
GPURoofline: A Model for Guiding

Performance Optimizations on GPUs

Haipeng Jia1,2, Yunquan Zhang1,3, Guoping Long1, Jianliang Xu2,
Shengen Yan1,3,4, and Yan Li1,3,4

1 Lab. of Parallel Software and Computational Science,Institute of Software,
Chinese Academy of Sciences

2 College of Information Science and Engineering, The Ocean University of China
3 State Key Laboratory of Computing Science, The Chinese Academy of Sciences

4 Graduate University of Chinese Academy of Sciences
jiahaipeng95@gmail.com, zyq@mail.rdcps.ac.cn, guoping@iscas.ac.cn

Abstract. Performance optimization on GPUs requires deep techni-
cal knowledge of the underlying hardware. Modern GPU architectures
are becoming more and more diversified, which further exacerbates the
already difficult problem. This paper presents GPURoofline, an em-
pirical model for guiding optimizations on GPUs. The goal is to help
non-expert programmers with limited knowledge of GPU architectures
implement high performance GPU kernels. The model addresses this
problem by exploring potential performance bottlenecks and evaluating
whether specific optimization techniques bring any performance improve-
ment. To demonstrate the usage of the model, we optimize four rep-
resentative kernels with different computation densities, namely matrix
transpose, Laplace transform, integral and face-dection, on both NVIDIA
and AMD GPUs. Experimental results show that under the guidance
of GPURoofline, performance of those kernels achieves 3.74∼14.8 times
speedup compared to their näıve implementations on both NVIDIA and
AMD GPU platforms.

Keywords: GPURoofline, Threshold Carving, Tradeoff Carving,
Little’s Law.

1 Introduction

More and more application developers have been adopting GPUs as standard
computing accelerators because of their increasing computing power and pro-
grammability. However, we won’t get the required performance without care-
ful optimizations because the performance problem has shifted from hardware
designers to compiler writers and application developers. Unfortunately, perfor-
mance optimizations of GPU programs are difficult, because this process requires
deep technical knowledge of the underlying hardware architecture. Modern GPU
architectures are becoming more and more diversified, which further exacerbates
the already difficult problem of performance optimization. For programmers, it

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 920–932, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

GPURoofline: A Model for Guiding Performance Optimizations on GPUs 921

will be helpful to have a structured and insightful model that guides perfor-
mance optimizations on GPUs. To make the model even more useful, it needs
to be understandable by most programmers.

Our research addresses this problem by proposing GPURoofline, a model
guiding performance optimizations on GPUs. The goal of the model is to fa-
cilitate the best match between algorithmic features and underlying hardware
characteristics. On both NVIDIA and AMD GPUs, the model can help iden-
tify performance bottlenecks, and evaluate whether a particular optimization
technique can achieve performance improvements. Instead of trying to predict
performance, we choose a simpler approach called “bound and bottleneck anal-
ysis”. The approach provides valuable insights into primary factors affecting the
performance. In particular, critical performance bottlenecks are highlighted and
quantified [12]. The proposed model provides three functionalities. Firstly it pro-
vides valuable insights on primary factors that affect the performance. Secondly
it identifies performance bottlenecks and allows programmers and architectures
to predict the benefits of potential optimizations and architecture improvements.
Thirdly it can be incorporated into a tool to provide performance information
to an auto-tuning compiler by narrowing the search space.

We also demonstrate the usage of our model through optimizing four repre-
sentative programs with different compute intensity: Matrix Transpose, Laplace
Transform, Integral and FaceDection. All evaluations are performed on both
NVIDIA and AMD GPUs. Experimental results demonstrate that under the
guidance of GPURoofline, performance of those kernels achieves 3.74∼14.8 times
speedup compared to their näıve implementations on both platforms.

In summary, we make the following contributions in this paper. Firstly, We
build the first Roofline model for GPU, called GPURoofline, to guild GPU pro-
gram optimization. Secondly, We demonstrate how the model can help program-
mers doGPUperformance optimizations. Thirdly,to the best of our knowledge,this
is the first performancemodel that takes globalmemory channel conflicts and load
balancing into consideration.

The rest of the paper is organized as follows. We begin by discussing related
works in section 2. Section 3 presents how to build our GPU model. Section 4
discusses experiment results and analysis. Section 5 concludes this paper.

2 Related Work

Enormous works have been invested on building GPU performance analysis and
prediction models. Architecture-aware performance analysis methods were pro-
posed in[3][7]. Ryoo et al. [5]used Pareto-optimal curves to narraw the optimiza-
tion space of GPU programs and introduce efficiency and utilization as single
number metrics. N. K. Govindaraju[10]presented a memory model to analyze
and improve the performance of nested loops on GPUs. S. Hong[6]presents a
simple performance analytical model to capture a rough estimate of the cost of
memory operations by considering the number of running threads and memory
bandwidth. Baghsorkhi[2]introduced an abstract interpretation of a GPU kernel

922 H. Jia et al.

to identify performance bottlenecks and used work flow graph to predict exe-
cution time. Kothapalli[4]presented a performance prediction model to analyze
pseudo code for a GPU kernel to obtain a performance estimate. However, be-
cause of the complexity of the underlying hardware architecture, it is difficult to
predict performance accurately.

Certainly, these performance models are powerful tools for optimizing. How-
ever, for a given kernel, they do not provide any insight into how to identify per-
formance bottleneck and evaluate the benefits of potential optimization methods.
Compared to them, our work can guide programmers to write high performance
program directly, rather than write a näıve version first and then tune it again
and again. There are also similar works to us: Yao Zhang[1]provided a quantita-
tive way to analyzes GPU program performance, however, they didn’t provide
an easy-to-understand model; Samuel Williams[11]provided an insightful visual
performance model, however, their works only for multi-core CPUs.

3 GPURoofline

Using bound and bottleneck analysis [8], the attainable performance on a given
GPU architecture is restricted by two factors: peak performance and peak band-
width. Performance depends on how well kernel features map to architectural
characteristics. There is a single variable, Compute Intensity, which is defined
as operations per byte of off-chip memory traffic. So the proposed GPURoofline
model should integrate these three factors together. In this paper, although our
work focuses on the NVIDIA Tesla C2050 and AMD Radeon HD5850 GPU, we
believe our performance modeling methodology is also applicable to any other
GPU architectures.

For simplicity, in this paper, we use peak performance refers to the peak
performance of single-precision floating-point, peak bandwidth refers to the peak
bandwidth of off-chip memory, NVIDIA GPU refers to the NVIDIA Tesla C2050
GPU and AMD GPU refers to the AMD Radeon HD5850 GPU.

3.1 Näıve GPURoofline

Fig.1a outlines a näıve GpuRoofline model for AMDGPU with peak performance
of 2.09TFlopps/sec and peak bandwidth of 128GB/sec. Fig.1b outlines a näıve
GpuRoofline model for NVIDIA GPUwith peak performance of 1.03TFlopps/sec
and peak bandwidth 144GB/sec. The graph is log-log scale and sets an upper
bound on the performance of GPU kernels. The max attainable performance
equals to min {peak performance, peak bandwidth * Compute Intensity}.

As shown in Fig.1, the vertical purple dashed line represents the Compute In-
tensity of hardware, calculated by peak performance dividing peak bandwidth.
Two vertical red dashed lines represent two kernels with different Compute In-
tensity: the left one which Compute Intensity smaller than hardware Compute
Intensity called memory-bound kernel; and the right one which Compute Inten-
sity larger than hardware Compute Intensity called instruction-bound kernel.
As will be explained later, the hardware Compute Intensity suggests the level of
difficulty to achieve peak performance.

GPURoofline: A Model for Guiding Performance Optimizations on GPUs 923

Pea
k B
and
wid
th

Peak Performance

Compute Intensity(Flops/Byte)

A
tta
in
ta
bl
eP
er
fo
rm
an
ce
(G
Fl
op
/S
ec
)

1/8 1/4 1/2 1 322 4 168

K
er
ne
l1

M
em
or
y-
bo
un
d

K
er
ne
l2

In
st
ru
ct
io
n-
bo
un
d

C
om
pu
te
In
te
ns
ity
of
H
ar
dw
ar
e

4

1024

8

16

32

64

128

256

512

2048

64

(a) AMD HD5850 GPU

Pea
k B
and
wid
th

Peak Performance

Compute Intensity(Flops/Byte)

A
tta
in
ta
bl
eP
er
fo
rm
an
ce
(G
Fl
op
/S
ec
)

1/8 1/4 1/2 1 322 4 168

K
er
ne
l1

M
em
or
y-
bo
un
d

K
er
ne
l2

In
st
ru
ct
io
n-
bo
un
d

C
om
pu
te
In
te
ns
ity
of
H
ar
dw
ar
e

4

1024

8

16

32

64

128

256

512

64

(b) NVIDIA C2050 GPU

Fig. 1. Näıve GPURoofline for GPUs

As we see, we must build a unique GPURoofline for each of the different
GPU architecture. Fortunately, given a GPURoofline, we can use it repeatedly
on different kernels.

3.2 Threshold Optimizations

We introduce Little’s Law to guide our designs on communication. We also
define the three components included in Little’s Law: memory access latency,
concurrency and the utilization of the peak bandwidth. The utilization of the
peak bandwidth will drop if Little’s is not satisfied.

Optimization Space. According to Little’s Law, we defined optimization spaces
as follows:

Eliminating Channel Conflict (ECC), just as local memory, global memory is
divided into 8 partitions of 256-byte width on both AMD and NVIDIA GPU.
Channel conflict occurs when concurrent global memory access requests queue up
at some partitions while other partitions go unused. Rearrange data structure
to ensure adjacent work-items access adjacent memory address is a common
optimization technique.

Reducing Memory Transactions (RMT), coalescing global memory access re-
quests into as few memory transactions as possible. Alignment, vector and coa-
lesced access are the main methods to achieve this.

Using Software Prefetching (USP), the highest performance usually requires
keeping many memory operations in flight, which is easier to do via prefetching
than by waiting until the data is actually requested by the program.

Using FastPath (UFP), this is for AMD GPU specially. Examine the code
to ensure you are using FastPath not CompletePath, can improve performance
significantly.

Threshold Carving. In this section, we will perform a sensitivity analysis
to examine the impact of optimization methods on performance .We design a
highly optimized implementation of copy micro-benchmark which the utilization

924 H. Jia et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HighlyOptimized ChannelConflic CompletePath Non-Aligned Non-Vector Prefetching

(a) AMD HD5850 GPU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HighlyOptimized ChannelConflict Non-Coalsced Non-Aligned Prefetching

(b) NVIDIA C2050 GPU

Fig. 2. Performance changes along with the optimizations removed one by one

Peak Memory Bandwidth

Peak Performance

Compute Intensity(Flops/Byte)

A
tta

in
ta

bl
e

Pe
rf

or
m

an
ce

(G
Fl

op
/S

ec
)

1/8 1/4 1/2 1 322 4 168

K
er

ne
l 1

M
em

or
y-

bo
un

d

K
er

ne
l 2

In
st

ru
ct

io
n-

bo
un

d

C
om

pu
te

 In
te

ns
ity

 o
f H

ar
dw

ar
e

4

1024

8

16

32

64

128

256

512

2048

64

ECC
UFP

RMTUSP

(a) AMD HD5850 GPU

Peak Memory Bandwidth

Peak Performance

Compute Intensity(Flops/Byte)

A
tta

in
ta

bl
e

Pe
rf

or
m

an
ce

(G
Fl

op
/S

ec
)

1/8 1/4 1/2 1 322 4 168

K
er

ne
l 1

M
em

or
y-

bo
un

d

K
er

ne
l 2

In
st

ru
ct

io
n-

bo
un

d

C
om

pu
te

 In
te

ns
ity

 o
f H

ar
dw

ar
e

4

1024

8

16

32

64

128

256

512

64

ECC
Coalesced

RMT

USP

(b) NVIDIA C2050 GPU

Fig. 3. GPURoofline model with threshold carvings

of peak bandwidth can achieve 90% on both NVIDIA and AMD GPU. And then
remove those optimization methods one by one in a particular order, Fig.2 shows
performance changes.

From Fig. 2, we can see that for both NVIDIA and AMD GPU, the most im-
portant optimization method is eliminating channel conflict which was ignored
in previous work. However, the second important optimization method is dif-
ferent: using FastPath for AMD GPU and coalesced access for NVIDIA GPU,
respectively. Changing access patterns to allow data alignment is also important
for both NVIDIA and AMD GPU. We add those optimization methods to our
GPURoofline model:

As shown in Fig. 3, similar to performance changes, as we remove these
optimization methods, new bandwidth curves will be formed below the peak
bandwidth curve. We call these interior GPURoofline-like structures Memory
Carvings. These Carvings not only provide some reasonable bounds on perfor-
mance but also provide some suggestions for the optimizations. You cannot break
through a ceiling without performing the associated optimization method first,
so these memory carvings are called threshold carvings. We rank the Carvings
from bottom to top as the order we remove the optimization methods.

GPURoofline: A Model for Guiding Performance Optimizations on GPUs 925

3.3 Tradeoff Optimizations

We also introduce Little’s Law to guide our designs on computation and de-
fine the three components included in Little’s Law: concurrency, latency and
throughput of effective instruction. Performance will drop if Little’s is not sat-
isfied.

Optimization Space. According to Little’s Law, we defined optimization spaces
as follows:

Reducing Dynamic Instructions (RDIS), increase the efficiency of instruction
stream. There are four methods for this: minimizing divergent threads within a
warp or a wavefront; eliminating common subexpression; loop-invariant code mo-
tion and loop unrolling. However, these optimizations must be balanced against
the increased usage of hardware resources.

Instruction Selection Optimizations (INS), throughputs of GPU instructions
are very different. Selecting instructions with lower latency as much as possible
is a very desirable method for instruction-bound kernels.

Increasing Thread-level Parallelism (TLP), GPUs hide latency based on a
large number of threads. Exploiting TLB, providing enough threads for each
compute unit is a basic optimize method for GPUs.

Increasing Instruction-level Parallelism (ILP), ensure the availability of inde-
pendent instructions within a thread. This is usually achieved by loop unrolling,
reordering the code and using vector instructions.

Work-redistribution (WRD), redistribute workloads across threads when there
are workload imbalance. We can achieve it through four techniques: persistent
thread, global queue, local queue and task stealing.

Tradeoff Carving. Using a similar analysis discussed in section3.2, we ob-
tain some new GpuRoofline-like Carvings below GpuRoofline called Compute
Carving. However, because of the discontinuous of optimization spaces, it is not
clear that one should maximize or minimize an optimization method. So the
Compute Carving is called tradeoff carving which just provides the insights into
the performance improvement but not accurately, this is very different from the
Memory Carving. The desired of accurate Compute Carving is the future work.

As shown in Fig. 4, when the Compute Intensity of a kernel greater than 0.81 for
AMD GPU or 1.8 for NVIDIA GPU(calculated by hardware Compute Intensity
divides process elements per stream core, then divides instruction cycles) we
should consider the optimization of computation. We can also conclude from Fig
4 that, computation optimization for AMD GPU is more difficult than NVIDIA
GPU, That is because AMD GPU is vector architecture and we cannot translate
all the scalar instructions into vector instructions with appropriate length.

As Show in Fig.4, for both NVIDIA and AMD GPU, the most effective method
is to exploiting TLP to hide latency. Exploiting ILP is the most obvious difference
in the process of optimizing which is more effective for AMD GPU than NVIDIA
GPU, because of AMD GPU’s vector architecture. Additionally, RDIC is also an

926 H. Jia et al.

Pea
k M
emo
ry B
and
wid
th

Peak Performance

Compute Intensity(Flops/Byte)

A
tt
ai
nt
ab
le
Pe
rf
or
m
an
ce
(G
Fl
op
/S
ec
)

1/8 1/4 1/2 1 322 4 168
K
er
ne
l1

M
em
or
y-
bo
un
d

K
er
ne
l2

In
st
ru
ct
io
n-
bo
un
d

C
om
pu
te
In
te
ns
ity
of

H
ar
dw
ar
e

4

1024

8

16

32

64

128

256

512

2048

64

ECC
UFP

RMTUSP
RDIS

TLP

ILP

INS

WRD

(a) AMD HD5850 GPU

Pea
k M
emo
ry B
and
wid
th

Peak Performance

Compute Intensity(Flops/Byte)

A
tt
ai
nt
ab
le
Pe
rf
or
m
an
ce
(G
Fl
op
/S
ec
)

1/8 1/4 1/2 1 322 4 168

K
er
ne
l1

M
em
or
y-
bo
un
d

K
er
ne
l2

In
st
ru
ct
io
n-
bo
un
d

C
om
pu
te
In
te
ns
ity

of
H
ar
dw
ar
e

4

1024

8

16

32

64

128

256

512

64

ECC
Coa
lesc
edRMT

USP

RDIS
TLP

ILP

INS

WRD

(b) NVIDIA C2050 GPU

Fig. 4. GPURoofline model with tradeoff carvings

important optimization method. However, we must balance against the increased
usage of hardware resources. Using Work-redistribution to enable load balance
among threads can improve performance significantly on both NVIDA and AMD
GPU for the irregular-parallel algorithm.

3.4 Data Locality

The main purpose of data locality is to increase kernel Compute Intensity. By
increasing data reuse and decreasing the traffic of off-chip memory, this approach
can improve performance significantly, especially for memory-bound kernel. Like
memory access and computation constrained performance through performance
carving, Compute Intensity also constrain performance like a wall, is called Com-
pute Intensity Wall. We cannot achieve higher performance without improving
kernel Compute Intensity especially for memory-bound kernels. So when you
use GPURoofline model to guide your optimization and the performance is not
achieve your expectation, the first optimization method you should think is in-
creasing kernel Compute Intensity through data locality.

3.5 Interaction with Program Optimization

According to the GpuRoofline model, we can optimize kernels easily according
to four rules:

Firstly, the Compute Intensity of a kernel determines the optimization region,
and thus which optimization method to try. As shown in Fig.4, if the kernel
dashed line falls into the green area, programmers should work only on the
memory optimizations. If the dashed line falls into the blue area, programmers
should work only on the computation optimizations. If the dashed line falls into
the brown area, programmers should try both types of optimizations.

Secondly, optimization carvings suggest the corresponding methods that pro-
grammer should perform. And the gap between them represents the potential
(Memory Carving) or relative potential (Computation Carving) benefits of re-
lated optimization method.

Thirdly, the order of the optimization carving suggests the optimization order.

GPURoofline: A Model for Guiding Performance Optimizations on GPUs 927

Finally, the ridge point marks the minimum Compute Intensity required to
achieve peak performance.

4 Evaluation

In this section we demonstrate the usage of GPURoofline model through four
kernels with different Compute Intensity. Table 1 shows the configuration of
GPUs in our experiments in detail. Fig.5 shows optimization regions of these
four kernels in GpuRoofline model. Note that, when calculating kernel Compute
Intensity, we consider all the calculations, including address calculations.

Table 1. Configuration of the GPUs in our experiments

GPU Clock Rate PE CU Peak performance Memory Peak BW Regisgers/CU LDS/CU
AMD HD5850 0.725GHZ 288 18 2090GFlops 1.0GB 128GB/s 16K 32K
NVIDIA C2050 1.15GHZ 448 14 1030GFlops 3.0GB 144GB/s 16K 48K

Pea
k M
emo
ry B
and
wid
th

Peak Performance

Compute Intensity(Flops/Byte)

A
tta
in
ta
bl
eP
er
fo
rm
an
ce
(G
Fl
op
/S
ec
)

1/8 1/4 1/2 1 322 4 168

T
ra
ns
po
se

C
om
pu
te
In
te
ns
ity
of

H
ar
dw
ar
e

4

1024

8

16

32

64

128

256

512

2048

64

ECC
UFP

RMTUSP
RDIS

TLP

ILP

INS

L
ap
la
ce
w
ith
lo
ca
lit
y

Fa
ce
D
ec
tio
n

sc
an

L
ap
la
ce

Sc
an

WRD

(a) AMD HD5850 GPU

T
ra
ns
po
se

L
ap
la
ce
w
ith
lo
ca
lit
y

sc
an

L
ap
la
ce

Sc
an

Pea
k M
emo
ry B
and
wid
th

Peak Performance

Compute Intensity(Flops/Byte)

A
tta
in
ta
bl
eP
er
fo
rm
an
ce
(G
Fl
op
/S
ec
)

1/8 1/4 1/2 1 322 4 168

C
om
pu
te
In
te
ns
ity

of
H
ar
dw
ar
e

4

1024

8

16

32

64

128

256

512

64

ECC
Coa
lesc
edRMT

USP

RDIS
TLP

ILP

INS

WRD

Fa
ce
D
ec
tio
n

(b) NVIDIA C2050 GPU

Fig. 5. Optimization regions of these four kernels in GpuRoofline model

4.1 Matrix Transpose

In this section, we optimize matrix transpose under the guidance of GpuRoofline
model. The transpose operation of each element performs two address calcula-
tions, and each address calculation performs 2 floating-point operations, so the
compute intensity of matrix transpose is 2*2/8=0.5. According to optimization
chain, our optimization work should only focus on the off-chip memory band-
width optimizations.

As our GPURoofline model suggests, for both NVIDIA and AMD GPU, the
first method to consider is eliminating channel conflict, and we achieve it by
using a technique called Diagonal Block Reordering method. We also use vector
memory access pattern to exploit ILP and data alignment to reduce memory
transactions. In addition, we use local memory to make its global memory access
pattern coalesced. Fig.6 shows the performance results when satisfies desired
optimization methods one by one. The performance of this kernel is on a 2560 *
2560 matrix of float and uses memory bandwidth as the performance metric.

928 H. Jia et al.

3.1866

20.9344

55.3105

62.4002

74.7522

83.7245

0

10

20

30

40

50

60

70

80

90

Naïve ECC FastPath Alignment Vectorize Coalesced

M
em

or
y

Ba
nd

w
id

th

Optimize Methods

(a) AMD HD5850 GPU

2.216

16.369

71.857
77.817

93.324

0

10

20

30

40

50

60

70

80

90

100

Naïve ECC Coalesced Vectorize Alignment

M
em

or
y

Ba
nd

w
id

th

Optimize Methods

(b) NVIDIA C2050 GPU

Fig. 6. Performance changes when satisfies optimization methods one by one

As shown in Fig. 6, eliminating channel conflict and using FastPath are the
first two optimization methods for AMD GPU. However, for NVIDIA GPU, the
first two optimize methods are eliminating channel conflict and coalesced mem-
ory access pattern. We can also see that, optimization on NVIDIA GPU is a little
easier than AMD GPU. Using GPURoofline, the utilization of peak bandwidth
achieves 65.4% and 64.8% on AMD GPU and NVIDIA GPU respectively.

4.2 Laplace Transform

According to Laplace Transform algorithm, the transform of each element needs
to perform 9 add and multiply operations. In addition, it requires 9 iterations and
10 address calculations. Each calculation contains two floating-point operations.
So the Compute Intensity is 47/36=1.3. However, with this Compute Intensity,
we can’t obtain a satisfied performance. So we consider to use data locality. If the
work-group size is 16*16, calculating these 256 elements need to transfer17*17
= 289 elements from off-chip memory to local memory. Furthermore, we put the
Laplacian matrix into the constant memory, further reduces the dependence of
the off-chip memory bandwidth. After data locality, the compute intensity of
this kernel reaches to 3.2. Just as shown in Fig 5.

According to GPURoofline model, optimization works should focus on both
memory and computation optimization. Fig.7 shows performance results when
satisfies desired optimization methods one by one. The performance of this kernel
is on a 1024 * 1024 matrix of float and uses execution time as the performance
metric.

As shown in Fig. 7, data locality is a common optimization method for
memory-bound kernels. Using vector instruction to exploit ILP can improve
performance significantly for both NVIDIA and AMD GPU, however, when the
vector length exceed a value, 8 for AMD GPU and 4 for NVIDIA GPU re-
spectively, the performance decreases. This is because vector instructions need
more register files, limits the number of threads that can be executed simultane-
ously. We can also see that, exploiting ILP is more efficient for AMD GPU than
NVIDIA GPU. Reduce dynamic instructions through eliminating divergent and

GPURoofline: A Model for Guiding Performance Optimizations on GPUs 929

31.25805
30.17836

23.27605

7.86626

3.72524 3.55939 4.05269
2.56236 2.11236

0

5

10

15

20

25

30

35

Ex
ec

ut
io

n
Ti

m
e

Optimize Methods

(a) AMD HD5850 GPU

15.2075
14.26536

7.38626

5.86295

3.388828
2.5951

3.91296
4.62605

1.93163

0

2

4

6

8

10

12

14

16

Ex
ec

ut
io

n
Ti

m
e

Optimize Methods

(b) NVIDIA C2050 GPU

Fig. 7. Performance changes when satisfies optimization methods one by one

loop unrolling, are also efficient methods. Using GpuRoofline, the performance
improved by 14.1 and 7.8 times on AMD GPU and NVIDIA GPU respectively.

4.3 Integral

According to our implementation of integral algorithm, the Compute Intensity of
this kernel is 4.2 after using locality as we have to execute so many memory ad-
dress calculation and iterations.According to GPURoofline model, optimization
works should focus on both memory and computation optimization.

In order to improve the efficiency of instructions, we use a more work-efficient
parallel scan algorithm that performs O(n) operations instead of a näıve version
that performs O(nlog2n) operations. We also optimize this kernel a step further
under the guidance of GPURoofline. Fig.8 shows the performance results when
satisfies desired optimization methods one by one. The performance of this kernel
is on a 1024 * 1024 matrix of float and uses execution time as performance metric.

As shown in Fig.8, data locality optimization is the most important for
memory-bound kernels. Work-effective scan algorithm can improve performance
by improving the utilization of thread. As we discussed previously, because of
AMD GPU’s vector architecture, exploiting ILP can improve performance more

35.3685

12.2749

7.8246
6.1926 5.3968 4.8763 4.2858

0

5

10

15

20

25

30

35

40

Naïve Locality Work-effective Float2 Float4 Unloop INS

Ex
ec

ut
io

n
Ti

m
e

Optimize Methods

(a) AMD HD5850 GPU

28.5968

11.5892

6.9037
5.2873 4.6302

4.0369

0

5

10

15

20

25

30

35

Naïve Locality Work-effective Float2 Unloop INS

Ex
ec

ut
e

Ti
m

e

Optimize Method

(b) NVIDIA C2050 GPU

Fig. 8. Performance changes when satisfies optimization methods one by one

930 H. Jia et al.

than NVIDIA GPU. Using GpuRoofline, the performance improved by 14.8 and
8.1 times on AMD GPU and NVIDIA GPU respectively.

4.4 FaceDetection

In this section, we optimize Viola-jones based face detection algorithm on GPUs
according to GPURoofline. In this paper, our face detection kernel is the kernel
that using cascade classifier to detect face. As shown in Fig.5, face detection
kernel has high Compute Intensity, to 14.2 according to our implementation.
According to GPURoofline, optimization work should focus on improving com-
putation performance.

Different from algorithms discussed above, the face detection kernel is an
irregular-parallel algorithm. There are serious load imbalance among threads.
So we should use work-redistribution to address this problem. We use speedup
to the näıve implementation as performance metric. Fig.9 shows the performance
results when satisfies desired optimization methods one by one.

1.00

1.35
1.54

2.90

3.48 3.52
3.74

0

0.5

1

1.5

2

2.5

3

3.5

4

Naïve Locality ILP Global_queue Local_queue Unloop INS

Sp
ee

du
p

Optimize methods

(a) AMD HD5850 GPU

1.00
1.21

1.31

2.86

3.60

3.87

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Naïve Locality RDIS Global_queue Local_queue INS

Sp
ee

du
p

Optimize Methods

(b) NVIDIA C2050 GPU

Fig. 9. Performance changes when satisfies optimization methods one by one

As shown in Fig.9, Work-redistribution is the most effective optimize method
for this kernel. In additional, using data locality to increase Compute Intensity
and selecting instructions with higher throughput such as mad24 can also im-
prove performance. Because face detection kernel is hard to vectorize, increasing
ILP, mainly through reordering the code, there is no effect for NVIDIA GPU, al-
though there is little effect for AMD GPU.Using GpuRoofline, the performance
improved by 3.74 and 3.87 times on AMD GPU and NVIDIA GPU respectively.

5 Conclusion

We have presented GPURoofline, an empirical model for guiding performance
optimizations on both NVIDIA and AMD GPU platforms. The goal is to help
non-expert programmers with limited knowledge of GPU architectures imple-
ment high performance GPU kernels. Programmers can identify performance

GPURoofline: A Model for Guiding Performance Optimizations on GPUs 931

bottleneck and select appropriate optimization methods. Furthermore, we have
observed that for best performance, optimization strategies are closely related to
hardware architectures. Although the model is not designed to achieve perfect
accuracy, it captures primary performance characteristics of GPUs.

We also demonstrated the usage of the model through four kernels with dif-
ferent compute densities. Experimental results show that under the guidance of
the GPURoofline, performance of those kernels achieves 3.74∼14.8 times speedup
compared to their näıve implementations on both NVIDIA and AMD GPU plat-
forms.

Acknowledgements. We would like to thank reviewers for their helpful com-
ments to our work. This work is supported by the National High-tech R&D Pro-
gram of China (No. 2012AA 010902, No. 2012AA010903), the National Natural
Science Foundation of China (No. 61133005, No.61100066) and ISCAS-AMD
Fusion Software Center. Dr. Guoping Long is supported by National Natural
Science Foundation of China (Grant No. 61100072).

References

1. Zhang, Y., Owens, J.D.: A quantitative performance analysis model for GPU archi-
tectures. In:HighPerformance Computer Architecture, pp. 382–393 (February 2011)

2. Baghsorkhi, S., Delahaye, M., Patel, S.J., Gropp, W.D., Hwu, W.-M.W.: An Adap-
tive Performance Modeling Tool for GPU Architectures. In: Principles and Practice
of Parallel Programming, pp. 105–114 (January 2010)

3. Daga, M., Scogland, T.R.W., Feng, W-C.: Architecture-Aware Optimization on
a 1600-core Graphics Processor. Technical Report TR-11-08, Computer Science,
Virginia Tech.

4. Kothapalli, K., Mukherjee, R., Rehman, M.S., Patidar, S., Narayanan, P.J., Sri-
nathan, K.: A performance prediction model for the CUDA GPGPU platform. In:
International Conference on High Performance Computing, pp. 463–472 (2009)

5. Ryoo, S., Rodrigues, C.I., Stone, S.S., Baghsorkhi, S.S., Ueng, S., Stratton, J.A.:
Program Optimization Space Pruning for a Multithreaded GPU. In: International
Symposium on Code Generation and Optimization, pp. 195–204 (April 2008)

6. Hong, S., Kim, H.: An analytical model for a gpu architecture with memory-level
and thread-level parallelism awareness. In: International Conference on Computer
Architecture, pp. 152–163 (2009)

7. Jang, B., Do, S., Pien, H.: Architecture-Aware Optimization Targeting Multi-
threaded Stream Computing. In: Second Workshop on General-Purpose on Graph-
ics Processing Units (2009)

8. Meng, J., Morozov, V.A., Kumaran, K., Vishwanath, V., Uram, T.D.: GROPHECY:
GPU Performance Projection from CPU Code Skeletons. In: Conference on High
Performance Computing (2011)

9. Bauer, M., Cook, H., Khailany, B.: CudaDMA: optimizing GPU memory band-
width via warp specialization. In: Conference on High Performance Comput-
ing(Supercomputing) (2011)

10. Govindaraju, N.K., Larsen, S., Gray, J., Manocha, D.: A Memory Model for Sci-
entific Algorithms on Graphics Processors. In: ACM/IEEE Conference on Super-
computing (November 2006)

932 H. Jia et al.

11. Williams, S., Waterman, A., Patterson, D.: Roofline: An Insightful Visual Perfor-
mance Model for Multicore Architectures. Communications of the ACM, 65–76
(2009)

12. Lazowska, E.D., Zahorjan, J., Scott Graham, G., Sevcik, K.C.: Quantitative Sys-
tem Performance: Computer System Analysis using Queueing Network Models.
Prentice-Hall. Inc., Upper Saddle River (1984)

13. Fatahalian, K., Sugerman, J., Hanrahan, P.: Understanding the Efficiency of GPU
Algorithms for Matrix-matrix Multiplication. In: Conference on Graphics Hard-
ware, pp. 133–137 (August 2004)

14. Taylor, R., Li, X.: A Micro-benchmark Suite for AMD GPUs. In: International
Conference on Parallel Processing Workshops, pp. 387–396 (2010)

15. Liu, W., Muller-Wittig, W., Schmidt, B.: Performance Predictions for General-
Purpose Computation on GPUs. In: International Conference on Parallel Process-
ing, pp. 50–57 (September 2007)

16. Viola, P., Jones, M.: Robust Real-time object Detection. In: Second International
Workshop on Statistical and Computation, pp (July 2011)

	GPURoofline: A Model for Guiding Performance Optimizations on GPUs
	Introduction
	Related Work
	GPURoofline
	 Naïve GPURoofline
	Threshold Optimizations
	Tradeoff Optimizations
	Data Locality
	Interaction with Program Optimization

	Evaluation
	Matrix Transpose
	Laplace Transform
	Integral
	FaceDetection

	Conclusion
	References

