Skip to main content

A Hybrid Soft Computing Approach for Optimizing Design Parameters of Electrical Drives

  • Conference paper

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 188))

Abstract

In this paper, we are applying a hybrid soft computing approach for optimizing the performance of electrical drives where many degrees of freedom are allowed in the variation of design parameters. The hybrid nature of our approach originates from the application of multi-objective evolutionary algorithms (MOEAs) to solve the complex optimization problems combined with the integration of non-linear mappings between design and target parameters. These mappings are based on artificial neural networks (ANNs) and they are used for the fitness evaluation of individuals (design parameter vectors). The mappings substitute very time-intensive finite element simulations during a large part of the optimization run. Empirical results show that this approach finally reduces the computation time for single runs from a few days to several hours while achieving Pareto fronts with a similar high quality.

This work was conducted in the realm of the research program at the Austrian Center of Competence in Mechatronics (ACCM), which is a part of the COMET K2 program of the Austrian government. The work-related projects are kindly supported by the Austrian government, the Upper Austrian government and the Johannes Kepler University Linz. The authors thank all involved partners for their support. This publication reflects only the authors’ views.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, A., Corchado, E., Corchado, J.M.: Hybrid learning machines. Neurocomputing 72(13-15), 2729–2730 (2009)

    Article  Google Scholar 

  2. Alaya, I., Solnon, C., Ghedira, K.: Ant colony optimization for multi-objective optimization problems. In: 19th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2007, vol. 1, pp. 450–457 (2007)

    Google Scholar 

  3. De Keulenaer, H., Belmans, R., Blaustein, E., Chapman, D., De Almeida, A., De Wachter, B., Radgen, P.: Energy efficient motor driven systems. Tech. rep., European Copper Institute (2004)

    Google Scholar 

  4. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley-Interscience Series in Systems and Optimization. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Duan, Y., Ionel, D.: A review of recent developments in electrical machine design optimization methods with a permanent magnet synchronous motor benchmark study. In: 2011 IEEE Conference on Energy Conversion Congress and Exposition (ECCE), pp. 3694–3701 (September 2011)

    Google Scholar 

  7. Durillo, J.J., Nebro, A.J.: JMETAL: A java framework for multi-objective optimization. Advances in Engineering Software 42, 760–771 (2011)

    Article  Google Scholar 

  8. European Union: Regulation (eg) nr. 640/2009

    Google Scholar 

  9. Fleischer, M.: The Measure of Pareto Optima. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Grosan, C., Abraham, A.: Intelligent Systems: A Modern Approach. Intelligent Systems Reference Library Series. Springer, Germany (2011) ISBN 978-3-642-21003-7

    MATH  Google Scholar 

  11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)

    Article  Google Scholar 

  12. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall Inc., Upper Saddle River (1999)

    MATH  Google Scholar 

  13. Hong, Y.S., Lee, H., Tahk, M.J.: Acceleration of the convergence speed of evolutionary algorithms using multi-layer neural networks. Engineering Optimization 35(1), 91–102 (2003)

    Article  MathSciNet  Google Scholar 

  14. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–366 (1989)

    Article  Google Scholar 

  15. Jannot, X., Vannier, J., Marchand, C., Gabsi, M., Saint-Michel, J., Sadarnac, D.: Multiphysic modeling of a high-speed interior permanent-magnet synchronous machine for a multiobjective optimal design. IEEE Transactions on Energy Conversion 26(2), 457–467 (2011)

    Article  Google Scholar 

  16. Paliwal, M., Kumar, U.A.: Neural networks and statistical techniques: A review of applications. Expert Systems with Applications 36(1), 2–17 (2009)

    Article  Google Scholar 

  17. del Valle, Y., Venayagamoorthy, G., Mohagheghi, S., Hernandez, J.C., Harley, R.: Particle swarm optimization: Basic concepts, variants and applications in power systems. IEEE Transactions on Evolutionary Computation 12(2), 171–195 (2008)

    Article  Google Scholar 

  18. Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. thesis, Harvard University (1974)

    Google Scholar 

  19. Zhao, S.Z., Iruthayarajan, M.W., Baskar, S., Suganthan, P.: Multi-objective robust pid controller tuning using two lbests multi-objective particle swarm optimization. Information Sciences 181(16), 3323–3335 (2011)

    Article  Google Scholar 

  20. Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: IEEE Congress on Evolutionary Computation, CEC 2006, pp. 892–899 (2006)

    Google Scholar 

  21. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: Giannakoglou, K., et al. (eds.) Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001). International Center for Numerical Methods in Engineering (CIMNE), pp. 95–100 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zăvoianu, AC., Bramerdorfer, G., Lughofer, E., Silber, S., Amrhein, W., Klement, E.P. (2013). A Hybrid Soft Computing Approach for Optimizing Design Parameters of Electrical Drives. In: Snášel, V., Abraham, A., Corchado, E. (eds) Soft Computing Models in Industrial and Environmental Applications. Advances in Intelligent Systems and Computing, vol 188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32922-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32922-7_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32921-0

  • Online ISBN: 978-3-642-32922-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics