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Abstract. This paper presents a portable optimization for MPI com-
munications, called PRAcTICaL-MPI (Portable Adaptive Compression
Library- MPI). PRAcTICaL-MPI reduces the data volume exchanged
among processes by using lossless compression and offers two main ad-
vantages. Firstly, it is independent of the MPI implementation and the
application used. Secondly, it allows for turning the compression on and
off and selecting the most appropriate compression algorithm at run-
time, depending on the characteristics of each message and on network
performance.

We have validated PRAcTICaL-MPI in different MPI implementa-
tions and HPC clusters. The evaluation shows that compressing MPI
messages with the best algorithm and only when it is worthwhile, we
obtain a great reduction in the overall execution time for many of the
scenarios considered.

Keywords: MPI Library, Parallel techniques, High-Performance Com-
puting, Compression algorithms, Adaptive systems, Portable optimiza-
tions.

1 Introduction

Parallel computation on cluster architectures has become the most common so-
lution for developing High-Performance Computing applications. The Message
Passing Interface (MPI) standard [1] is one of the most commonly used com-
munication middleware frameworks on clusters.Several implementations of MPI
are available, like MPICH [2], XT-MPI, OPENMPI [3], and LAM [4].

The current trend in High-Performance Computing is to use multicore clusters
in order to increase computation capability, thus allowing an increase in the num-
ber of processes per application. Despite the fact that networks used in multicore
clusters are fast and have low latency, the number of transferred messages may
cause a bottleneck in the communication system, as communication-intensive,
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parallel MPI applications spend a significant amount of their total execution
time exchanging messages between processes. This problem may lead to poor
performance and scalability in many cases.

In this paper, we present a portable optimization of MPI called PRAcTICaL-
MPI (Portable Adaptive Compression Library-MPI), which is fully transparent
both to applications and MPI implementations. The main goal of PRAcTICaL-
MPI is to enhance the performance and scalability of MPI-based applications
and to reduce the volume of communications by applying run-time lossless
compression in a transparent way for applications and MPI implementations.
PRAcTICaL-MPI is capable of using the following compression algorithms: RLE
[5], Huffman [6], Rice [7], FPC [8], and LZO [9]. Furthermore, the technique
presented applies the Run-time Adaptive Strategy (RAS) developed in [10] to
select the most appropriate compression algorithm to be used dynamically for
each message exchange, and the size threshold form which a benefit is achieved
by using data compression.

We have implemented PRAcTICaL-MPI by using the standard MPI profiling
interface (PMPI) with the lowest possible overhead. The major contributions of
PRAcTICaL-MPI can be summarised by looking the following properties:

– Transparency: PRAcTICaL-MPI uses the standard MPI profiling interface
(PMPI), allowing transparent data compression for different applications
and MPI implementations.

– Portability: PRAcTICal-MPI can be run by any MPI implementation that
supports PMP, and is hence fully portable.

– Scalability: Since PRAcTICaL-MPI applies run-time compression to reduce
the volume of messages transferred, the execution time of the application
is reduced, thus enhancing the performance and scalability of MPI-based
applications.

The remainder of this paper is structured as follows: Section 2 discusses re-
lated work. Section 3 summarises our Run-time-Adaptive Strategy. Section 4
introduces the PRAcTICaL-MPI architecture in detail. Section 5 presents an
extensive evaluation of PRAcTICaL-MPI I in several scenarios. Finally, Section
6 presents conclusions and a discussion of potential future work.

2 Related Work

Two main background techniques and existing contributions are reviewed in this
section: The standard MPI profiling interface, and the most popular works to
extend MPI with compression capabilities.

2.1 PMPI: Standard MPI Profiling Interface

The MPI Forum defined [1] the MPI profiling interface (PMPI) as a mechanism
for application developers to obtain high-level performance information about
the behavior of both the application algorithm and the parallel system. Note
that PMPI is part of the MPI standard specification.
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The main concern of PMPI [11] is to provide a mechanism by which the devel-
opers of profiling (and other) tools can collect performance information they re-
quire without access to the underlying implementation. The mechanism is based
on each MPI-routine having a corresponding PMPI-routine with identical syntax
and functionality, so that it can be used to intercept all MPI calls and change
their functionality. Therefore, tools can create wrappers for any MPI routine
and then insert them “between” the MPI library and the application. This is a
powerful feature that is exploited in many applications and tools, such as the
performance visualization tool Jumpshot [12]. Note that one of the major fea-
tures of PMPI is that it allows selective replacement of MPI routines at link
time without the need to re-compile or re-link the MPI implementation.

2.2 Adding Compression to MPI

The use of compression within MPI is not new, although it has been only used
in specific ways for very few special cases. Major examples of such approaches
include cMPI, PACX-MPI, COMPASSION, MiMPI, CoMPI, Adaptive-CoMPI.

PACX-MPI (PArallel Computer eXtension to MPI) [13,14] is an on-going
project of the HLRS, Stuttgart. It enables an MPI application to run on a
meta-computer consisting of several, possibly heterogeneous machines, each of
which may itself be massively parallel. Compression is used for TCP message
exchange among different systems in order to increase bandwidth, but a fixed
compression algorithm is used and compression is not used for messages within
single sub-system. cMPI [15,16] has similar goals o those of PACX-MPI, namely
to enhance the performance of inter-cluster communication with a software-based
data compression layer. Compression is added to all communication, so it does
not offer any flexibility as to how to configure when and how to use compression.

COMPASSION [17] is a parallel I/O run-time system which includes chunking
and compression for irregular applications. The LZO algorithm is used for fast
compression and decompression, but again it is only used for the I/O part of
irregular application.

MiMPI [18] is a prototype of a multithread implementation of MPI with
thread-safe semantics that adds run-time compression of messages sent among
nodes. Although the compression algorithm can be changed (providing more
flexibility), the use of compression is global for all processes pertaining to an
MPI application.

CoMPI [19] was the first work in which a compression library was fully in-
tegrated into MPICH. CoMPI is based on run-time compression of the MPI
messages exchanged among applications. The user can choose the compression
algorithm from a pool of algorithms, and all the communications will be com-
pressed with the same algorithm. The problem with this approach is that the user
can not always select the most suitable compression algorithm, and compression
is always turned on by default.

Adaptive-CoMPI [10] allows for turning the compression on and off. It also se-
lects the most appropriate compression algorithm at run-time. Although
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Adaptive-CoMPI is independent of the application, it is dependent to the MPI
implementation.

3 The Run-time-Adaptive Strategy

For the Adaptive-CoMPI technique [10] we developed two strategies, the Run
Time Strategy (RAS) and the Guided Strategy (GS), to decide whether to apply
compression or not on a message-by-message basis, as well as to decide which
compression algorithm should be applied. The GS strategy makes these decisions
by analysing the structure of the messages off-line. Once this selection process
has been completed, the decisions are applied to the next executions of the same
application with the same input parameters. In contrast to this, the RAS strat-
egy makes these decisions at run-time, while the application is being executed.
Because the GS strategy is not completely independent of the application, the
RAS strategy has been chosen to be implemented in PRAcTICaL-MPI. With
this in mind, we describe the main features of the RAS strategy in more detail.

As we explained RAS decides at run-time per message whether to compress a
message before sending it or not, and which compression algorithm to apply. To
make these two decisions, there are some cases in which RAS has to estimate the
speedup, we will describe which ones these are late. To calculate this speedup,
some network and compression information is needed. In order to provide RAS
with this information, we have developed two modules:

– The Network Behavior module estimates the latency and bandwidth in order
to predict the time needed to send a message, generating a network-behavior
heuristics file for each installation.

– The Compression Behavior module selects the best compression algorithm
depending on the message datatype and its redundancy level. Also, this
model estimates the time needed to compress and decompress a message with
different compression algorithms. Furthermore, it generates a compression-
behavior heuristics file for each installation. This file is used to decide which
algorithm to choose in order to compress a message depending on the mes-
sage features.

These two modules have to be generated once per cluster, in order to obtain
the heuristics files. Furthermore, the Network Behavior model also needs to be
updated when there is a change in the network topology, to capture the new
situation.

RAS uses length and datatype of the message, and the location of the pro-
cesses to decide whether to compress or not and which compression algorithm
to apply. RAS deactivates the compression when the processes involved in the
communication are located in the same node. In other cases, when the pro-
cesses are located in different nodes, RAS distinguishes between four kinds of
datatype: Integer, floating-point, double precision floating-point, and “others”
datatypes. The strategy analyses the four kinds of datatype separately and makes
different decisions for each datatype. To choose the most appropriate algorithm
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for each datatype, RAS consults the compression-behavior heuristics taking the
message features into account. Moreover, it builds a compression window for
each datatype, with two adaptive thresholds that state from which minimum
size to which maximum size a benefit can be achieved by compressing the data
as shown in figure 1. Thus, RAS only estimates the speedup to send a mes-
sage compressed when the size of the message is between both thresholds. To
calculate the speedup, the information provided by the network-behavior and
compression-behavior heuristics are used.

Length_

no_compression

Length_

yes_compression

Size of message

0 4096 8192

Sent

Uncompressed

Sent

Compressed

Fig. 1. Window compression

4 PRAcTICaL-MPI

The PRAcTICaL-MPI technique, is an optimization of MPI communications
that exploits the MPI profiling interface (PMPI) to apply run-time lossless com-
pression (and decompression), thus reducing the volume of communications. As
Figure 2 shows, PMPI intercepts the MPI calls and wraps the PRAcTICaL-
MPI technique around the actual MPI library invocation. PRAcTICaL-MPI is
portable in the sense that it can be used with any MPI implementation, not just
a with a specific MPI implementation. Besides, PRAcTICaL-MPI is transpar-
ent both to applications and MPI implementations, because it can be applied
without changing their source code in any way.

We have built a library called Practical, where the most common rou-
tines of point-to-point and collective communications are wrapped inside
a PRAcTICaL-MPI layer : MPI Send, MPI Isend, MPI Bcast, MPI Recv,
MPI Irecv, MPI Wait, MPI Waitall, MPI Scatter, MPI Gather. If we want to
apply PRAcTICaL-MPI to another MPI communication, we only have to add a
new wrapper to the respective routine in Practical library. The only requirement
that PRAcTICaL-MPI makes is that the user needs to relink their applications
with the Practical library to include our adaptive compression functionality.

Different compression algorithms are used depending on the specific character-
istics of each communication. All compression algorithms have been included in a
single library called Compression-Library. To include more compression
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Fig. 2. PRAcTICaL-MPI architecture

algorithms, we only have to replace this library with a new version. Therefore,
PRAcTICaL-MPI can be easily updated to include new compression algorithms.
Currently, the compression library includes: RLE,Huffman,Rice8, Rice16, Rice32,
rice8s, rice16s, rice32s, LZ, LZ77, LZ f LZ77 Fast, Shannon-Fano, LZO, and FPC.
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Fig. 3. PRAcTICaL-MPI schema

Figure 3 shows the internal workings of PRAcTICaL-MPI in more detail.
The first step of the process is to identify which kind of operation has to be
performed by the process that executes the MPI routine. If the process has to
send data to other process, it is classified as a “sender”. Otherwise, it is classified
as a “receiver”. For example, all the processes that execute a MPI Send routine
have to send data, so all these processes are classified as “senders”. In the case
of the MPI Bcast routine, only the root process has to send data, and the others
have to receive data. Therefore, only the root process is classified as “sender”,
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and the rest of processes as “receivers”. The reason for this classification is that
PRAcTICaL-MPI takes different actions in each case. In the case of the “sender”
type, PRAcTICaL-MPI tries to compress the message with the best algorithm
possible. In the case of a “receive” operation, PRAcTICaL-MPI decompresses
the message in case it was sent compressed.

More specifically, the actions performed by PRAcTICaL-MPI can be de-
scribed as follows:

– Send Actions: Firstly, PRAcTICaL-MPI applies the RAS strategy to select
the appropriate compression algorithm for the message depending on the lo-
cation of the node and its datatype. Note that if the two processes involved
in the communication are located in the same node, the message is sent with-
out compression. Secondly, RAS compares the size of the messagewith the two
adaptive thresholds corresponding to the datatype of the message. As a result
of this operation, the decision to compress themessage or not is taken. Thirdly,
in case RAS decides to compres the data, the data is compressed and also the
size of the compressed message is checked. If the size of the compressed data is
larger than the original data, the originalmessage is sent without compression.
Otherwise, it is sent compressed. Finally, the method adds a header to themes-
sage in order to notify the receiver whether themessage has to be decompressed
and which decompression algorithm has to be used after receiving it.

– Receive Actions: The decompression operation is performed in two different
places depending onwhethermessage passing is synchronous or asynchronous.
For asynchronous communication, such as MPI Irecv, the decompression is
performed only after message transfer is complete. Therefore, for the asyn-
chronous receive routines, PRAcTICaL-MPI only stores the request pointer
of the operation in a global table. Once reception has been completed, proba-
bly during the execution of MPI Wait or MPI Waitall, the request pointer is
retrieved from the global table, and after this the decompression is performed.
On the other hand, for synchronous communication, message decompression
is performed when the receiver has received the complete message. To decom-
press a message, PRAcTICaL-MPI checks the header of the message in order
to know whether the message has to be decompressed and which algorithm
has to be employed. Finally, it applies the decompression algorithm indicated
by the sender.

The ways in which the PRAcTICaL-MPI technique is applied depend on the
characteristics of each routine. For example, in case of MPI Send, first
PRAcTICaL-MPI is applied to compress the data, and PMPI Send is called
after that. On the other hand, for MPI Recv, the data is received with the
PMPI Recv routine first, and PRAcTICaL-MPI is applied to decompress the
data after that.

5 Evaluation

We evaluate our approach using the BIPS3D application with different input
meshes representingdifferent semiconductor devices.We compare the performance
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of PRAcTICaL-MPI with the MPICH2.3 and XT-MPI distributions. The ex-
periments were conducted using two different High-Performance Clusters called
HECToR and EDDIE. We start with an overview of the BIPS3D application in
section 5.1. Section 5.2 describes the HPC clusters used in our evaluation. The
evaluation results themselves are presented in section 5.3.

5.1 The BIPS3D Application

BIPS3D is a 3-dimensional simulator of BJT and HBT bipolar devices described
in [20]. The goal of the 3D simulation is to relate electrical characteristics of
the device to its physical and geometrical parameters. The basic equations to be
solved are Poisson equations and models describing electron and hole continuity
in a stationary state.

Finite element methods are applied in order to discretize the Poisson equation,
hole and electron continuity equations by using tetrahedral elements. The result
is an unstructured mesh. In this work, we have used three different meshes, as
described later.

Using the METIS library [21], the meshes are divided into sub-domains, in
such a manner that one sub-domain corresponds to one process. The next step
is decoupling the Poisson equation from the hole and electron continuity equa-
tions. They are linearized using the Newton method. Then we construct the part
corresponding to the associated linear system for each sub-domain in a parallel
manner. Each system is solved using domain decomposition methods. Finally,
the results are written to a file.

For our evaluation BIPS3D has been executed using three different meshes:
mesh1 (47200 nodes), mesh2 (732563 nodes) and mesh3 (289648 nodes). BIPS3D
associates a data structure with each node of a mesh. The contents of these
data structures constitute the data written to disk during the I/O phase. The
number of elements that this structure has for each mesh entry is given by the
load parameter. This means that, given a mesh and a load, the amount of data
written to file is calculated as the product of the number of mesh elements and
the load. In this work, we have evaluated our method using two different loads,
100 and 500.

5.2 HPC Clusters and MPI Implementations

We have performed our experiments on two different High-Performance Clus-
ters in order to demonstrate how PRAcTICal-MPI adapts adapts itself to each
architecture. In each cluster, a different MPI implementation is used. The main
features of the clusters and MPI implementations used for our evaluation are:

1. HECToR is a Cray XT6 machine with contains 1856 nodes. Each node con-
sists of two 12 core 2.1 GHz AMD opteron processors with 32 Gbytes of
memory. The network used is Gemini interconnection. The MPI implemen-
tation used to perform our evaluation in this architecture is XT MPI 3.0.
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2. EDDIE consists of 130 IBM dx360M2 iDataPlex servers with two Intel West-
mere E5620 quad core processors and 24 GB of RAM, all connected through
Gigabit ethernet. MPICH2.3 is the MPI implementation used for our exper-
iments on EDDIE. We chose this implementation as it is one of the most
popular MPI implementations.

5.3 Evaluation Results

We studied the performance of PRAcTICaL-MPI technique using the BIPS3D
application and two different clusters, HECToR and EDDIE. Figures 4 and 5
show the overall speedup achieved using PRAcTICaL-MPI for mesh1, mesh2,
mesh3 with two loads 100 and 500, and with 8, 16, 32, 64 and 128 processes,
respectively.

Each speedup shown in these diagrams is calculated by comparing the orig-
inal MPI implementation (MPICH2.3 in Figure 4 and XT MPI 3.0 in Figure
5) with the same MPI implementation wrapped with PRAcTICaL-MPI. Then,
equation 1 is applied to these values. Values greater than one imply a reduction
of the overall execution time using PRAcTICaL-MPI.

Speedup =
Execution time MPI Implementation

Execution time MPI Implementation with PRAcTICaL
(1)

In general, the speedups achieved in 90% of the scenarios showed in Figures 4
and 5 are greater than or equal to one. These results are due to PRAcTICaL-
MPI applying run-time compression to reduce the volume of the messages with
the best algorithm per message, thus reducing execution time. Moreover, it de-
activates the compression when it is not worth while applying any compression.
The original MPI distribution performs better only in 10% of all cases, but even
in those cases, the loss is nearly one in all of them.

The difference between the speedups achieved in the two scenarios is due to
the cluster architecture, i.e. network speed and number of cores per node. On
one hand, the EDDIE cluster (Figure 4) uses a Gigabit ethernet. This network
is slower than the Gemini network, used in HECToR (Figure 5). Due to the fact
that the network in HECToR is very fast, the compression is deactivated more
often, because is less worthwhile sending the message compressed and decom-
pressing it later than sending the message without compression. This behavior
can be observed in Figure 5(a) for a load of 500 and 8, 16, and 32 processes. In
these cases, the speedup is nearly one, because the compression is deactivated.
On the other hand, the cluster architecture affects also the results, too. EDDIE
has 8 cores per node, and HECToR has 12 cores per node. When the 12-core
architecture is used, the number of processes in the same node increases, and
therefore the number of communications between different nodes is lower than in
the 8-core architecture. This means that in HECToR, compression is deactivated
more times than in EDDIE. Therefore, we can observe how PRAcTICaL-MPI
is able to adapt to different architectures at run-time.
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Finally, we can notice that, the greater the number of processes, the bigger
the application speedup achieved by PRAcTICAL-MPI. This behavior is due
to the increasing number of communications. Therefore, the improvement of
the communication performance has a bigger impact on the overall application
performance. Thus, we can conclude that overal scalability is enhanced with
PRAcTICAL-MPI.

6 Conclusions and Future Work

In this paper we have presented a portable optimization of MPI communications,
called PRAcTICAL-MPI. The main goal of PRAcTICaL-MPI is to enhance the
performance and scalability of MPI-based applications reducing the volume of
communications by applying adaptive run-time lossless compression. Further-
more, PRAcTICaL-MPI is fully portable and transparent for both applications
and MPI Implementations.

The evaluation results show that PRAcTICAL-MPI improves the speedup of
BIPS3D for most of the scenarios considered, because the volume of communi-
cations is reduced by using the best compression algorithm per message. It also
demonstrates that, even when compression is deactivated, application perfor-
mance speedup is close to one. Furthermore, the run-time performance gain is
bigger in most of the cases when more processes are employed, which increases
scalability, and illustrates that our method will be most useful when utilised for
massively parallel systems.

In future work, we want to evaluate the performance of PRAcTICAL-MPI
technique with new compression algorithms like Snappy or PFOR. Furthermore,
we want to apply PRAcTICAL-MPI to more MPI routines, such as collective
IO, non-contiguous communications.
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