JUROPA). A
loop tiling implementation that exploits limited access distance by using single
transfer operations is not as good as the pipelining implementation, in particular
for small numbers of processor cores, but it catches up with or even outperforms
the pipelining implementation as the number of processing elements is increased
and the amount of data processed by each processor core per time step decreases.
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Fig. 7. Influences on the scalability of Pthread implementations on HLRB II. Test
problem: BRUSS2D-MIX with N = 2000 (n = 8 · 106). k = 6. Left: Barrier operations.
Middle: Memory copy operations. Right: Distributed vs. shared storage.

The Pthread implementations could be investigated on HLRB II using up
to 510 threads. To improve the performance of the general implementations,
which need barrier operations, a barrier operation based on busy waiting [3]
was used (cf. Fig. 7 (left)). In contrast to the general MPI implementations, the
general Pthread implementations benefit from a parallel execution. Depending
on the test problem and the problem size, even several hundred threads can be
run efficiently. Using 256 threads and k = 6, speedups between 92 (j–l) and
121 (loop tiling) have been measured for BRUSS2D-MIX and N = 3000 and
between 62 (j–l) and 72 (loop tiling) for BRUSS2D-MIX and N = 1500. Using
510 threads, for STRING and N = 8 · 106, the general implementations even
reached speedups between 222 (j–l) and 445 (loop tiling).

The specialized Pthread implementations are even more efficient than the
general Pthread implementations but do not reach the performance of the spe-
cialized MPI implementations. In the example cases shown in Fig. 6 speedups
between 346 and 383 have been measured for BRUSS2D-MIX and N = 3000 and
between 464 and 489 for STRING using 510 threads. At least for BRUSS2D-
MIX, the implementations with distributed storage of yκ and yκ+1 are more
efficient than those with shared storage of these vectors (cf. Fig. 7 (right)). To
further improve these implementations, which have to copy data from neigh-
bor threads, the memcpy() operation from the standard C library was replaced
by the faster (internal) fastbcopy() operation of the SGI MPT library. This,
however, increased efficiency only marginally (cf. Fig. 7 (middle)). As for the MPI
implementations, pipelining is most efficient for smaller numbers of processing
elements, where the amount of data processed by each processing element is
larger than the cache.

7 Conclusions

Data-parallel implementations of Adams–Bashforth methods can be used effi-
ciently on hundreds and thousands of processing elements if the ODE system is
large enough. Since general MPI implementations require the use of multibroad-
casts, only specialized MPI implementations which exploit the specific structure
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of the ODE system can reach high speedups. Pthread implementations also can
obtain significant speedups from a data-parallel execution, even for ODE systems
with arbitrary coupling, but the performance of the specialized MPI implemen-
tations is higher. If the amount of data processed per processing element at each
time step exceeds the cache size, locality optimizations such as loop tiling or
pipelining are required for best performance. Pipelining of time steps, as pro-
posed in this paper, outperforms standard loop tiling if the working space of
a pipelining steps fits in the cache. Efficient block sizes and pipeline lengths
can be chosen using a working space model. In future work, the most efficient
implementation, block size and pipeline length could be chosen automatically.

Acknowledgments. We thank the JSC and the LRZ Munich for providing
access to their supercomputer systems. This work was supported by the German
Research Foundation (DFG) [grant numbers RA 524/17-1 and RA 524/17-2].

References

1. Burrage, K.: Parallel and Sequential Methods for Ordinary Differential Equations.
Oxford University Press, New York (1995)

2. Butcher, J.C.: Numerical methods for ordinary differential equations, 2nd edn.
John Wiley & Sons, Chichester (2008)

3. Chen, J., Watson III, W.: Software barrier performance on dual quad-core Opterons.
In: Proceedings of the 2008 International Conference on Networking, Architecture,
and Storage, pp. 303–309. IEEE Computer Society (2008)

4. Cong, N.H., Xuan, L.N.: Twostep-by-twostep PIRK-type PC methods with con-
tinuous output formulas. J. Comput. Appl. Math. 221, 165–173 (2008)

5. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I:
Nonstiff Problems, 2nd rev. edn. Springer, Berlin (2000)

6. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, 2nd rev. edn. Springer, Berlin (2002)

7. Korch, M., Rauber, T.W.: Locality Optimized Shared-Memory Implementations of
Iterated Runge-Kutta Methods. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.)
Euro-Par 2007. LNCS, vol. 4641, pp. 737–747. Springer, Heidelberg (2007)

8. Korch, M., Rauber, T.: Parallel low-storage Runge-Kutta solvers for ODE systems
with limited access distance. Int. J. High Perf. Comput. Appl. 25(2), 236–255 (2011)

9. Korch, M., Rauber, T., Scholtes, C.: Scalability and locality of extrapolation
methods on large parallel systems. Concurrency Computat.: Pract. Exper. 23(15),
1789–1815 (2011)

10. Ley, K.: Parallele Implementierung und Analyse eines expliziten Adams-
Verfahrens. Bachelor’s thesis, University of Bayreuth (November 2010)
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