Secure Quasi-Realtime Collaborative Editing
over Low-Cost Storage Services

Chunwang Zhang!, Junjie Jin!, Ee-Chien Chang! and Sharad Mehrotra?

! School of Computing, National University of Singapore, Singapore
{chunwang, jin89, changec}@comp.nus.edu.sg
2 Department of Computer Science, University of California, Irvine, CA, USA
sharad@ics.uci.edu

Abstract. A realtime collaborative editor facilitates concurrent edit-
ing of a document by multiple authors. It is desired that the document
be shared only among the authors, and protected from the potentially
curious server. Existing approaches have taken two distinct paths — cen-
tralized server based approaches that achieve high concurrency and meet
real-time requirement but compromise on security and incur high server
cost, and peer-to-peer based approaches that support security but com-
promise on users’ convenience and mobility. In this paper, we observe
that by relaxing the realtime requirement, we can achieve security, re-
duce server cost and yet exploit the conveniences of the centralized set-
ting. In particular, we consider generic low-cost storage servers in the
cloud that provide storage integrity but do not guarantee low-latency.
Essentially, our method breaks the document into small encrypted re-
gions that are stored on the server and coordinates the authors’ access.
Although two authors are unable to concurrently modify a same region,
the system is able to provide “quasi-realtime” experience. By relaxing
the requirement to quasi-realtime, the difficulties in achieving document
consistency, and the requirement on resources are significantly reduced.
We give a proof-of-concept implementation on top of Dropbox, a com-
mercial cloud storage service. Preliminary user studies show that the
system is effective.

1 Introduction

A realtime collaborative editing system facilitates concurrent editing of a doc-
ument shared by a few authors. While such systems improve productivity, it
is desired that the document confidentiality be preserved. In particular, if the
systems are hosted in the cloud, we want to protect the documents from the
potentially curious servers.

There are many realtime collaborative editing systems with centralized pub-
lic servers such as Google Docs [8] and the now discontinued Google Wave [9].
The centralized setting has a few advantages. With a centralized server, syn-
chronization among the authors and techniques of operational transformation
[6] can be efficiently and easily carried out, addressing the main technical chal-
lenge on concurrency faced by collaborative editing systems. Moreover, reliable

storage can be hosted by the servers. With such reliable storage, authors can
readily edit the document from different devices and at different time, and thus
facilitate mobility.

A main drawback of the centralized setting is the difficulty in achieving docu-
ment confidentiality against the potentially curious servers. There are incentives,
for example, business competitions, for the centralized servers to actively look
into users’ sensitive data [15]. In addition, the centralization of data also makes
the servers high-value targets for attacks [1,26]. To guide against the potential
security risks, documents and operations must be carefully protected using, for
example, proper encryption techniques, before being stored on the servers. How-
ever, for techniques of operational transformation, the servers need to know the
contents of the operations in order to transform them. Without knowing the
actual operations which contain certain information about the documents, it is
very difficult for the servers to carry out the transformations.

On the other hand, a peer-to-peer (P2P) collaborative editing system natu-
rally alleviates the above-mentioned issues since no server is involved. For the
security requirement, as long as secure channels can be established among the
authors, document confidentiality can be achieved. There are also many P2P
collaborative editing systems such as SubEthaEdit [28] and CoWord [21]. Al-
though no server is required, resolution of conflicts are now “pushed” to the
peers and thus increases the computation load on the peers. Moreover, since
there is no reliable storage keeping the latest version of the document, mobility
is cumbersome to achieve. For example, consider the situation where Alice and
other authors are concurrently editing a document using their desktops under
a P2P setting, and later Alice goes offline for a few minutes and then resumes
editing on her mobile device. Although possible, it is cumbersome for Alice’s
mobile device to retrieve the latest version of the document, locate and establish
connection with other authors and then carry out collaborative editing.

A centralized system can be adopted in the P2P setting in the following way:
after secure communication channels have been set up among the peers, one of
the peer takes the role of the server and thus realtime collaborative editing can be
carried out. In such adoption, the “super-peer” has to be present throughout the
session. This leads to the difficulty in getting seamless recovery when the super-
peer fails. It is also possible to have a hybrid setting where the peers employ a
storage server to keep the latest version, while collaborative editing is done in the
P2P setting. Nevertheless, this requires frequent uploading of the whole file and
thus consumes large bandwidth. A recently proposed system SPORC [7] can be
treated as a P2P system but with their communications going via a centralized
server. The centralized server plays the role of establishing an ordering of the
issued operations, which can be easily carried out on the encrypted operations.
Such consistent ordering helps to simplify the designs of concurrency control.
Nevertheless, it also inherits the requirement of low latency on the server of the
centralized system, and high computing cost on the clients of the P2P system.

A main driving force of cloud computing is cost-saving. We know that there
are already many commercial file hosting and sharing services in the cloud such as

Secretkey k

Foe Gt o fom Do
BaB XDl blilu

Il. FRAMEWORK & REQUIREMENTS

A Security Model

B. S1erage Services

Secretkey k
[17)

e G0 Colr o Detu

Bal XB @b ilu

Il. FRAMEWORK & REQUIREMENTS

A Security Model

B. Storage Services

C. Concwmency Control and User Exparience . - C. Concwmency Control and User Experience

” ochmn, &t ko o e ko i ok ik R Low-Cost ,
Storage Server
Alice’s window Bob’s window

Fig.1. An illustration of the scenario where there are two authors collaboratively
editing a document using our system.

Dropbox[12], SugarSync [13] and Box [3]. With such services, users can reliably
store their files there and easily share the files with anyone they like across
the Internet. These storage services are low-cost in the sense that they do not
guarantee low-latency, provide only low bandwidth, and/or allow limited number
of access. Nevertheless, they are reliable in providing storage-integrity. Instead of
having a fully trusted dedicated server, we want to leverage such existing storage
services to provide a low-cost collaborative editing system where the document
confidentiality is preserved. Hence, preferably, no additional new services are
required on the servers to facilitate collaborative editing, and no processes are
required to keep track the state of an editing session.

We take security, mobility, cost and user experience as the main design cri-
teria. While it is difficult to achieve all of them simultaneously, we observe that
by relaxing the realtime requirement to “quasi-realtime”, we can have both the
conveniences provided by the centralized setting and yet achieve document con-
fidentiality over a generic cloud storage service. While a “true” realtime col-
laborative editor allows multiple users to edit a same sentence, or even a same
word concurrently, in contrast, we do not allow multiple editing in a same view-
port, but support concurrent editing in different viewports. Such design choice is
based on the assumption that users seldom concurrently modify a small region
of interest so as to avoid confusion, but yet want to concurrently edit the same
document.

Essentially, our proposed method automatically breaks the document into
pieces which are encrypted and stored in the server, and ensures that only one
author can modify a piece at any given time. Figure 1 illustrates the scenario
where there are two authors collaboratively editing a document using our system.
Although the proposed method is conceptually simple, there are a few technical
issues. Our servers only play the role of providing “shared memory”, and do
not actively participate in synchronizing the author’s operations. Hence, there
are still tricky issues in handling concurrency, especially when taking into con-
sideration the frequent connection failures between the authors and the server.
Moreover, localized editing to the document may affect global information, which
has to be efficiently propagated to other authors .

We implemented a proof-of-concept system over Dropbox. Preliminary user
study shows that, in the two-author collaboration scenario, our system can facil-
itate collaborative editing by saving around 30% of the time of the turn-taking
approach, and the communication cost is very low.

The rest of the paper is organized as follows. We state the assumptions and
requirements in Sect. 2. In Sect. 3, we describe the proposed method in detail,
followed by a brief security and performance analysis in Sect. 4. We implemented
a prototype system and conducted a small-scale user study to evaluate its effec-
tiveness in Sect. 5. Related work and conclusion can be found in Sect.6 and 7,
respectively.

2 Framework & Requirements

We consider a server S and a group of authors A1, ..., A;, who want to collab-
oratively edit a document D which is stored in S in one form or another. The
authors are mobile and may use different devices at different time, so the devices
are stateless in the sense that they do not keep the record of editing operations
after the end of the editing session. Nevertheless, the authors and/or the devices
can keep some sufficiently long secret keys. For simplicity, we consider only tex-
tual document, which can be treated as a sequence of lines of readable characters
and each character is associated with different attributes. An example of such
documents is shown in Fig. 1.

2.1 Security Model

We assume that there are some authentication mechanisms so that each author
can establish a secure channel (e.g., SSL/TLS) with the server. The authors
trust each other and share a key k which is kept secret from the server. We
consider a honest-but-curious server that follows the protocols as expected, but
may attempt to collect information from the document with malicious intentions.
The server must not be able to learn the document’s content. Since the server
is honest, it will not delete the document, deny connections from particular
authors, or give authors inconsistent copies of the document. Nevertheless, we
believe that it is possible to extend our proposed method to achieve authenticity

against a malicious server without incurring large amount of resources. This
extension would be an interesting future work.

2.2 Storage Services

Our system relies on a reliable existing storage service to host the shared docu-
ment. The service is reliable in the sense that the file system integrity is main-
tained and it provides a consistent view of the file system under the shared en-
vironment. As mentioned in the introduction, we do not require high bandwidth
or low-latency guarantees. The servers support the following atomic operations
over the network.

1. getFile(name): Retrieve the file “name” from the server.

2. deleteFile(name): Delete the file “name” on the server.

3. putFile(content, name): Upload the file “name” with the given content. If
there is already a file “name” on the server, overwrite it.

4. rename(oldname, newname): Rename the file “oldname” to “newname”.
If two clients happen to rename a same file concurrently, only one of them
can succeed.

5. listDir(): List the metadata for all files in the directory. The metadata for
each file must include at least its filename and last modified time.

Each atomic operation is to be completed over the network in one round-trip:
the request, followed by the reply. Note that communication may fail during the
operations. Actual storage services may provide different operations. The above
set of atomic operations is minimal required for our system.

2.3 Mobility and Cost

Consider the scenario described in the introduction. When Alice switches the
editing session from one device to another device, such transition should be easy
and convenient for her. In particular, the new device should be easy to obtain
the latest version of the document and establish communication with the rele-
vant entities. Note that with the centralized storage server, such requirements
on ease-of-use can be easily achieved. Since we consider light-weight mobile de-
vices such as PDAs and smartphones, computations on the client side must not
be overly intensive. Furthermore, communications between the clients and the
server should not consume large bandwidth.

2.4 Concurrency Control and User Experience

Collaborative editing systems need concurrency control mechanisms to keep all
the clients’ local copies consistent. While with a centralized server, consistency
is not difficult to achieve, it is important to ensure that the control mechanisms
do not weaken usability of the system. In particular, below are some situations
that the concurrency control mechanism should minimize:

1. The number of roll-backs. A roll-back occurs when a few operations issued by
an author are deemed to conflict and have to be discarded, and thus already
modified document has to be rolled back. The length of a roll-back should
also be minimized.

2. The number of user interventions. Certain concurrency control mechanisms
(for e.g., some optimistic locking mechanisms) require users’ feedback in re-
solving conflicts. This should be avoided. Furthermore, users’ effort in con-
currency control (for e.g., button clicks) should also be minimized.

3. Waiting time to modify a region. Clearly, the time to withhold an author
from editing the document should be minimized.

3 Proposed method

A common “manual” practice to concurrently edit a document is to have the
authors divide the document into large pieces according to the structure of the
document, where each piece can only be edited by a single author at any given
time. The authors coordinate with each other by communicating through some
real-time channels like using phone calls or even via email systems, to lock and
unlock a piece. Our system essentially automates this process with the coordi-
nation and management of the pieces transparent to the authors.

Essentially, our system automatically breaks the large document into small
pieces which are encrypted and stored on the server, and ensures that a piece
can only be modified by one author at any given time so as to avoid conflicts.
Modified pieces are periodically re-encrypted on the client side and pushed back
to the server, overwriting the original ones there. Due to the automation, frequent
switches among the pieces can be carried out in a seamless manner, and thus
the authors can enjoy “quasi-realtime” experiences by concurrently working on
different pieces.

3.1 System Overview

The proposed system has the following components: it (1) employs a simple pes-
simistic locking mechanism (with timeout) to achieve concurrency; (2) manages
the pieces in a smart way by automatically dividing (merging) a piece if it is get-
ting too large (small) as the result of edit, and keeps the document intact even if
failures happen during the dividing/merging process; (3) maintains global infor-
mation in an efficient way, and (4) provides a user-friendly editing experience.
As mentioned before, the server is not actively involved in the collaborative ses-
sion, in the sense that there is no server-side process that is dedicated to keep
track of the editing operations and push information back to the authors. The
application logic, therefore, must be enforced on the client side.

3.2 Internal Representation

The system breaks the document into a sequence of sub-files Fy, F5, ..., F,, which
are to be encrypted and stored as individual files in the same directory on the

server. The name of each subfile is also encrypted using format preserving en-
cryptions to produce valid filenames. The filename (in plaintext form) is a 4-tuple
(p,i,g,s), where

1. p: A string identifying the document.

2. i: The index indicating the position of the subfile in the sequence. Here, i
is a decimal real number (for e.g. “12.15”). A subfile with index i appears
before the subfile with index j iff i < j.

3. g: The global information. This indicates changes made in the subfile that
could affect some global states, like total number of lines. Note that although
such information can be derived from the subfile, having it in the filename
could potentially reduce communication cost.

4. s: Status of the subfile, that is, whether the subfile is locked or unlocked. If
it is locked, we also include the identity of the author who has locked it.

We use total number of lines as an example to illustrate how global informa-
tion can be efficiently maintained. Note that (p, 4, g, s) is the minimal required in-
formation for our system. For example, the subfile (“part”, 2.0, 100, “unlocked”)
means that it contains 100 lines of content and it is currently not being locked
by anyone, while the subfile (“part”, 3.5, 150, “(Alice)locked”) contains 150 lines
of content, and it is currently being locked by Alice. More information might
have to be included when extending the system to richer text format.

3.3 Concurrency Control

A successful listDir operation will give the information (p,4,g,s) and the last
modified time for each subfile in the directory. With such information, together
with the atomic operations defined in Sect. 2.2, we can have a simple pessimistic
locking mechanism. In this mechanism, the atomic operation rename plays the
role of locking and unlocking a subfile. In particular, locking (unlocking) a subfile
is carried out by changing its name to the locked (unlocked) status through a
rename request. Authors can continue to read a locked subfile while it is being
updated, but they are not allowed to modify it. They will be continuously notified
about the updates.

However, due to frequent network failures, a subfile may be locked forever, if
for instance, the author holding the lock is unable to unlock due to such failures.
We need a lock timeout to release those subfiles. Let the length of the timeout
be T,. The clock for timeout starts immediately when a subfile is locked and
restarts whenever it is updated. If a subfile with its name in the locked status has
not been modified for a time period Ty, it is no longer considered as being locked
and thus any one can re-lock it. As the authors’ time are not synchronized, we
further extend the timeout to T, + o where o is a bound on the time differences
of the authors.

Note that in this locking mechanism, we do not have to explicitly unlock a
subfile as anyone can re-lock it after a certain amount of time (i.e., Ty, + o).
However, for better user experience, if it is clear that a user is not working on a
piece, the piece will be unlocked immediately.

3.4 Piece Management and Failure Recovery

As a subfile is being edited, it may become extremely large or small. Note that
the size of subfiles affects the performance dramatically. While a small piece size
will facilitate collaborative editing as the authors can now work on finer pieces,
it will generate large network overhead. Our system employs a simple piece
management policy: whenever a subfile is getting too large (small), the system
will automatically divide it into smaller pieces (merge it into other pieces). In
our current implementation, the piece size is controlled by a range [Syin, Smaz)
that is setable by the authors.

Dividing/merging a subfile involves a sequence of deleteFile and putFlile
operations. Network may fail during this process, leaving certain operations not
being carried out. For example, consider the case where Alice wants to divide a
large subfile by first deleting the original one on the server and then uploading
the divided subfiles. Suppose that the network gets disconnected just after she
has carried out the deleting operation. Since the new divided subfiles are not
uploaded yet, some contents of the document are thus lost. Note that other
authors cannot distinguish whether such contents are disappeared due to Alice’s
deletion or due to network failures, as there is no server side process that is
monitoring the connections of the authors. We say that the document is not
intact if some of its content are lost or replicated.

Algorithm 1 MERGE(Fy, F5): Merge two subfiles F; and Fy

Input: Subfiles F} and F», with name (p,n1, 91, s1) and (p, n2, g2, s2) respectively.
1: Create a new subfile F’ with name (p,n’,g’,s’) where
n =na, ¢ = g1+ g2 and s’ = s9;

: Copy the contents of Fy and Fy to F’;

: rename((p, nz, gz, 82)’ (p7 n2z, gz, “(nl)D”));

: Tename((pv ni, gi, 31)7 (p7 ni, g1, “(nl)D”));

: putFile(F', (p,n’,g',s"));

. delete((p,n1, 91, “(n')D”));

. delete((p,n2, g2, “(n')D”));

N O Ut W N

Algorithm 1 describes a merging process that ensures intactness. The dividing
process is similar and thus it is omitted. The key idea here is to first rename
the subfile to be divided/merged in a proper way rather than deleting it directly
from the server. Subfiles ending with “(n’)D” are called the temporary indicating
subfiles which provide necessary information for failure recovery in case any error
happens during the dividing/merging process. Whenever an indicating subfile is
found stayed on the server for a long time (e.g., T,, + 0), the subfile will be either
deleted or renamed to the unlocked status depending on whether the target
subfile (i.e., the subfile with index n’) is already on the server or not, keeping
the document always in an intact state.

3.5 Management of Global Information

Localized edit to a piece may affect global information. In our editor, there is
a status bar that displays the position of the current cursor w.r.t the start of
the document (see Fig. 1, at the bottom of the window). This cursor position, in
term of “line number”, is global information: if an author deletes or inserts one
line in her viewport, the coordinate of the cursor in other authors’ viewports
should be updated accordingly. For example, suppose that Alice is working on
the 5th line of the document while Bob is working on the 1000th line. If Alice
deletes one line in her viewport, the coordinate of Bob’s cursor should be updated
to 999 accordingly. Although such information can be always derived from the
subfile by downloading the latest version from the server, doing that, however,
will consume the limited network bandwidth.

We address this efficiency issue by adding the required information, that is,
the total number of lines of a subfile, into the subfile’s name. When a subfile
is updated, such information must be updated accordingly. Other authors, by
reading only the filename (through the periodical listDir request), can know
easily how the subfile has been changed. This gives an efficient way to maintain
the global information. More data might have to be included when extending
the system to support more global information.

However, the filename length restrictions must be taken into consideration.
For file systems that limit the length of the filename (e.g., Windows has some
odd behaviors with length over 260 characters, including path), information that
can be included in the filename could be limited. In such a case, we can have
each subfile associate with a small metadata file recording all the necessary global
information that we want to maintain, and ensure that each update to the subfile
must update the metadata file as well. We would like to explore this possibility
in the future.

3.6 User Interface

It would be troublesome to require the authors to manually lock and unlock a
piece, especially when the pieces are small and switches between the pieces are
frequent. Indeed, in our system, there is no GUI control, like clickable buttons,
for them to do so. The authors can start to edit any regions of interest immedi-
ately, while the system takes care of the underlying layer locking and unlocking
operations. To edit a particular location in the document, the author moves the
cursor to that location and then starts editing. Let us denote T, as the time
where the author’s editing action (implicitly) generates an locking request, and
T, as the time where the server’s response to the locking request reaches the
author. In the event where the locking is unsuccessful, whatever editing opera-
tions issued by the author during the period T, to 7T, have to be discarded, and
we call such event a roll-back. Clearly, from users’ point of view, the number of
roll-backs, and their period have to be minimized. In our system, fairly intuitive
color information is provided for the authors to distinguish between regions with
different locking status. By trying not to modify a region that is shown being

used by others, they can significantly reduce the chance of roll-backs (although
not totally avoid them). Furthermore, even when a roll-back happens, operations
involved between T, and T;. are usually few, because the rename operation typ-
ically completes in just a few seconds. In our informal test, most of the rename
operations complete within 3 seconds. Thus, we totally relieve the authors from
the tedious tasks of locking and unlocking a subfile by only paying a price for
seldom and short-time roll-backs.

For cases where the authors’ devices do not have sufficient resources, for
instance, when they are using light-weight mobile devices, they can work on a
small part of the total document. When a client is just started, it downloads
only the first few (for e.g., 3) subfiles from the server. Whenever an author
requires for new contents during her editing, the next subfile will be retrieved
and the current first subfile will be removed from the editor. In such a way, large
documents are supported even with resource-limited devices.

4 Analysis

With a centralized server, the system design is much simplified. Although the
server does not actively help in synchronizing the authors and pushing updates
back to them, having it essentially facilitates mobility, and makes it possible to
support light-weight mobile devices. Furthermore, as the server is generic, the
system can be implemented on a variety of existing storage services most of
which provide a certain amount of free storage space. Thus, the cost of having a
server is lower as compared to other centralized systems which require dedicated
servers.

4.1 Security Analysis

Like SPORC [7], our system bases its security and privacy guarantees on the
presence of secure encryption schemes and the security of the authors’ crypto-
graphic keys, and not on a trusted or invulnerable server. Since the curious server
sees only the encrypted version of the document, it cannot collect any informa-
tion about the document’s content. Furthermore, individual editing operations
generated by each author stay only in the client itself, and are invisible to the
server. So it is also impossible for the server to perform operation analysis. The
document confidentiality is hence achieved.

However, there are still some information that the server can deduce. One
particular example is the size of the shared document, since the server is already
storing the (albeit encrypted) document. The server also knows how many pieces
the document has been cut into. More importantly, the server knows the iden-
tities of the authors involved in the collaborative editing session as they must
login first to the server, and their action sequences (i.e., who has modified which
piece at what time). By comparing the differences in size between two succes-
sive updates to a same subfile, the server is able to guess overall what kinds

of operations (e.g., insertion, deletion) have been performed, although the pre-
cise operation contents and editing positions are not clear. Although, intuitively,
such information may not be useful to an adversary, users of this system should
be aware of such possible leakages.

Unlike SPORC, we do not consider a malicious server that may intention-
ally modify, delete or re-order particular subfiles. We argue that there is little
incentive for commercial storage services to perform such malicious actions. Nev-
ertheless, as mentioned before, we believe that it is possible to extend our system
to achieve authenticity and integrity against a malicious server without incurring
high overhead to the storage services. We leave this for future work.

4.2 Performance-Critical Parameters

The performance of our system can be affected by many parameters, as sum-
marized in Table 1. By performance, we are referring to user editing experience
and network overhead. One interesting work is to investigate, comprehensively,
how these parameters will affect the system, and to determine the optimal values
through, for example, system modeling or large-scale user studies. That could
be a separate paper. In this paper, we just discuss the tradeoff between them.

Table 1. Summary of the performance-critical parameters.

Smin [Minimum size of a sub-file;
Smaz|Maximum size of a sub-file;
Tw |Lock timeout;
T, |Connection timeout;
Ts |Auto update saving period;
Ty |Auto update checking period.

1. S,.in and S),42: The minimum and maximum size of a subfile. Subfiles out of
this range will be divided or merged. Thus, in a sufficiently long-term usage,
the average size is (Smin + Smaz)/2 (i-e., assumed a uniform distribution). A
small average size facilitates collaborative editing as authors can now work on
finer pieces and switches between them are less possible to trigger conflicts,
but leads to higher network overhead as more information has to be returned
by the periodical list Dir request and more frequent locking (and unlocking)
requests have to be sent. The distance between S,,;, and S),4. should be
reasonably large; otherwise, file dividing and merging may happen too often
which wastes a lot of bandwidth. On the other hand, Sy.in (Smaz) cannot
be too small (large) in order to avoid the cases of extremely small (large)
subfiles.

2. T,: The lock timeout, that is, after how much time the lock for a subfile is
no longer considered as valid. A larger T, increases the waiting time for a

subfile to be released, while a smaller T,, increases the number of locking
requests. In particular, T;, should be sufficiently larger than the connection
timeout T, in order to tolerate the network delay.

3. T,: The connection timeout. The larger the average network delay is, the
larger the T, should be. In particular, if T, is not large enough, an atomic
operation may be indeed carried out on the server while the author is un-
aware of it (and considers the operation as failed). Although this will not
cause any problem in concurrency, it frustrates the authors and increases
the network overhead (e.g., the author may issue a same operation quickly).

4. T,: The update saving period. Every T, seconds, the modified subfile is
automatically encrypted and uploaded to the server, replacing the original
one there. A smaller T, can push changes more quickly and reduce the loss
when a failure happens. However, it will increase the network overhead and
the number of requests. In particular, T should be smaller than T,, — T, so
that an active author can work on a subfile steadily without being disrupted.

5. T: The update checking period. Every T} seconds, each client will check the
server for new updates through a list Dir request. Like T, a smaller T}, will
improve the “realtime” experience but increase the network cost. Note that
Ts and T}, together determine the modification propagation time 7T, that is,
the time between a change is made and the change reaches other authors’
devices. In particular, 0 < T < Ty + Ty + T,.

In real applications, these parameters must be determined according to, for
instance, the real network conditions and possible constraints from the storage
services. As an example, if the storage services do not limit the bandwidth usage
and/or the number of accesses, we can have a small piece size and small Ty and
Ty which in turn improves the authors’ editing experience. The best way is to
conduct formal experiments to decide the optimal values.

5 Implementation & User Study

We implemented a proof-of-concept system over Dropbox using its API v1.2
(in Java). The API provides all the atomic operations we defined in Sect. 2.2,
and functionalities for clients to do authentications. The document is broke into
many small files according to its structure. Both the name and content of each
file are encrypted using AES-256 (with CBC mode) and the shared secret key.
Authors login to the Dropbox server using valid username and password pairs
they have, locate the directory and then open the document for editing. The
corresponding files are then downloaded to the clients, decrypted and displayed
as a single document to them. We provide a simple interface for the authors to
edit the document, as shown in Fig. 1. Basic editing operations such as insertion,
deletion, copy, cut and paste are provided. Authors can also change the style of
any particular characters. Note that there are no control buttons for them to
lock and unlock any files. Regions with red background indicate that they are
currently being updated by others.

We want to study the effectiveness of the system, that is, whether users can
save a significant amount of time by using our system in collaborative edit-
ing, and the communication cost. We conducted a few small-scale user studies
to achieve such goals. The performance-critical parameters are set as follows:
Smin=10 and S;,4,=100 (lines), T, = 30, T, = 120 and Ts=T};=10 (seconds).

5.1 Scenarios and Participants

We simulated a scenario where there were two authors collaboratively editing
a document. In this scenario, each author had to complete a list of editing
tasks that were provided by us. We used a thesis paper (80 pages) as the base
document, and created 4 different task lists from it, denoted as T7, 1o, T3 and
T,. Each task list contains 25 editing tasks, for example, “Insert the sentence
“Centralized systems are easier to build as compared to distributed systems.” at
position {1}”, “Delete the word “collaborative editor” at the first paragraph in
section 2.17, and “Set the font size of the heading “Chapter 1 Introduction” to
18 and make it bold”. The task lists are carefully designed in a way such that
the two authors have to edit some same regions so as to trigger conflicts (and
thus roll-backs). Each task list takes around 15 minutes to complete. Due to the
space limit, details of the task lists are omitted here. 8 participants took part in
the study, denoted as A1, As, ..., Ag. 4 of them are male, and 4 are female. All of
them are undergraduate students from the CS department of the first author’s
university. All use computers on a regular basis, and have experience in editing
various kinds of documents. We randomly grouped them into 4 groups.

5.2 Effectiveness

We compared the effectiveness of our system with the basic turn-taking ap-
proach: after one author finishes, she passes the document to the other author
for editing. While a more natural approach that allows the participants to freely
communicate with each other and edit the document in any ways they like could
be more interesting, the turn-taking approach is much easier to conduct and
control in practice.

The experimental procedure is summarized in Table 2. Each group was re-
quired to complete two rounds of tasks, and in each round, they had to complete
a given task list in the two-author collaboration scenario using either our system
or the turn-taking approach. Group 1 and 3 started with our system in the first
round while Group 2 and 4 used it in the second round so as to avoid the possible
bias on any particular systems due to the training effect. Note that for each par-
ticipant, a different task list was used in the second round. Participants in each
group sat back-to-back so that they could not see directly each other’s screen.
We provided WordPad as the editor (i.e., when not using our system) because
WordPad is common in Windows and it provides basic editing functionalities
which are very close to our editor. We recorded the time that the participants
spent in each round.

Table 2. Summary of the experimental procedure.

1st round 2nd round
Participants Task Editing Task Editing
system system
A1l T1 T3 .
Group 1 A2| T2 Our system T4 Turn-taking
A3| T1 . T3
Group 2 A4l T2 Turn-taking T4 Our system
A5| T3 T1 .
Group 3 A6l T4 Our system T9 Turn-taking
A7) T3 . T1
Group 4 A8| T4 Turn-taking T9 Our system

The experiment result is summarized in Table 3. We define total editing
time as the sum of the time spent by the two participants for turn-taking ap-
proach, and the time spent by the participant who finished late for our system.
The result of total editing time is also shown in Table 3 (i.e., the 6th and 10th
columns) and illustrated in Fig. 2. It is clear that our system can facilitate col-
laborative editing. Consider Group 1 and 3 where our system was used in the
first round. The time spent is only 77.52% (i.e., (22:05+23:06)/(28:10+30:07))
of that of the turn-taking approach. Consider the results of Group 2 and 4, the
time reduction is even more: participants in our system used only 61.47% (i.e.,
(18:54+19:04)/(30:53+30:53)) of the time of the turn-taking approach. Thus, to
summarize, our system is effective in the sense that, in the two-author collabo-
ration scenario, our system can clearly improve productivity by saving around
30% (i.e., 1-(77.52%+61.47%)/2) of the time, as compared to the case where
they take turns to edit the document.

There are some other observations. First, with our system, each participant
spent more time in completing the required tasks: the average time is 20 minutes,
while that is 15 minutes in the turn-taking approach. This is partially because
of the roll-backs where some already made changes have to be discarded due to

Table 3. Summary of the experiment results.

The 1st round The 2nd round
Participants Task Editing |Time|Total time Task Editing |Time|Total time
system [(m:s)| (mus) system [(m:s)| (mus)
Al| T1 21:17 T3 . |14:01
Group 1 A2| T2 Our system 29:05 22:05 T4 Turn-taking 14:09 28:10
A3| T1 . |16:04 T3 18:54
Group 2 A4l T2 Turn-taking 14:49 30:53 T4 Our system 15:34 18:54
A5| T3 20:42 T1 . |14:45
Group 3 A6l T4 Our system 23:06 23:06 T2 Turn-taking 15:22 30:07
AT7| T3 . |14:45 T1 16:14
Group 4 As| T4 Turn-taking 16:08 30:53 T2 Our system 19:04 19:04

35

30

25 -

20 -
M Our system
15 1 M Turn-taking

10 -

Total editing time {minutes)

Groupl Group2 Group3 Group4d
Participants

Fig. 2. Total editing time.

conflicts and the participants have to move back sometime later to continue the
failed tasks. Note that our task lists were intentionally designed in such a way
so as to trigger conflicts. Another reason is the familiarity with editing tools and
the “search” function provided by WordPad. Most of the participants have used
WordPad before, and we indeed noticed some of them use keyword search to
help in finding the locations of particular tasks. A second observation is that,
with a same editing system, participants typically spent less time in their second
rounds which indicates that the training effect is still present.

Given that conflicts are rare in practice when the document is large, we expect
our approach to continue to perform well when the number of collaborating users
increases. In contrast, the turn-taking approach would sequentialize the process
of editing preventing individuals from accessing the file concurrently.

5.3 Communication Cost

We measure the communication cost in terms of the bandwidth usage and the
operation rate (i.e., number of operations per minute). While the communication
cost could also be affected by parameters like average piece size and the lock
timeout 7}, in this small experiment, we only consider it as a function of T and
T (i.e., the update saving and checking period, respectively). The parameters
are set as follows: S;,i, =10, Spa>=100 (lines), T, = 30 and T,, = 120 (seconds).
We change T and T}, from 5 to 60 (i.e., 5, 10, 30 and 60, in seconds). For each
combination, we asked the participants in each group to complete a given task list
under the two-author collaboration scenario using our system, and recorded the
amount of data and the number of requests transferred during this period. The
task lists here are much shorter, and each takes around 5 minutes to complete.

The results are computed as an average of the 4 groups. Figure 3(a) shows
the bandwidth usage as a function of Ty and Tj. As expected, the bandwidth

8 30
7 —_—
E 25
.5 £
é‘-s Save period _EZU Save period
z W5s £ W5s
= 15
3 m10s % m10s
z3 30 g 10 30
2, . % i
a0 60!
s g R me0s
1 (=]
o 0
55 10s 30s 60s 5s 10s 30s 60s
Check period Check period
(a) Bandwidth usage as a function of Ty and T (b) Operation rate as a function of Ty and Ty

Fig. 3. Communication cost.

usage decreases when T and T} increase, because data has to be less frequently
exchanged between the clients and the server. The figure also shows that the
update saving period T plays a more important role in the overall cost. For a
fixed T}, when the value of T, doubles, the communication cost can be reduced
by nearly a half. In contrast, the checking period T} has only limited effect. For
example, for a fixed T of 30s, the bandwidth usage only decreases from 1.81 to
1.56 (KB/s) when we increase T}, from 5s to 60s. Figure 3(a) also shows that the
communication cost is very low. Even in the most loaded case (Ts = T}, = 5s),
the overall bandwidth usage is only around 7.5 KB/s. While in the least loaded
case (Ts = T}, = 60s), the bandwidth usage decreases to only 1.0 KB/s.

Figure 3(b) shows the operation rate (ops/minute) as a function of T and T.
Like the bandwidth, the operation rate also decreases when T and T}, increase,
but the downward trend is more gently. The overall operation rate changes from
25.5 t0 6.75 (ops/minute) from the most loaded case to the least case. For storage
services like Dropbox that limit the number of accesses per day, these parameters
must be carefully set in order not to exceed to maximum values.

6 Related Work

Many real-time collaborative editing systems with centralized servers have been
proposed over the past two decades [17,20, 18, 8,9]. Early systems like ShrEdit
[17] employ simple concurrency control mechanisms such as locking and require
the servers to manage the locks. The lock granularity could be a whole document,
a section, a sentence or any selected texts. While we also employ a similar lock-
ing mechanism, servers in our system are not required to maintain any locking
information. Many recent systems, for example, Google Wave [9], employ opera-
tional transformation (OT) [24, 6] for consistency maintenance and concurrency
control in an intention-preserving manner [20,9]. With a centralized server, OT
can be carried out in the server and thus reduces the clients’ workload. There are
also systems that leverage transactional techniques in database to ensure con-

currency [29]. However, all these systems are designed based on the assumption
of dedicated and trusted servers.

On the other hand, there are also many peer-to-peer collaborative editing sys-
tems [6, 14, 27,28, 21] and research efforts on improving the concurrency control
in the P2P setting [19, 10, 22, 25, 24]. Typically, P2P systems require the docu-
ments to be replicated on each involved device and are sometimes cumbersome
for session switches when the authors are mobile. Although it is also possible to
have a hybrid setting [2, 30], such systems still require active involvements of the
servers.

A recent system SPORC [7] proposed a generic group collaboration frame-
work using untrusted cloud servers where the document confidentiality and in-
tegrity are preserved. The centralized server plays the role of assigning a total
ordering for the submitted operations, which can be easily carried out on en-
crypted operations. Although simple, there are still requirements of a dedicated
server and resources on the server to keep track of the editing session. Moreover,
since the workload of performing operational transformation are now pushed to
the clients, the computation cost on clients is high and thus this approach is
not suitable for mobile applications. In contrast, our system can be applied on
any existing cloud storage services and we require no control of the servers. Our
system is also carefully designed to support light-weight mobile devices.

Gabriele et al. [5] and Huang et al. [11] proposed methods to protect docu-
ment privacy in Web-based (collaborative) editing applications such as Google
Docs [8] and Microsoft Office Live [4]. The general idea is to encrypt the doc-
ument contents before uploading them to the cloud server. Although these so-
lutions can achieve certain degree of document privacy, applying them to the
current Web-based document editing applications will partially disable the col-
laborative editing feature. In addition, two very recent systems, Venus [23] and
Depot [16], allow clients to use cloud resources without having to trust them.
Venus provides strong consistency in the face of a potentially malicious server,
but requires the majority of a “core set” of clients to be online in order to achieve
most of its consistency guarantees, and does not support applications other than
key-value storage. Depot, on the other hand, does not rely on the availability
of a “core set” and supports varied applications. Moreover, it allows clients to
recover from malicious forks. However, unlike our system, Depot is not designed
for real-time collaborative applications.

7 Conclusion

Many existing real-time collaborative editing systems employ operation trans-
formations to achieve consistency. However, supporting such techniques with the
additional goals on security, mobility and low services cost is difficult. In this
paper, we argue that a relaxed quasi-realtime requirement could significantly
simplify the system design. Preliminary user-studies on our proof-of-concept im-
plementation showed that that such system is effective.

Acknowledgments. The authors would like to thank Veronica Hu He, National
University of Singapore, for her help in implementing the system and conducting
the user studies. Chang and Zhang are partially supported by grant TDSI/09-
003/1A.

References

10.

11.

12.
13.
14.
15.

16.

17.

18.

19.

Debian investigation report after server compromises. http://www.debian.org/
News/2003/20031202, December 2003.

R.M. Baecker, D. Nastos, I.R. Posner, and K.L.. Mawby. The user-centered iterative
design of collaborative writing software. In Proceedings of the ACM CHI’93 Human
Factors in Computing Systems, pages 399-405. ACM, 1993.

Box. Box: Simple Online Collaboration. http://www.box.com/.

Microsoft Corporation. Microsoft Office Live. http://www.officelive.com/.

G. D’Angelo, F. Vitali, and S. Zacchiroli. Content cloaking: preserving privacy
with google docs and other web applications. In Proceedings of the 2010 ACM
Symposium on Applied Computing, pages 826-830. ACM, 2010.

C.A. Ellis and S.J. Gibbs. Concurrency control in groupware systems. ACM
SIGMOD Record, 18(2):399-407, 1989.

A.J. Feldman, W.P. Zeller, M.J. Freedman, and E.W. Felten. Sporc: group col-
laboration using untrusted cloud resources. In Proceedings of the 9th USENIX
conference on Operating Systems Design and Implementation, page 1, 2010.
Google. Google Docs. https://docs.google.com.

Google. Google Wave. https://wave.google.com/wave.

S. Greenberg and D. Marwood. Real time groupware as a distributed system:
concurrency control and its effect on the interface. In 1994 ACM conference on
Computer Supported Cooperative Work, pages 207-217. ACM, 1994.

Y. Huang and D. Evans. Private editing using untrusted cloud services. In The
31st International Conference on Distributed Computing Systems (ICDCS 2011),
pages 263-272. IEEE, 2011.

Dropbox Inc. Dropbox: Simplify your life. https://www.dropbox.com/.
SugarSync Inc. SugarSync. https://wuw.sugarsync.com/.

M. Koch. The collaborative multi-user editor project iris. Technical Report, 1995.
J. Li, M. Krohn, D. Magziéres, and D. Shasha. Secure untrusted data repository
(sundr). In Proceedings of the 6th conference on Symposium on Opearting Systems
Design & Implementation- Volume 6, pages 9-9. USENIX Association, 2004.

P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and M. Walfish.
Depot: Cloud storage with minimal trust. In ACM Transactions on Computer
Systems (TOCS), volume 29, page 12. ACM, 2011.

L.J. McGuffin and G.M. Olson. ShrEdit: A Shared Electronic Work Space. Uni-
versity of Michigan, Cognitive Science and Machine Intelligence Laboratory, 1992.
Raphael A Finkel Mullick, Sachin. MUSE: A Collaborative editor. http://www.cs.
engr.uky.edu/~raphael/studentWork/muse.html, 1998. Masters Project. Univer-
sity of Kentucky.

C.M. Neuwirth, D.S. Kaufer, R. Chandhok, and J.H. Morris. Issues in the design
of computer support for co-authoring and commenting. In 1990 ACM conference
on Computer Supported Cooperative Work, pages 183-195. ACM, 1990.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

D.A. Nichols, P. Curtis, M. Dixon, and J. Lamping. High-latency, low-bandwidth
windowing in the jupiter collaboration system. In Proceedings of the 8th Annual
Symposium on User Interface Software and Technology (UIST’95), pages 111-120.
ACM, 1995.

Advanced Collaborative Technology Research. Codoxware: Connecting people and
documents. http://www.codoxware.com/.

M. Ressel, D. Nitsche-Ruhland, and R. Gunzenh&user. An integrating,
transformation-oriented approach to concurrency control and undo in group ed-
itors. In 1996 ACM conference on Computer Supported Cooperative Work, pages
288-297. ACM, 1996.

A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky, and D. Shaket. Venus:
Verification for untrusted cloud storage. In Proceedings of the 2010 ACM workshop
on Cloud computing security workshop, pages 19-30. ACM, 2010.

C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving convergence, causality
preservation, and intention preservation in real-time cooperative editing systems.
In ACM Transactions on Computer-Human Interaction (TOCHI), volume 5, pages
63-108. ACM, 1998.

C. Sun and P. Maheshwari. An efficient distributed single-phase protocol for total
and causal ordering of group operations. In 3rd International Conference on High-
Performance Computing (HiPC’96), page 295. IEEE Computer Society, 1996.
Owen Taylor. Intrusion on www.gnome.org. http://mail.gnome.org/archives/
gnome-announce-1ist/2004-March/msg00114.html, 2004.

GH ter Hofte and HJ van der Lugt. Cocodoc: a framework for collaborative
compound document editing based on opendoc and corba. In Proceedings of the
IFIP/IEFEFE international conference on Open distributed processing and distributed
platforms, pages 15-33. Chapman & Hall, Ltd., 1997.

TheCodingMonkeys. SubEthaEdit: Collaborative text editing. http://wuw.
codingmonkeys.de/subethaedit/.

Q. Wu and C. Pu. Modeling and implementing collaborative editing systems with
transactional techniques. In Proceedings of the 6th International Conference on
Collaborative Computing: Networking, Applications and Worksharing, pages 1-10.
IEEE, 2010.

A.A. Zafer. Netedit: A collaborative editor. Master’s thesis, Master of Science,
University de Virginia, USA, 2001.

