
Building a Collision for 75-Round Reduced
SHA-1 Using GPU Clusters

Andrew V. Adinetz1,2 and Evgeny A. Grechnikov3

1 Lomonosov Moscow State University, Research Computing Center
adinetz@gmail.com

2 Joint Institute for Nuclear Research
3 Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

grechnik@mccme.ru

Abstract. SHA-1 is one of the most widely used cryptographic hash
functions. An important property of all cryptographic hash functions is
collision resistance, that is, infeasibility of finding two different input
messages such that they have the same hash values. Our work improves
on differential attacks on SHA-1 and its reduced variants. In this work we
describe porting collision search using method of characteristics to a GPU
cluster. Method of characteristics employs backtracking search, which
leads to low GPU performance due to branch divergence if implemented
naively. Using a number of optimizations, we reduce branch divergence
and achieve GPU usage efficiency of 50%, which gives 39× acceleration
over a single CPU core. With the help of our application running on a
512-GPU cluster, we were able to find a collision for a version of SHA-1
reduced to 75 rounds, which is currently (February 2012) the world’s
best result in terms of number of rounds for SHA-1.

1 Introduction

A cryptographic hash function is a function which maps messages (bit-strings of
arbitrary length) into hash values, or hashes (bit strings of fixed length). Such
functions are widely used in modern cryptography and information security. A
hash serves as a fingerprint for a message. An important property for practi-
cal applications of cryptographic hash functions is computational infeasibility of
finding a message with a given hash value. A collision is a pair of different mes-
sages which give the same hash value. Due to limited size of hash value, collisions
exist for any hash function; however, they are hard to find. If a collision has been
built, then the cryptographic hash function is considered to be compromised, and
is no longer suitable for practical applications. Collision search is therefore an
important part of cryptoanalysis of hash functions.

Hash function called SHA-1 (Secure Hash Algorithm 1) maps messages of
any length (maximum of 264 − 1 specified by the standard) into 160-bit hashes.
It was published by NIST (National Institute of Standards and Technology)
in 1995 and is now widely used in different government and industrial security
standards, such as electronic digital signature, user authentication, key exchange

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 933–944, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

934 A.V. Adinetz and E.A. Grechnikov

and generation of pseudo-random sequences. SHA-1 is available in almost all
commercial security systems.

Attempts to compromise SHA-1 have been performed for a number of years.
They advanced far enough, though as of February 2012, no full SHA-1 collision
has been built. Currently, NIST is holding the competition for a new crypto-
graphic hash function to replace SHA-1. The new function is expected to be
announced in 2012.

As a rule, cryptoanalytic problems are easily parallelized and scale well to
any available computational resources. It seems therefore logical to solve them
using GPUs. And though GPUs are quite widely used to solve problems such as
password cracking [1], so far we haven’t found any working application of GPUs
to collision search.

The contribution of this paper can be summarized as follows:

– We have ported collision search using method of characteristics for SHA-1
to GPUs, and after performing optimizations we proposed, obtained 39×
acceleration compared to a single CPU core

– With our application running on a GPU cluster, we have found a collision for
reduced 75-round SHA-1, which is, as of February 2012, world’s best result
in terms of number of rounds for SHA-1.

This paper is organized as follows. We describe SHA-1 hash function and differ-
ential attacks in section 2. Section 3 describes the characteristic search algorithm.
GPU implementation of message search are described in section 4. We describe
computational experiments in section 5 and conclude in section 6.

2 SHA-1 and Differential Attacks

Notational conventions used in this paper are presented in Table 1. SHA-1
hash function [2] works as follows. First, the message is padded with bits,
including message length, and split into 512-bit message blocks M1, . . . , Mk.
The compression function g(M, H) is then applied sequentially to compute
Hi = Hi−1 + g(Mi, Hi−1). H0 is the initial value provided by the standard,

Table 1. Notational Conventions Used in This Paper

Notation Description
X 32-bit unsigned integer related to 1st message
X∗ 32-unsigned integer related to 2nd message
X2 a pair of 32-bit unsigned integers (X, X∗)

X ⊕ Y exclusive OR (XOR)
X + Y 232 wrap-around addition
[X]i i-th bit of X (i = 0 — least significant bit)

X ≪ i left rotation by i bits
X ≫ i right rotation by i bits

Building a Collision for 75-Round Reduced SHA-1 Using GPU Clusters 935

and Hk is the hash value of the message. For building a collision, it is sufficient
to provide two messages (M1, . . . , Mk) and (M∗

1 , . . . , M∗
k) of equal length so that

Hk = H∗
k .

The compression function consists of 80 rounds and maps a 160-bit input vec-
tor H and 512-bit message block M into the new 160-bit value. Input vectors con-
sist of 5 32-bit unsigned integers H = (A0, B0, C0, D0, E0), M = (M0, . . . , M15),
g(M, H) = (A80, B80, C80, D80, E80). Computing the compression function con-
sists of the message expansion and the state update transformation. 16-uint mes-
sagge Mi is expanded to 80 variables Wi as described by (1)

Wi = Mi 0 � i < 16
Wi = (Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) ≪ 1 i � 16 (1)

Ai Bi Ci Di Ei

� � ≪ 5
�

�

�

�

�

�
�

�
��

�

� �

≫ 2
�

�

�

�

�
�

�
��

� �

�
�

�
��

��

�
�

�
��

�
+

�

�

�

�

�
+

�

�

�

�

�Ki

�
+

�

�

�

�
fi

�

�

�

�

�

�
+

�

�

�

�

�Wi
�����������������

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

Fig. 1. One Round of SHA-1’s Compression Function

One round of the state update transformation is described in Fig. 1. Constants
Ki and functions fi are defined by (2)

Ki = 0x5A827999, fi(b, c, d) = (b ∧ c) ∨ (b ∧ d), 0 < i ≤ 20
Ki = 0x6ED9EBA1, fi(b, c, d) = b ⊕ c ⊕ d, 20 < i ≤ 40
Ki = 0x8F1BBCDC, fi(b, c, d) = (b ∧ c) ∨ (b ∧ d) ∨ (c ∧ d), 40 < i ≤ 60
Ki = 0xCA62C1D6, fi(b, c, d) = b ⊕ c ⊕ d, 60 < i ≤ 80

(2)

It’s obvious that Bi = Ai−1, Ci = Ai−2 ≫ 2, Di = Ai−3 ≫ 2, Ei = Ai−4 ≫
2, so having only Ai is enough. This is the notation used for the rest of the
paper. A−4, . . . , A0 give initial values while A76, . . . , A80 can be used to compute
the hash value. As building a collision for full 80 rounds requires very large
computational resources which are not currently available, in our case we reduce
the compression function to 75 rounds.

936 A.V. Adinetz and E.A. Grechnikov

Differential attacks have been developed for some time. The main stages of
their development (including attacks on other hash functions) are described in [4]
(MD4), [7] (35-step SHA-0), [8] (full SHA-0), [5] (MD5), [6] (58-step SHA-1), [9]
(64-step SHA-1), [10] (70-step SHA-1). We improve on the method described in
works on 64 and 70-step SHA-1.

The key idea of differential attacks is to restrict the search to message pairs
with a fixed difference modulo 2 δMi = Mi⊕M∗

i , hence the name. It turns out to
be convenient to fix some bits also in Mi, Ai, and δAi. Precisely, a characteristic
is a set of (80 + 85) · 32 elementary conditions on bit pairs ([Wi]j , [W ∗

i]j) and
([Ai]j , [A∗

i]j), each allowing only certain combinations of bit pair values. There
are 222

= 16 possible bit-pair conditions, the six actually used for collision search
are described in Table 2.

Table 2. Bit Conditions Used in Characteristics

∇i (0, 0) (1, 0) (0, 1) (1, 1)

- � − − �
x − � � −
0 � − − −
u − � − −
n − − � −
1 − − − �

Let ∇X be the set of pairs (X, X∗) satisfying all 32 bit-pair conditions for a
variable. We want to perform exhaustive search over a given characteristic to find
a collision. For each i, we search through values of M2

i allowed by chararacteristic,
compute A2

i+1 and check it against characteristic for state. If a suitable value
is found, the search proceeds to round i + 1; if not, it backtracks to i − 1.
After finding M2

16, the message is fully defined and further steps perform only
checking. If the input freedom for states A2

i+1 is less than for messages M2
i , we

search through the values of state instead, as there is one-to-one correspondence
between message and state once values for previous rounds A2

i are fixed. The
search continues either until a collision is found, or the search space is exhausted.

We will now estimate complexity of the search, assuming that it is successful.
A set (W 2

0 , . . . , W 2
i) is consistent if it can be extended to a full set of expanded

messages satisfying the characteristic. Input freedom for the message F̃W (i) at
step i is the number of consistent sets (W0, . . . , Wi) which extend the consistent
set (W0, . . . , Wi−1). It is obvious that F̃W (i) = 1 when i � 16. When conditions
for W16, . . . , W79 are trivial, for i < 16 we have F̃W (i) = |∇Wi|. In general case,
conditions for W16, . . . , W79 impose linear equations on bits of [Mi]j . When there
are m independent equations, F̃W (i) = |∇Wi|

2m . Input freedom for the state is
F̃A(i) = |∇A2

i+1|. When F̃A(i) � F̃W (i), we search through M2
i and compute

A2
i+1. Otherwise, we search through A2

i+1 and compute M2
i . In the first case we

assume FW (i) = F̃W (i), and in the second FW (i) = F̃A(i)
2m . Thus defined, FW (i)

Building a Collision for 75-Round Reduced SHA-1 Using GPU Clusters 937

is the number of children nodes of the search tree at step i when implicit linear
equations are taken into account.

For SHA-1, Ai+1 is computed at each step based on Ai−j , 0 � j � 4, and
Wi. For our estimation, we assume that Ai−j , 0 � j � 4, and Wi are simply
independent random variables (irrespective to hash function) which satisfy the
characteristic.

The uncontrolled probability Pu(i) at step i is the probability that the result
of step i satisfies the characteristic if all state and extended message values
at previous steps satisfy the characteristic. That is, for F̃A(i) � F̃W (i) and
F̃A(i) < F̃W (i) by it is defined by (3) and (4), respectively.

Pu(i) := Pr(A2
i+1 ∈ ∇Ai+1|A2

i−j ∈ ∇Ai−j , 0 � j � 4, W 2
i ∈ ∇Wi) (3)

Pu(i) := Pr(W 2
i ∈ ∇Wi|A2

i−j ∈ ∇Ai−j , 0 � j � 4, A2
i+1 ∈ ∇Ai+1) (4)

The controlled probability Pc(i) at step i is the probability that at least one pair
W 2

i satisfying the characteristic exists, such that the result of step i satisfies the
characteristic on the condition that state values at all previous steps satisfy the
characteristic. Formally (independent of whether A or W is enumerated) it is
defiend by (5)

Pc(i) := Pr(∃W 2
i ∈ ∇Wi : A2

i+1 ∈ ∇Ai+1|A2
i−j ∈ ∇Ai−j , 0 � j � 4). (5)

We now estimate the complexity of a successful search. At step i the number of
nodes NS(i) that must be traversed is, on average:

– NS(80) = 1 (we need just a single collision),
– NS(i) = max

{
NS(i+1)

FW (i)Pu(i) ,
1

Pc(i)

}
(on the one hand, a search tree node has

on average FW (i) children, among which the fraction of Pu(i) give the next
level node; on the other hand, with probability Pc(i) the node won’t give
any next level nodes).

We call the value defined by (6)

80∑
i=0

NS(i), (6)

which depends on the characteristic only, the work factor of the characteristic.
The less the work factor is, the better the characteristic is.

3 Finding a Characteristic

Finding a characteristic consists of three stages. At the first stage, a linear char-
acteristic is searched for, which consists only of -x conditions; it fixes differences,
but not bits. To do that, we construct a linearization of the hash functions by

938 A.V. Adinetz and E.A. Grechnikov

replacing non-linear operations with their linear “approximations”. The goal of
this stage is to minimize the number of x in the characteristic, which lead to
differences between the function and linearization. A search for a linear charac-
teristic with small x conditions is expressed as searching for small-weight vector
in some linear code, which is a known problem from the coding theory.

We construct a 2-block collision. The characteristic for each block is different,
but is constructed based on the same linear characteristic. Resulting hash is
given by H2 = H1 + g(M2, H1) = H0 + g(M1, H0) + g(M2, H1), H∗

2 = H0 +
g(M∗

1 , H0) + g(M∗
2 , H∗

1). Linear characteristic gives g(M1, H0)⊕ g(M∗
1 , H0) and

g(M2, H1)⊕g(M∗
2 , H∗

1); as it is the same for both blocks, we can make differences
of first and second block values differ only in sign by fixing the bits that differ.
This leads to H2 = H∗

2 , that is, a collision.
The second stage begins with discarding conditions for Ai at first 12 steps and

replacing them with conditions for A2
−4, . . . , A

2
0. The initial condition is H0 for

the 1st block, and the result of the first block for the 2nd block. Therefore, we can
construct 2nd block characteristic only after finding the 1st block of the collision.
We also replace xx condition pairs for successive bits with -x, if the difference
can be satisfied due to the carry. This is not always true because rotations are
involved. At the second stage we need to find some “path” (a consistent set of
conditions) from initial conditions to the linear characteristic. To do this, we
choose random positions in A2

i which have no conditions, add - condition and
find which additional conditions are satisfied based on ones already enforced.
Also, when x-type conditons appear in A2

i it is useful to fix values of differing
bits. If we find a contradiction, we backtrack to the last fixing x and choose an
alternative fixing. The second stage finishes when all conditions have the form
-xun01.

The third stage iteratively improves the work factor of the characteristic. To
do this, we search through possible tightenings of conditions, propagate the new
conditions, i.e. look at the additional conditions which follow from the new set
of conditions, and compute the work factor for the new characteristic. At the
end of the search the characteristic with the smallest work factor is chosen.

We’ll note several important aspects of characteristic search here:

– FW , Pu, and Pc are computed sequentially, from least to most significant
bits by searching through elementary conditions and possible carries.

– The propagation of conditions is calculated in two passes. First, possible
carries are evaluated from least to most significant bits, and then new con-
ditions are evaluated taking carries into account. This is fast, but sometimes
doesn’t find all possible conditions (due to an interference between consecu-
tive steps). To propagate further, we loop through bit positions, fix possible
bit values and check if the fast procedure finds any contradictions. In the
second stage we check only those bits who are close to some bit that was
changed. In the third stage we check all bits.

– Coherency, i.e. similarity of control flow and memory accesses in neighbour-
ing threads, in important for efficient GPU execution. Coherency can be
improved by concentrating strong conditions in the middle of the initial

Building a Collision for 75-Round Reduced SHA-1 Using GPU Clusters 939

rounds of the characteristic. This is achieved by choosing these positions
for - conditions with less probability at the second stage. This is the first
GPU-related optimization, and it improves GPU search efficiency by 80%.

4 Message Search Implementation on GPU

Searching for a message which satisfies the characteristic is the most computa-
tionally intensive part of collision search. There is a number of points which do
not depend on hardware:

– Characteristics always consist of conditions of type -xun01. Therefore, con-
dition set for each 32-bit variable can be expressed as a pair of equations
X ⊕X ′ = a, X ∧ b = c, where a, b, c are 32-bit values which depend only on
characteristic.

– The following procedure is an efficient way to enumerate the set {X : X∧b =
c}. The first element is X := c, every next element is given by the equation
X := (((X ∨b)+1)∧b)+c, the enumeration is over when this equation gives
X = c due to overflow.

– As Ai at two last steps are not used in computing fi, it is sufficient to
check on those steps that X − X ′ = a. Moreover, for the 1st collision block
conditions at two last steps can simply be ignored, as any difference due to
them could be compensated by the 2nd block without increasing the number
of conditions.

– Linear equations on Mi, appearing due to conditions on Wk for k ≥ 16,
can either express a bit [Mi]j through bits of previous message words, or
give an equation involving values of 2 or more bits of Mi. In the first case,
a, b, and c depend also on previous messages, and must be recomputed for
each round. In the second case, these equations can be removed by adding
some artificial conditions (e.g. imposing an additional restriction [Mi]j = 0),
without significantly changing the work factor.

The search is naturally divided into generation phase, which searches through
message pairs, and check phase, which checks the rest of the characteristic for
the pair of messages. Generation phase is a back-tracking search, and check is
simply a function which is called at the last round of generation. Generation
can in turn be divided into host part and device or GPU part. On the host, the
search tree is expanded to a certain host depth to generate enough search stacks
to make use of GPU parallelism. Host depth is specified individually based on
the characteristic and available computational resources. Too little depth leads
to insufficient parallelism, while with too large depth, search stacks won’t fit into
GPU memory. To utilize a single GPU efficiently, about 105 search stacks are
needed.

During GPU part, the search is performed in parallel on a large number of
GPUs. Stacks for which the search is finished are removed, and no new stacks are
generated. The main GPU kernel implements back-tracking search and message
check. In this kernel, each GPU thread processes only a single search stack for

940 A.V. Adinetz and E.A. Grechnikov

a fixed number of search iterations. The main kernel also collects statistics on
the number of traversed nodes, check rounds and maximum depth reached by
the search. Between kernel calls, the depth is checked and the defunct stacks are
removed from the array of search stacks.

The computation is distributed among cluster nodes using MPI. Each MPI
process uses only a single GPU. Search stacks are distributed between nodes
in block-cyclic way. During host part, each MPI process generates all search
stacks and discards those belonging to other processes. There is a global barrier
at the end of host part, but after that, all MPI processes run independently
and asynchronously. This means that if search is finished on some stacks and
some processes will have less search stacks than the others, there will be no load
imbalance; just some of the stacks will be searched through quicker. The only
communication involved is sending statistics to statistics collection thread of
master process. The master process also spawns one more thread, which prints
out aggregated statistics at fixed time intervals.

The application is implemented using Nemerle, an extensible .NET language,
and NUDA (Nemerle Unified Device Architecture), a system of Nemerle exten-
sions [11] for programming GPUs. NUDA was chosen due to its free availability
and support for high-level GPU programming, including automatic host-GPU
data synchronization and generation of kernels. Internally, OpenCL is used to
interact with GPUs and as a target for GPU code generation. mono is used to
run .NET applications on Linux, and MPI .NET provides .NET bindings for
MPI.

We first implemented GPU back-tracking search as a single loop, with branches
inside the body handling specific conditions. There were 2 such conditions: round
switch and message check. A round switch can arise when a successful message
word is found, when all words are exhausted or when the kernel starts. In any
case, large number of additional precomputing is required. Message check was
implemented as a separate function, with loop on rounds fully unrolled using
inline annotation available in NUDA.

The performane of our initial implementation, however, was unsatisfactory.
While the application scaled well due to little communication, computational effi-
ciency was only 15% on some characteristics. We define computational efficiency
as the ratio of really executed integer operations to peak GPU performance in
terms of integer operations. Low efficiency was due to low coherency between
threads in a single warp, so we concentrated on improving coherency. The first
optimization, described in section 3, was modifying search algorithm, which gave
1.8× improvement of efficiency.

The second optimization was sorting search stacks after each GPU pass. We
quickly found out that stable sort was better than unstable (quicksort) in main-
taining coherency. We also tried different keys, including round number, search
value, round change direction (delta), number of search steps to nearest round
change (njd) and their combinations. Additionally, we modified the search loop
to allow exiting the kernel only on round change; we call this snapping. Results
of our experiments for characteristic for 2nd block for 72-round collision (72-2)

Building a Collision for 75-Round Reduced SHA-1 Using GPU Clusters 941

are presented in Fig. 2. We have finally chosen stable sort by search value and
snapping, which gave 1.87× efficiency improvement. This was implemented us-
ing GPU radix sorting [12], and experiments have shown that sorting takes less
than 1% of total computing time.

no sorting
no sorting, snap
stable, njd, snap

quick, round
quick, round + delta

stable, round
quick, round, snap

quick, round + njd, snap
quick, round + value, snap

stable, round + njd
stable, round, snap

stable, round + delta, snap
stable, round + njd, snap

stable, round + delta + njd, snap
stable, round + value, snap

stable, value, snap
0 0,50 1,00 1,50 2,00

Improvement to baseline, times x

So
rti

ng
 a

lg
or

ith
m

 a
nd

 c
rit

er
ia

Fig. 2. Comparison of different sorting and snapping approaches

The third optimization was replacing one-loop implementation of backtracking
search with a nest of 3 loops. Innermost loop iterates over search values of
a single round until either all are exhausted, or a successful message word is
found. The second loop works only for 16th round, and iterates over messages
that must be checked. Our experiments have shown that more than 75% is
spent is message check for some characteristics, so doing that in a separate loop
improves performance. The outermost loop switches between rounds, and also
checks thread termination condition. As search can be exited from outermost
loop only, this ensures automatic snapping. On 75-1 characteristic, triple loop
gave 1.25× improvement compared to stable sort and snapping only. Together,
triple loop and stable sort give more than 2-fold performance improvement.

Other optimizations included using constant and shared on-chip GPU mem-
ory. Quite unexpectedly, using on-chip shared memory gave only 2.5% perfor-
mance improvement (1.025×). This indicates that previous optimizations did a
good job of improving memory access coherency, so that most memory accesses
hit the GPU cache available on Fermi GPUs. Using constant memory gave ad-
ditional improvement of about 9%. Effects of individual optimizations and all
of them combined are presented in Table 3. The final version uses all of the
optimizations described above, and has efficiency of 63% on 75-1 in the short
run. For the long run, efficiency is lower, but still remains above 50%, which we
consider sufficient for our purposes.

942 A.V. Adinetz and E.A. Grechnikov

Table 3. Effects of Different Optimizations on Performance of GPU Backtracking
Search

Optimization Effects
Characteristic search modification 1.8×
Stable sort by value + snap 1.87×
Triple loop 1.25×
Other 1.12×
Total 4.2×

We expected our application to run for a long time, so checkpoints were used.
And as the number of available GPUs was expected to fluctuate significantly,
our checkpointing scheme makes it possible to resume from a checkpoint with
number of processes different from what was used to save it. As processes are
independent, each process just writes its search stacks to a file independently at
fixed time intervals, every hour by default. Cooperation is only needed to resume
from a checkpoint.

5 Results

Final computation of 1st and 2nd collision blocks were performed at GPU par-
tition of “Lomonosov” supercomputer installed in Research Computing Center,
Moscow State University (RCC MSU). Each GPU node has 2 NVidia Fermi
X2070 GPUs with 6 GB RAM, of which only 5.25 GB is available because of
ECC. As the GPU partition was still in beta stage, not all GPU nodes were
available, and the number of available nodes fluctuated. Characteristics used to
search for messages are presented in [3].

The search factor for the 1st block was 258. 264 GPUs were used, and the
computation took 11000 seconds. 254.06 nodes were actually traversed. Here,
“node” is either a search step or message check round; the latter requires 2.5×
more computations than the former. About 40% of nodes were check rounds.

The search factor for the 2nd block was 263.01 nodes. The computation started
with 320 GPUs and finished with 512 GPUs, with 455 GPUs being used on av-
erage. It took 1904252 seconds, or 22 days and 45 minutes. 261.92 nodes were
actually traversed, about 58.8% of them were check rounds. We achieved 52%
efficiency (of GPU peak performance). The resources required were really enor-
mous: were all 1554 GPUs available, the computation would still take about a
week.

The actual number of nodes traversed were smaller than estimates. It was 16
times smaller for the 1st block and 2 times smaller for the 2nd block. Were it
not the case, the entire collision search would have taken 1.5 month.

We also compared the GPU code with our previous CPU implementation [13].
A single Intel Nehalem CPU core traverses about 227.85 search nodes per second.
A single check round requires 2.5× more operations than a search node; that
is, our 22-day run is equivalent to 262.83 search nodes, or 233.14 search nodes

Building a Collision for 75-Round Reduced SHA-1 Using GPU Clusters 943

traversed per second per GPU. Based on those numbers, a single GPU is 39×
faster than a single CPU core, or 9.75× faster than a 4-core CPU, i.e. a single
CPU socket. The number varies slightly from one characteristic to the other,
but the order remains the same. This means that our computation would have
taken the same time if done on 17745 CPU cores, which is not much larger than
the number of cores used for the previous computation. Obtaining this many
“Lomonosov” ’s cores for 3 weeks would be problematic. The GPU partition,
however, wasn’t oversubscribed, so we could easily use all the GPUs available.

The 75-round reduced SHA-1 collision we built is presented in Table 4.

Table 4. 75-Round Reduced SHA-1 Collision

i Message 1, Block 1 Message 1, Block 2
1–4 F01EE8EE BDDFF313 B2F59EE4 BB37F2BB F072633F 0D32226A DFF74459 98507743
5–8 2F472A36 1C052F6A 96403EF0 F144298B EEFE63DD FE10D5C5 AFE33902 EF74984E
9–12 DAF5519C 7A90DD71 2BF3718E A7E3DE6D 350272F7 DB382ABC 155B0414 B800179D
13–16 EFFA975E 9B00AA95 6056E3EE 2BA4483A 18ECD4BC 15497213 1505284C 60C4F869

i Message 2, Block 1 Message 2, Block 2
1–4 001EE884 3DDFF353 22F59E94 0B37F2E8 00726355 8D32222A 4FF74429 28507710
5–8 1F472A3E 1C052F29 46403E82 4144299B DEFE63D5 FE10D586 7FE33970 5F74985E
9–12 2AF551FE BA90DD33 2BF371BE 47E3DE2F C5027295 1B382AFE 155B0424 580017DF
13–16 CFFA973E 7B00AAD4 4056E3BE EBA4487B 38ECD4DC F5497252 3505281C A0C4F828

i Colliding Hash Values
1–5 3DF7F21E 130079F3 C2E6EFFF FD9C4141 9AA8723A

6 Conclusion

We have proposed a GPU implementation of SHA-1 collision search using the
method of characteristics. Based on our previous work and with GPU optimiza-
tions proposed, we were able to achieve 50% computational efficiency and 39×
acceleration compared to a single CPU core. Using our implementation on a
cluster of GPUs, we have found a collision for 75-round reduced SHA-1, which is
world’s best result in terms of number of rounds for SHA-1 as of February 2012.

However, as search complexity increases 8× with each additional round, search-
ing for collisions with larger number of rounds would require modifications to
the method of characteristics. While we are working in this direction, it is too
early to talk about results.

Acknowledgements. We are thankful to Research Computing Center of
Lomonosov Moscow State University for providing us with access to “Lomonosov”
supercomputer. We are also thankful to “Lomonosov” support team and person-
ally Anton Korzh for promptly resolving issues which appeared our using of the
cluster. This work was supported by T-Platforms, Russian Fund for Basic Re-
search (RFBR) grant 11-07-93960-SAR-a and CUDA Center of Excellence at
Moscow State University.

944 A.V. Adinetz and E.A. Grechnikov

References

1. Teat, C., Peltsverger, S.: The security of cryptographic hashes. In: Proceedings of
the 49th Annual Southeast Regional Conference, pp. 103–108. ACM (2011)

2. National Institute of Standards and Technology (NIST). FIPS-180-2: Secure Hash
Standard (August 2002), http://www.itl.nist.gov/fipspubs/

3. Grechnikov, E.A., Adinetz, A.V.: Collision for 75-step SHA-1: Intensive Paralleliza-
tion with GPU // Cryptology ePrint Archive: Report 2011/641,
http://eprint.iacr.org/2011/641

4. Dobbertin, H.: Cryptanalysis of MD4. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 53–69. Springer, Heidelberg (1996)

5. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

6. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

7. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

8. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions
of SHA-0 and Reduced SHA-1. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 36–57. Springer, Heidelberg (2005)

9. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

10. De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: On the
Full Cost of Collision Search. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007.
LNCS, vol. 4876, pp. 56–73. Springer, Heidelberg (2007)

11. Adinetz, A.V.: NUDA Programmer’s Guide, http://nuda.sf.net
12. Satish, N., Kim, C., Chhugani, J., Nguyen, A.D., Lee, V.W., Kim, D., Dubey, P.:

Fast sort on CPUs and GPUs: a case for bandwidth oblivious SIMD sort. In: Pro-
ceedings of the 2010 International Conference on Management of Data (SIGMOD
2010), pp. 351–362. ACM, New York (2010)

13. Grechnikov, E.A.: Collisions for 72-step and 73-step SHA-1: Improvements in the
Method of Characteristics. Cryptology ePrint Archive: Report 2010/413,
http://eprint.iacr.org/2010/413

http://www.itl.nist.gov/fipspubs/
http://eprint.iacr.org/2011/641
http://nuda.sf.net
http://eprint.iacr.org/2010/413

	Building a Collision for 75-Round Reduced SHA-1 Using GPU Clusters
	Introduction
	SHA-1 and Differential Attacks
	Finding a Characteristic
	Message Search Implementation on GPU
	Results
	Conclusion
	References

