An Efficient Unbounded Lock-Free Queue
for Multi-core Systems

Marco Aldinucci', Marco Danelutto?, Peter Kilpatrick?,
Massimiliano Meneghin®, and Massimo Torquati?

! Computer Science Department, University of Torino, Italy
aldinuc@di.unito.it
2 Computer Science Department, University of Pisa, Italy
{marcod,torquati}@di.unipi.it
3 Computer Science Department, Queen’s University Belfast, UK
p.kilpatrick@qub.ac.uk
4 IBM Dublin Research Lab, Ireland
massimiliano meneghin@ie.ibm.com

Abstract. The use of efficient synchronization mechanisms is crucial for
implementing fine grained parallel programs on modern shared cache multi-
core architectures. In this paper we study this problem by considering
Single-Producer/Single-Consumer (SPSC) coordination using unbounded
queues. A novel unbounded SPSC algorithm capable of reducing the row
synchronization latency and speeding up Producer-Consumer coordina-
tion is presented. The algorithm has been extensively tested on a shared-
cache multi-core platform and a sketch proof of correctness is presented.
The queues proposed have been used as basic building blocks to imple-
ment the FastFlow parallel framework, which has been demonstrated to
offer very good performance for fine-grain parallel applications.

Keywords: Lock-free algorithms, wait-free algorithms, bounded and
unbounded SPSC queues, cache-coherent multi-cores.

1 Introduction

In modern shared cache multi-core architectures the efficiency of synchroniza-
tion mechanisms is the cornerstone of performance and speedup of fine-grained
parallel applications. For example, concurrent data structures in multi-threaded
applications require synchronization mechanisms which enforce the correctness
of concurrent updates. They typically involve various sources of overhead which
have an increasingly significant effect on performance with increasing parallelism
degree and decreasing synchronization granularity.

In this respect, mutual exclusion using lock /unlock, is widely considered exces-
sively demanding for high-frequency synchronisations [I]. Among other methods,
lock-free algorithms for concurrent data structures are the most frequently tar-
geted. These algorithms have been devised by way of a hardware-implemented
class of atomic operations — so-called CAS, because of its paradigmatic mem-
ber Compare-and-Swap — in order to avoid an explicit consensus that would

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 662-F73] 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Efficient Unbounded Lock-Free Queue for Multi-core Systems 663

increase the overhead for data accesses [2/3J[4U506]. Unfortunately, CAS opera-
tions are not inexpensive since they might fail to swap operands when executed
and may be re-executed many times, thus introducing other sources of poten-
tial overhead, especially under high contention [I]. Furthermore, without explicit
consensus among parallel entities, the problem of correct memory management
arises for dynamic concurrent data structures because of the complexity in track-
ing which chunk of memory is really in use at a given time. In general, lock-free
dynamic concurrent data structures that use CAS operations should be sup-
ported by safe memory reclamation techniques in programming environments
without automatic garbage collection [7].

In this work we study the synchronization problem for the simplest concur-
rent data structure: the Single-Producer/Single-Consumer (SPSC) queue. SPSC
queues are widely used in many application scenarios: their efficiency can boost
performance in terms of both latency and scalability to a non-negligible degree.
In particular, SPSC-based synchronisations are used both in the implementation
of high-level and completely general models of computation based on streams
of tasks [8], and in a number of parallel frameworks as basic building blocks
[9UTOULT].

SPSC queues can be classified in two main families: bounded and unbounded.
Bounded SPSC queues, typically implemented on top of a circular buffer, are
used to limit memory usage and avoid the overhead of dynamic memory alloca-
tion. Unbounded queues are mostly preferred to avoid deadlock issues without
introducing heavy communication protocols in the case of complex streaming
networks, i.e. graph with multiple nested cycles. Bounded SPSC queues have
been studied extensively since the emergence of the first wait-free algorithm pre-
sented by Lamport in the late 1970s [I2]. More recently, some research work
[13/14] revisited the Lamport queue, introducing a number of cache optimiza-
tions. On the other hand, unbounded SPSC queues, which are not any less
relevant, have attracted less attention, resulting in quite a gap between the two
SPSC families.

With the aim of filling this gap, we introduce and analyze here a novel al-
gorithm for unbounded lock-free SPSC FIFO queues which minimizes the use
of dynamic memory allocation. Furthermore, we provide a new implementation
for the widely used dynamic list-based SPSC queue, along with proof sketches
of correctness for both algorithms. Their performance is evaluated on synthetic
benchmarks and on a simple yet relevant microkernel. The performance and the
benefits deriving from the use of our SPSC queue when programming complete
and complex application have already been assessed in [I5/16].

The paper is organized as follows: Section. 2l provides the relevant background
and related work discussing the reference implementations of the SPSC queue
for shared-cache multi-cores. Section Bl introduces the list-based unbounded al-
gorithm (dSPSC), while in Sec. [a novel algorithm for the unbounded queue
(uSPSC) is presented, together with a proof sketch of its correctness. Perfor-
mance results are discussed in Sec. Bl Section [6] summarizes the contribution of
the work.

664 M. Aldinucci et al.

2 Producer-Consumer Coordination Using SPSC Queues:
Background and Related Work

Producer-Consumer coordination is typically implemented by means of a FIFO
queue, often realized with a circular buffer. Lamport proved that, under the
Sequential Consistency (SC) memory model [12], a SPSC buffer can be imple-
mented using only read and write operations [I7]. Lamport’s circular buffer is
a wail-free algorithm, i.e. it is guaranteed to complete after a finite number of
steps, regardless of the timing behavior of other operations. Another important
class of algorithms are the lock-free algorithms, which enforce a weaker property
than wait-free: they guarantee that at any time at least one process will make
progress, although fairness cannot be assumed.

Lamport’s circular buffer algorithm is no longer correct if the SC requirement
is relaxed. This happens, for example, in all architectures where write-to-write
memory ordering (W — W using the notation of [I8]) is relaxed, i.e. two distinct
writes at different memory locations may be executed out of program order (as
in the Weak Ordering memory model [I8]). A few modifications to the basic
Lamport algorithm allow correct execution even under weakly ordered memory
consistency models; they have been presented first and proved formally correct
by Higham and Kavalsh [19]. The idea behind the Higham and Kavalsh queue
basically consists in tightly coupling control and data information into a single
buffer operation by extending the data domain with a new value called BOT-
TOM, which cannot be inserted into the queue. The BOTTOM value can be
used to denote an empty cell, and then used to check if the queue is empty or
full without directly comparing the indexes of the queue’s head and tail.

Ten years later Giacomoni et al. [I3] followed a similar line by proposing
the same basic algorithm and studying its behavior in cache-coherent multi-
processor systems. As a matter of fact, Lamport’s queue results in heavy cache
invalidation/update traffic because both producer and consumer share both head
and tail indexed]. This can be avoided, as already noted in [I9], by using a
BOTTOM value that makes it possible for the producer to write and read only
the tail and for the consumer to write and read only the head indexes. Since this
technique applies nicely to data pointers where NULL is the BOTTOM value,
Giacomoni et al. proved that on weakly ordered memory model, a Write Memory
Barrier (WMB) is actually required to enforce completion of the data write
by the producer before the data pointer is passed to the consumera. Figure [
presents an implementation of the SPSC algorithm proposed in [I3] which may
be regarded as the reference algorithm for bounded SPSC queues.

Avoiding cache-line thrashing due to false-sharing is a critical aspect in shared-
cache multiprocessors and thus much research has been focused on trying to
minimize this effect. In [13] the authors present a cache slipping technique suit-
able for avoiding false sharing on true dependencies (i.e. pointers stored within

! The producer updates the tail index, the consumer updates the head index, and
both the producer and the consumer read both head and tail indexes.
2 WMB is also referred to as store-fence.

An Efficient Unbounded Lock-Free Queue for Multi-core Systems 665

1 bool push(voidx* data) { 10 bool pop(voidxx data) {

2 if (buf[pwrite]==NULL) { 11 if (buf[pread]==NULL)

3 WMBY(); // write—memory—barrier 12 return false;

4 buf[pwrite] = data; 13 *data = buf[pread];

5 pwrite+=(pwrite+1>=size)?(1—size):1; 14 buf[pread]=NULL;

6 return true; 15 pread+=(pread+1>=size)?(1—size):1;
7 16 return true;

8 return false; 17 }

0}

Fig. 1. SPSC circular buffer implementation as proposed in [I3], where buf is an array
of size size initialized to NULL values

queue cells) and for enforcing partial filling of the queues in such a way that
producer and consumer operate on different cache lines.

A different approach for optimizing cache usage, named cache line protection,
has been proposed in MCRingBuffer [I4]. The producer and consumer thread
update private copies of the head and tail indexes for several iterations before
updating a shared copy. Furthermore, MCRingBuffer performs batch update
of control variables, thus reducing the frequency of writing the shared control
variables to main memory. A variation of the MCRingBuffer approach is used
in the Liberty Queue [20]. The Liberty Queue shifts most of the overhead to the
consumer end of the queue. Such customization is useful in situations where the
producer is expected to be slower than the consumer.

Unbounded SPSC queues have not benefited from a similar optimization effort
and, to the best of our knowledge, have been approached only through the more
general and more demanding CAS-based Multiple-Producer /Multiple-Consumer
(MPMC) queues.

3 Basic Unbounded List-Based Wait-Free SPSC Queue

A way to design a SPSC queue is to use as a starting point the well-known two-
lock Multi-Producer/Multi-Consumer (MPMC) queue described by Michael and
Scott (MS) [6]. The MS queue is based on a dynamically linked list of Node(s)
data structure, using head and tail pointers which (both) initially point to a
dummy Node (i.e. containing NULL values). The Node structure contains the
actual user value and a next pointer. Concurrency between multiple producers
is managed by a lock for enqueue operations and symmetrically consumers use
a different lock for dequeue operations.

Inspired by the MS queue, we propose a new unbounded SPSC queue whose
algorithm is sketched in Fig. 2] (where lines §2l10 and §2123 can be safely ignored
here at the moment as they introduce a further optimization that is described
later in this section)ﬁ. The push method allocates a new Node data structure,
fills it and then adjusts the tail pointer to point to the current Node. The pop
method gets the current head Node, places the data values into the application
buffer, adjusts the head pointer and, before exiting, deallocates the head Node.

3 We use the §M.N notation to reference line N from the pseudo-code in Fig. M.

666 M. Aldinucci et al.

1 struct Node { 14 tail —>next = n; tail = n;

2 voidx data; 15 return true;

3 struct Node* next; 16 }

14}

5 Nodex head,* tail; 18 bool pop(voidxx* data) {

6 SPSC cache; 19 if ('head—>next) return false;
20 Node* n = head;

8 bool push(voidx data) { 21 xdata = (head—>next)—>data;

9 Nodex n; 22 head = head—>next;

10 if (!cache.pop(&n)) 23 if (!cache.push(n)) free(n);

11 n = (Nodex)malloc(sizeof(Node)); 24 return true;

12 n—>data = data; n—>next = NULL; 25 }

13 WMBY(); // write—memory—barrier

Fig. 2. Unbounded list-based dSPSC queue implementation with Node(s) caching. The
list is initialized with a dummy Node.

In general, one of the main problems with the list-based implementation of
queues is the overhead associated with dynamic memory allocation/deallocation
of Node structures. To mitigate the overhead, it is common to use a data struc-
ture as cache, where elements are kept for future fast reuse, instead of being
deallocated [21].

For a more tailored optimization, the specific allocation pattern can be taken
into account: the producer only allocates while the consumer only frees nodes. To
take advantage of this pattern, we add a bounded wait-free SPSC queue imple-
menting a Node cache, which is used to sustain a “return” path from consumer
to producer of Node structures that can be reused.

The introduced optimization clearly moves allocation overhead outside the
critical path at the steady state. The resulting algorithm, called dSPSC, is shown
in Fig. B} line $l10 and line §2l23 introduce the proposed cache optimization.

Along with some standard definitions we now provide, for the presented
dSPSC, a sketch proof of FIFO queue correctness and the lock-freedom property.

Definition 1 (Correctness). Assuming that simple memory read and write
operations are atomic, a SPSC queue is defined as correct if it always exhibits
FIFO behavior for any interleaving of push and pop operations.

Note that the condition that simple memory reads and writes are atomic is
typically satisfied in any modern general-purpose processor for aligned memory
word loads and stores.

Theorem 1 (dSPSC). Under a weak consistency memory model, the dSPSC
queue defines a correct lock-free SPSC FIFO queue if a lock-free allocator is used.

Proof (Sketch). In a sequentially consistent model, correctness of the dSPSC
derives trivially from correctness of the two-lock MS queue (where the two locks
have been removed as there is no concurrency between producers or between
consumers) and of the bounded SPSC queue used for the Node cache [13].
Moving to a weak memory model, the bounded SPSC queue is still correct
([13]) while the memory barrier at line §l13 guarantees correctness regarding

An Efficient Unbounded Lock-Free Queue for Multi-core Systems 667

the dynamic linked list management. Indeed, all changes to the structure of Node
n as well as to the memory pointed by data have to be committed to memory
before the node itself can be visible to the consumer (i.e. before the tail is set
to point at the new node). It is trivial to see that, similar to what happens with
the SPSC queue in [I3], no other store fence is required inside the push and pop
methods under weakly ordered memory model.

Concerning the lock-free property, the strategy that is used by dSPSC for the
memory management is lock-free because the allocator is lock-free by hypothesis
and the SPSC used as a cache is lock-free by construction. As the rest of the
dSPSC algorithm does not present any statement where producer or consumer
can block, progress is guaranteed. a

4 Fast Unbounded Lock-Free SPSC Queue

The SPSC algorithm [I9/13], described in Sec. 2] is extremely fast (see Sec. [])
but implements a bounded queue. The dSPSC algorithm, presented in Sec[3 is
lock-free and realizes an unbounded queue, but pays for the flexibility achieved
via a list-based implementation with decreased spatial locality in cache behav-
ior. However, the two approaches can be combined in a new lock-free algorithm
for the unbounded SPSC (called uSPSC) inheriting the best features of both.
The new algorithm is sketched in Fig. Bl The basic idea underpinning uSPSC is
the nesting of the two queues. A pool of SPSC bounded queues (called buffers
from now on) is linked together into a list as a dSPSC queue. The implemen-
tation of the pool of buffers aims to minimize the impact of dynamic memory
allocation/deallocation by using a fixed-size SPSC queue as a freelist as in the
list-based dSPSC queue.

The unbounded queue uses two pointers: buf w which points to the writer’s
buffer (i.e. the “tail” pointer), and buf r which points to the reader’s buffer (i.e.
the “head” pointer). Initially both buf w and buf r point to the same buffer.

The push method works as follows: the producer first checks whether the
current buffer is not full (line §8l4), and then pushes the data. If the current
buffer is full, it asks the pool for a new buffer (line §8l5), adjusts the buf w
pointer and pushes the data into the new buffer.

The pop method, called by the consumer, first checks whether the current
buffer is not empty and if so pops data from the queue. If the current buffer
is empty, there are two possibilities: a) there are no items to consume, i.e. the
unbounded queue is really empty; b) the current buffer is empty (i.e. the one
pointed by buf r), but there may be some items in the next buffer.

If the buffer is empty for the consumer, it switches to a new buffer releasing
the current one to be recycled by the buffer pool (lines §3l14-§3116). From the
consumer viewpoint, the queue is really empty when the current buffer is empty
and both the read and write pointers (buf r and buf w, respectively) point to
the same buffer. If the read and writer queue pointers differ, the consumer has
to re-check the current queue emptiness because in the meantime (i.e. between
the execution of instructions §8l11 and §8l12) the producer could have written

668 M. Aldinucci et al.

1 int size = N; //SPSC size 22 struct Pool {
23 dSPSC inuse;
3 bool push(voidx data) { 24 SPSC cache;
4 if (buf_w—>full())
5 buf_w = pool.next_w(); 26 SPSCx next_w() {
6 buf_w—>push(data); 27 SPSCx buf;
7 return true; 28 if (!cache.pop(&buf))
8 } 29 buf = allocateSPSC(size);
30 inuse. push(buf);
10 bool pop(voidxx data) { 31 return buf;
11 if (bufor—>empty()) { 32}
12 if (bufor == buf-w) return false; 33 SPSCx nextr() {
13 if (bufor—>empty()) { 34 SPSC# buf;
14 SPSC# tmp = pool.next_r(); 35 return (inuse.pop(&buf)? buf : NULL);
15 pool. release (bufr); 36}
16 bufr = tmp; 37 void release(SPSCsx buf) {
17 } 38 buf—>reset(); // reset pread and pwrite
18} 39 if (!cache.push(buf)) deallocateSPSC(buf);
19 return buf_r—>pop(data); 40
20 } 41 }

Fig. 3. Unbounded lock-free uSPSC queue implementation

some new elements into the current buffer before switching to a new one. This
is the most subtle condition whose occurrence must be proved to be impossible
since, if the consumer switches to the next buffer while the previous one is not
really empty, a data loss will occur. In the next section we prove that the if
condition at line §313 is sufficient to ensure correct execution.

Theorem 2 (uSPSC). The uSPSC unbound queue given in Fig. [is correct
(according to Def.) on architectures with Weak Ordering consistency model
(and therefore with any stricter ordering).

Proof (Sketch). The SPSC and the dSPSC queues used as building blocks have
been proven to be correct under Weak Ordering (WO) consistency and stricter
models (e.g. Total Store Ordering) in [T9/13] and Theorem [I] respectively.

We distinguish four cases with respect to the values of buf r and buf w used
by producer and consumer (respectively): buf r and buf w are 1) equal or 2)
different throughout execution of a push/pop pair; 3) they are different and
become equal; or 4) they are equal and become different. In case 1) uSPSC is
correct because of the correctness of the underlying SPSC. In case 2) uSPSC is
correct because the producer and consumer work on different SPSC buffers and
correctness follows from the correctness of the underlying dSPSC. In case 3 the
consumer catches up with the producer: correctness follows because, when buf w
was assigned (line §315), that assignment will have been preceded by the issue of
a WMB within the dSPSC push that commits all values of the previous buffer
(allowing them all to be read by the consumer before it advances buf r).

Case 4 is more subtle: here the two buffers are equal and become different
when the producer observes that buf w is full and prompts a move to a new
write buffer. The concern is that, because of WO, in the case where the SPSC
buffer size = 1 the consumer may see the buffer as empty and release it before

An Efficient Unbounded Lock-Free Queue for Multi-core Systems 669

a write to it has been committed, thus causing data loss. We prove that this
cannot happen and the FIFO ordering is preserved.

Under WO model the consumer may be aware that the producer has changed
the write buffer only after a synchronization point that enforces program order
between two store operations has been traversed. In our algorithm the synchro-
nization point is the WMB. In fact, the new value of buf w (line §3l5) and the
value that is written to the buffer might appear in memory in any order or not
at all. Thus it might be thought possible that the reading buffer buf r could still
be perceived as empty while a new writing buffer has already been started (thus
buf r # buf w); the condition at line §3l13 could therefore evaluate to true even
if the previous buffer is not actually empty. This condition could lead to data
loss because the consumer might overtake and abandon a buffer still holding a
valid value. In the uSPSC this subtle case can never arise however, because, in
order to change the write buffer, a push operation in the dSPSC queue is called
(§8l30) thus enforcing a WMB, which commits all previous writes to memory,
and so the if condition at line §3l13 is evaluated to true only if the consumer
buffer is really empty. FIFO ordering is trivially enforced by the FIFO ordering
of both nested queues dSPSC and SPSC queues. a

It is worth noticing that, regardless of the implementation of the pool used in
the uSPSC queue, if size > 1 (line §8l1) the two conditions buf r incorrectly
perceived empty and buf r # buf w, cannot hold together as at least two push
and one WMB must occur to make an empty queue become a full queue.

Corollary 1 (lock-free). The uSPSC queue is lock-free provided a lock-free
allocator is used.

Proof (Sketch). The SPSC queue, and the dSPSC queue coupled with a lock-free
allocator, are lock-free. Suppose we use a lock-free allocator in the allocateSPSC
and in deallocateSPSC. As the push and pop methods contain no cycle nor can
they block on any non lock-free function, progress is assured. a

Enhancing the queues to wait-freedom property. It can be demonstrated
that the SPSC queue proposed in [I3] as well as the dSPSC when a wait-free
allocator is used, are both wait-free. The uSPSC is wait-free if a wait-free dSPSC
queue is used and if a wait-free allocator is used in the pool: in fact both the
push and pop methods complete in a bounded number of steps.

5 Experiments

All experiments reported in this section have been conducted on an Intel work-
station with 4 eight-core double context Xeon E7-4820 @2.0GHz with 18MB
L3 shared cache, 256K L2, and 24 GBytes of main memory with Linux x86 64.
Some of the tests presented have been executed also on a different architecture
and results can be found in [22]. Similar results to those presented in this paper
have been obtained on the AMD Opteron platform.

670 M. Aldinucci et al.

‘mapping 1 ‘ 450 ‘ ‘ mapping 1

mapping 2 1 400 mapping 2 1
mapping 3 mapping 3 |

350
300
250 r
200
150
100
50

nanoseconds
nanoseconds

1024 8192 64 1024 8192
buffer size buffer size

Fig. 4. Bounded SPSC (left) and unbounded dSPSC (right) average latency time in
nanoseconds varying the internal buffer size and cache size respectively

The first test is a two-stage pipeline in which the first stage (P) pushes 1M
tasks (a task is just a memory pointer) into a FIFO queue and the second stage
(C) pops tasks from the queue and checks for correct values. Neither additional
memory operations nor additional computation is executed. With this simple
test we are able to measure the raw performance of a single push/pop operation
by computing the average value of 100 runs, varying the buffer size for the
bounded SPSC queue and the cache size for the dSPSC queue. We tested three
distinct cases that differ in terms of the physical mapping of the two threads
corresponding to the two stages of the pipeline. The first and the second stage of
the pipeline are pinned: i) on the same physical core but on different HW contexts
(mappingl); on the same CPU but on different physical cores (mapping?2); on
two cores of two distinct CPUs (mapping3).

Figure M reports the values obtained by running the first benchmark for the
SPSC queue and the dynamic list-based dSPSC queue, varying the buffer size
and the internal cache size, respectively. Fig. [l (left) reports the values obtained
by running the same benchmark using the unbounded uSPSC queue.

The bounded SPSC queue is almost insensitive to buffer size in all cases. It
takes on average 8-12 ns corresponding to almost 16—-24 cycles per push/pop
operation with standard deviation less than 1.5 ns when the producer and the
consumer are on the same CPU, and takes on average 16-36 ns if the producer
and the consumer are on separate CPUs. The dSPSC queue is instead quite sen-
sitive to the internal cache size on the tested architecture. The best values for the
dSPSC queue range from 14 to 36 ns with a standard deviation that ranges from
0.5 to 11 ns. Such values are obtained with sufficiently large cache size (8192
slots). As expected, the bigger the internal cache, the better the performance
obtained. As a reference, the MS queue implementation is one order of magni-
tude slower, going from 110-190 ns on sibling cores to 430-490 ns on non-sibling
cores. The uSPSC queue (Fig. [l left) is more sensitive to the internal buffer
size in the case where the producer and the consumer are pinned to separate
CPUs and when the internal buffer is small. The values obtained for the uSPSC

An Efficient Unbounded Lock-Free Queue for Multi-core Systems 671

‘mapping 1 ‘ Rl <
40 | ing 2 L
35 | mggg:ﬂgs 200K | s dSPSC no cache
8 30t >
< e 150K
8 25+ =
I3 3
e 7 S 100K |
g 15t 7 . E
10} 7 7 a
? ? 50K |-
5 7 7] | I L
6 8192 1 24 32 40 48 56 64
buffer size n. threads

Fig.5. Unbounded uSPSC average latency time in nanoseconds (left) varying the
buffer size of the internal SPSC queues (pool cache size set to 32). Throughput in
msgs/s (right) running the ring microkernel when using the dSPSC queue without any
cache, the dSPSC with a cache size of 2048 and the uSPSC queue with an internal
buffer size of 2048 elements (pool cache size set to 32).

are very good if compared with those obtained for the dSPSC queue, and are
almost the same (or better) if compared with the bounded SPSC queue when
using sufficiently large buffer size. It takes on average 9.7-14 ns per push/pop
operation with standard deviation less than 1.5 ns when the internal buffer size
is greater than or equal to 1024. The dSPSC queue is slower than the uSPSC
version in all cases. If the producer and the consumer for the dSPSC queue are
not pinned on the same core the dSPSC queue is more than 10 times slower than
the uSPSC queue. Instead, when the producer and the consumer are pinned on
the same core the performance is much better for the dSPSC queue (although
always worse than the uSPSC one) because they work in lock step as they share
the same ALUs and so dynamic memory management is reduced.

It is worth noting that caching strategies for the dSPSC queue implementation
significantly improve performance but are not sufficient to obtain optimal figures
like those obtained in the uSPSC implementations.

To test scalability of the queues we used a simple synthetic microkernel. We
consider N threads linked into a ring using an unbounded queue (dSPSC and
uSPSC). The first thread emits a number of messages which flow around the
ring. The message is just a pointer obtained from dynamic allocation of a small
segment of memory. The other threads accept messages, perform basic integrity
verification, copy the input message into a new dynamically allocated buffer, free
the input message and pass the new pointer to the next thread. When all mes-
sages return to the first thread, the program terminates. Each thread is statically
pinned to a core whose id is the same as the thread id. For the architectures
considered, the core ids are linear so core 0 and 32 as well as core 0 and 1 are
on the same physical core and on the same CPU, respectively, whereas core
0 and 8 are on different CPUs. In Fig. Bl (right), we present the performance
in messages per second (msgs/s) obtained while varying the number of threads
of the ring. Three queue implementations were tested: the dSPSC queue without

672 M. Aldinucci et al.

using any internal cache (the basic algorithm); the dSPSC queue with a cache
size of 32K elements (i.e. with a SPSC queue of size 32K); and the uSPSC queue
using a 32K internal SPSC queue and a cache size of 32 elements.

The uSPSC queue implementation obtains the best performance reaching a
maximum throughput of ~250K msgs/s, whereas the dSPSC reaches a maxi-
mum throughput of ~128K msgs/s when using an internal cache of Node(s),
and ~37K msgs/s when no cache is used. For this test, the MS queue implemen-
tations (not shown in the graph) obtain almost the same speedup as the dSPSC
queue without internal cache. The uSPSC queue scales almost linearly up to
32 cores, then the performance drops due to the fact that on core 0 we have 2
threads in separate contexts (the first and the last one of the ring) producing a
bottleneck. Adding more threads in the ring, the bottleneck is slowly absorbed
by the increasing throughput thus reaching an optimal final 32X improvement.

In this section we have shown only synthetic benchmarks in order to present
evidence of the distinctive performance of the uSPSC implementations. The
simple tests shown here prove the effectiveness of the uSPSC queue with respect
to the dSPSC implementation, and prove also how a fast implementation of a
cache of references inside the dSPSC queue leads to much higher throughput.
Since the uSPSC queue is used in the FastFlow framework, more performance
figures on real-world applications can be found in [I5JT6].

6 Conclusions

In this paper we studied several possible implementations of fast lock-free Single-
Producer/Single-Consumer (SPSC) queues for shared cache multi-core plat-
forms, starting from the well-known Lamport circular buffer algorithm. A new
implementation, called dSPSC, of the widely used dynamic list-based algorithm
has been proposed. Moreover, a novel unbounded lock-free SPSC queue algo-
rithm called uSPSC has been introduced together with a sketch proof of its
correctness and several performance assessments.

The uSPSC queue algorithm and implementation are able to minimize dy-
namic memory allocation/deallocation and increase cache locality thus obtain-
ing very good performance figures on modern shared cache multi-core platforms.
Our uSPSC implementation has been used as a foundation for a skeleton based
parallel programming framework (FastFlow [9]) that has been demonstrated to
be more efficient than other state-of-the-art programming environments, includ-
ing OpenMP and Cilk, on significant fine-grain parallel applications.

References

1. Orozco, D.A., Garcia, E., Khan, R., Livingston, K., Gao, G.R.: Toward high-
throughput algorithms on many-core architectures. TACO 8(4), 49 (2012)

2. Moir, M., Nussbaum, D.; Shalev, O., Shavit, N.: Using elimination to implement
scalable and lock-free FIFO queues. In: Proc. of the 7th ACM Symposium on
Parallelism in Algorithms and Architectures, pp. 253-262 (2005)

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

An Efficient Unbounded Lock-Free Queue for Multi-core Systems 673

Ladan-Mozes, E., Shavit, N.: An optimistic approach to lock-free FIFO queues.
Distributed Computing 20(5), 323-341 (2008)

Prakash, S., Lee, Y.H., Johnson, T.: A nonblocking algorithm for shared queues
using compare-and-swap. IEEE Trans. Comput. 43(5), 548-559 (1994)

Tsigas, P., Zhang, Y.: A simple, fast and scalable non-blocking concurrent fifo queue
for shared memory multiprocessor systems. In: Proc. of the 13th ACM Symposium
on Parallel Algorithms and Architectures (SPAA), pp. 134-143 (2001)

Michael, M.M., Scott, M.L.: Nonblocking algorithms and preemption-safe locking
on multiprogrammed shared memory multiprocessors. Journal of Parallel and Dis-
tributed Computing 51(1), 1-26 (1998)

Michael, M.M.: Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst. 15(6), 491-504 (2004)

Kahn, G.: The semantics of simple language for parallel programming. In: IFIP
Congress, pp. 471-475 (1974)

FastFlow framework: website (2009), http://mc-fastflow.sourceforge.net/

. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A Language for Streaming

Applications. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 179-196.
Springer, Heidelberg (2002)

Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Pro-
cessor Parallelism. O’Reilly (2007)

Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690-691 (1979)

Giacomoni, J., Moseley, T., Vachharajani, M.: Fastforward for efficient pipeline
parallelism: a cache-optimized concurrent lock-free queue. In: Proc. of the 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), pp. 43-52 (2008)

Lee, P.P.C., Bu, T., Chandranmenon, G.P.: A lock-free, cache-efficient multi-core
synchronization mechanism for line-rate network traffic monitoring. In: Proc. of
the 24th Intl. Parallel and Distributed Processing Symposium, IPDPS (2010)
Aldinucci, M., Ruggieri, S., Torquati, M.: Porting Decision Tree Algorithms to
Multicore Using FastFlow. In: Balcazar, J.L., Bonchi, F., Gionis, A., Sebag, M.
(eds.) ECML PKDD 2010, Part I. LNCS, vol. 6321, pp. 7-23. Springer, Heidelberg
2010

SAldinzlcci, M., Danelutto, M., Meneghin, M., Kilpatrick, P., Torquati, M.: Efficient
streaming applications on multi-core with FastFlow: the biosequence alignment
test-bed. In: Parallel Computing: From Multicores and GPU’s to Petascale. Ad-
vances in Parallel Computing, vol. 19, pp. 273-280. IOS Press (2009)

Lamport, L.: Concurrent reading and writing. CACM 20(11), 806-811 (1977)
Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.
IEEE Computer 29, 6676 (1995)

Higham, L., Kawash, J.: Critical sections and producer/consumer queues in weak
memory systems. In: Proc of the Intl. Symposium on Parallel Architectures, Algo-
rithms and Networks (ISPAN), pp. 56-63. IEEE (1997)

Jablin, T.B., Zhang, Y., Jablin, J.A., Huang, J., Kim, H., August, D.I.: Liberty
queues for epic architectures. In: Proc. of the 8th Workshop on Explicitly Parallel
Instruction Computer Architectures and Compiler Technology, EPIC (2010)
Hendler, D., Shavit, N.: Work dealing. In: Proc. of the 4th ACM Symposium on
Parallel Algorithms and Architectures (SPAA), pp. 164-172 (2002)

Torquati, M.: Single-producer/single-consumer queues on shared cache multi-core
systems. Technical Report TR-10-20, Computer Science Dept., University of Pisa,
Italy (2010), http://compass2.di.unipi.it/TR/Files/TR-10-20.pdf.gz

http://mc-fastflow.sourceforge.net/
http://compass2.di.unipi.it/TR/Files/TR-10-20.pdf.gz

	An Efficient Unbounded Lock-Free Queue for Multi-core Systems
	Introduction
	Producer-Consumer Coordination Using SPSC Queues: Background and Related Work
	Basic Unbounded List-Based Wait-Free SPSC Queue
	Fast Unbounded Lock-Free SPSC Queue
	Experiments
	Conclusions
	References

