
Logical Foundations of Continuous Query

Languages for Data Streams

Carlo Zaniolo

University of California at Los Angeles
zaniolo@cs.ucla.edu

Abstract. Data Stream Management Systems (DSMS) have attracted
much interest from the database community, and extensions of relational
database languages were proposed for expressing continuous queries on
data streams. However, while relational databases were built on the solid
bedrock of logic, the same cannot be said for DSMS. Thus, a logic-based
reconstruction of DSMS languages and their unique computational model
is long overdue. Indeed, the banning of blocking queries and the fact
that stream data are ordered by their arrival timestamps represent ma-
jor new aspects that have yet to be characterized by simple theories. In
this paper, we show that these new requirements can be modeled us-
ing the familiar deductive database concepts of closed-world assumption
and explicit local stratification. Besides its obvious theoretical interest,
this approach leads to the design of a powerful version of Datalog for
data streams. This language is called Streamlog and takes the query
and application languages of DSMS to new levels of expressive power,
by removing the unnecessary limitations that severely impair current
commercial systems and research prototypes.

1 Introduction

Data stream management systems represent a vibrant area of new technology
for which researchers have extended database query languages to support con-
tinuous queries on data streams [4,3,8,10,18,7,12,20]. These database-inspired
approaches have produced remarkable systems and applications, but have yet to
deliver solid theoretical foundations for their data models and query languages—
particularly if we compare with the extraordinary ones on which the success of
relational databases was built. Logic provided the theoretical bedrock for rela-
tional databases from the very time in which they were introduced by E.F. Codd,
and this foundation was then refined, generalized and strengthened by the work
on database and logic, and Datalog, which delivered concepts and models of
great power and elegance [21,1,22].

Until now, DSMS researchers have made little use of logic-based concepts,
although these provide a natural formalism and simple solutions for many of
the difficult problems besetting this area, as we will show in this paper. In par-
ticular, we show that Reiter’s Closed World assumption [19] provides a natural
basis on which to study and formalize the blocking behavior of continuous query

P. Barceló and R. Pichler (Eds.): Datalog 2.0, LNCS 7494, pp. 177–189, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

178 C. Zaniolo

operators, whereby concepts such as local stratification can be used to achieve a
natural and efficient expression of recursive rules with non-monotonic constructs.

The paper is organized as follows. In the next section, we present a short dis-
cussion of related previous work and then, in Section 3, we explore the problem of
supporting order and recursion on single stream queries for both monotonic and
non-monotonic constructs. Thus, in Section 4, we introduce Streamlog, which is
basically Datalog with modified well-formedness rules for negation. These rules
guarantee both simple declarative semantics and efficient execution (Section 5).
Because of possible skews between their timestamps, multiple streams pose com-
plex challenges at the logical and implementation levels. We study this problem
in Section 6, where we propose a backtrack-oriented solution and show that its
benefits extend well beyond union.

2 Continuous Queries on Relational Data Streams

As described in various surveys [4,12], data streams can be modeled as append-
only relations on which the DSMS is asked to support standing queries (i.e.,
continuous queries). As soon as tuples arrive in the input stream, the DSMS
is expected to decide, in real time or quasi real-time, which additional results
belong to the query answer and promptly append them to the output stream.
This is an incremental computation model, where no output can be taken back;
therefore, the DSMS might have to delay returning an output tuple until it
is sure that the tuple belongs to the final output—a certainty that for many
queries is only reached after the DSMS has seen the whole input. The queries
showing this behavior, and operators causing it, are called blocking, and have
been characterized in [4] as follows: A blocking query operator is one that is
unable to produce the first tuple of the output until it has seen the entire input.
Clearly, blocking query operators are incompatible with the computation model
of DSMS and should be disallowed, whereas all non-blocking queries should
instead be allowed. However, many queries and operators, including essential
ones such as union, fall in-between and are only partially blocking; currently,
we lack simple rules to decide when, and to which extent, partially blocking
operators should be allowed and how they should be treated. Therefore, better
understanding and formal characterizations are badly needed.

The main previous results on blocking queries proved that non-monotonic
query operators are blocking, whereas monotonic operators are non-blocking
[17,13]. Given that negation and traditional aggregates are non-monotonic, most
current DSMS simply disallow them in queries, although this exclusion causes
major losses in expressive power [17]. However, a more sophisticated analysis
suggests that these losses are avoidable, since (i) the monotonicity notion used
in [17] is not the subset ordering used in databases and Horn clauses, and (ii)
previous research on deductive databases made great strides in coping with non-
monotonicity via concepts such as stratification and stable models [22].

Therefore, in this paper, we provide a reasoned reconstruction of the basic non-
monotonic theory of logic languages in the context of data streams, leading to the

Logical Foundations of Continuous Query Languages for Data Streams 179

Fig. 1. Continuous Query Graphs

design of a concrete language called Streamlog. We will revisit the closed-world
assumption and adapt well-known concepts such as stratification to discover,
much to our surprise, that non-monotonic constructs dovetail with data stream
languages, enabling Streamlog to achieve great expressive power.

Queries on data streams are commonly visualized using workflow models such
as that of Figure 1, that show the pipelined execution used by the DSMS to im-
plement continuous queries. The boxes labelled Source at the left of our graph,
depict tuples coming from an external stream source or a database relation. For
instance in the first query, the source feeds incoming tuples to a buffer; then query
operator F1 takes the tuples from this buffer and feeds them to its output buffer
that supplies operator F2, and so on. As shown in Figure 1, some boxes might con-
sist of very simple operators, e.g., the relational algebra operators of projection,
selection and union. In general, however, the boxes can implement much more
complex functions, including pattern search operators or data mining tasks [20].
Complex functions can been written as user-defined aggregates written natively
in SQL [20], but Streamlog can also be quite effective in this role.

A key assumption is that operators are order-preserving. Thus, each operator
takes tuples from the front of its input queue and add the tuple(s) it produces,
if any to the tail of its output buffer. Thus, buffers might delay but not alter the
functions computed by simply feeding the output of one operator directly into the
input of the next. Thus, when the operators are defined by Streamlog rules, then
the semantics of our continuous query is defined by the logic program consisting of
(i) the goal defined by the Sink node (ii) the rules in the boxes feeding, directly or
indirectly, into the sink node, and (iii) the facts streaming from the source nodes
into said boxes and rules.

In this paper, we focus on data streams whose tuples are explicitly times-
tamped. More specifically, we will assume that the first column of our tuples
contain a timestamp that either (i) was created by the external device that cre-
ated the tuple (external timestamp) or (ii) it was added by the DSMS at the time
it received the tuple (internal timestamp). In either case, tuples are arranged and
processed by increasing values of their timestamps. Extending these results to
data streams that are not timestamped will be discussed in future papers.

180 C. Zaniolo

3 Single Stream Processing

The top query graph of Figure 1 shows the processing flow for a single stream,
while the one below it shows the processing of multiple streams. In both cases
we assume that timestamped data streams (i) enter each query operator in in-
creasing timestamp order and (ii) leave the query operator in the same order. As
we shall see, although (i) and (ii) represent two facets of the same problem, the
technical issues and opportunities they bring about are quite different. For (i)
consider the example of a stream of messages of the form msg(Time, MsgCode)

and say that we are looking for repeated occurrences of code “red” messages.
Then the following Datalog rule can be used to define multiple occurrences of
the same alarm code “X”:

Example 1. Repeated occurrences of the same alarm.

repeated(T, X)← msg(T, X), msg(T0, X), T > T0.

Thus, the final query goal ?repeated(T, red) will detect repeated occurrences
of code “red”, whereby an application might sound an alarm, which is triggered
for all but the first occurrence of code red.

The semantics of query Q on a stream, such as msg, is defined by the cumu-
lative answer that Q has returned until time τ . This cumulative answer at time
τ must be equal to the answer computed upon the database containing all the
data stream tuples with timestamp ≤ τ . In a blocking query, this equality only
holds at the end of the input, whereas for a continuous non-blocking query it
must hold for every instant in time.

Massive data streams over long periods can exceed the system storage ca-
pacity. In DSMS, this problem is addressed with windows or other synopses
[3]. Queries involving windows can be easily expressed using rules. For instance
if wsize(W) defines the window within which we detect repetitions, Example 1
becomes:

Example 2. Multiple occurrences within a window

windoweg(T2, red)← msg(T2, red), msg(T1, red),
T1 < T2, wsize(W), T2 ≤ T1+ W.

But, unlike in other DSMS [3], windows do not play a key role in our semantics.

The Importance of Order. Since query operators return sequences of tuples that
are fed into the next query operator, assuring the correct order of their output
sequences becomes critical. To illustrate this point, say that we modify Example
1, above, by keeping the body of the rule unchanged; but then we change the
head of the rule so that the timestamp of the former occurrence is used, rather
than the current one:

Example 3. Time-warped repetitions ?wrepeated(Time, X)

wrepeated(T0, X)← msg(T, X), msg(T0, X), T > T0.

Logical Foundations of Continuous Query Languages for Data Streams 181

We immediately realize that there is a problem, since repetitions normally arrive
in an order that is different from that of their previous occurrences. For instance,
we might have that a message with code α arrives at time tα, followed by a mes-
sage with code β, which is then repeated immediately, while the first repetition
of α arrives 10 minutes later. Then, to produce tuples by increasing timestamps,
we will need to hold up the output for 10 minutes. Here too punctuation marks
and windows are effective palliatives to control the problem, but in general the
delay required can be unbound. The situation of unbound wait can be as bad as
that of blocking queries. For instance say that at some point, a rare color shows
up in our input stream, never to show up again. Then for any new color that has
its first occurrence after our rare color, no output can ever be generated until
the very end of the input. In a nutshell, rules such as that of Example 3 must be
disallowed, although they contain no negation or other nonmonotonic operators.

Negated Goals: The addition of order-inducing constraints in the rules offers
unexpected major benefits when dealing with negated goals. Say that we want
to detect the first occurrence of “code red” warning. For that, we only need
to make sure that once we receive such a message there is no identical other
message preceding it:

Example 4. First occurrence of code red: ?first(T, red).

first(T, X)← msg(T, X),¬previous(T, X).
previous(T, X)← msg(T0, X), T0 < T.

To find the second occurrence of code red we will start by finding one that follows
the first. Moreover there cannot be any other occurrence between this and the
first one:

Example 5. Second occurrence of code red ?second(T, red).

second(T2, Y)← first(T1, Y), msg(T2, Y), T2> T1,¬befr(T2, Y).
befr(T2, Y)← first(T1, Y), T1 < T2, msg(Tb, Y), Tb < T2, T1 < Tb.

These queries only use negation on events that, according to their timestamps,
are past event. Thus the queries can be answered in the present: they are non-
blocking. Therefore, they should be allowed by a DSMS compiler, which must
therefore be able to set them apart from other queries with negation which are
instead blocking.

For instance, a blocking query is the following one that finds the last occur-
rence of code-red alert:

Example 6. Last occurrence of code red: ?last(T, red).

last(T, Z)← msg(T, Z),¬next(T, Z).
next(T, Z)← msg(T1, Z), T1 > T.

This is obviously a blocking query, inasmuch as we do not have the information
needed to decide whether the current red-alert message is actually the final one,

182 C. Zaniolo

while messages are still arriving. Only when the data stream ends, we can make
such an inference: to answer this query correctly, we will have to wait till the
input stream has completed its arrival, and then we can use the standard CWA
to entail the negation that allows us to answer our query. But the standard
CWA assumption will not help us to conclude that our query is non-blocking.
We will instead exploit the timestamp ordering of the data streams to define a
Progressive Closing World Assumption (PCWA) that can be used in the task.
In our definition, we will also include traditional database facts and rules, since
these might also be used in continuous queries.

Progressive Closing World Assumption (PCWA): We consider a world con-
sisting of one timestamped-ordered stream and database facts. Once a fact
stream(T, . . .) is observed in the input stream, the PCWA allows us to assume
¬stream(T1, . . .), provided that T1 < T, and stream(T1, . . .) is not entailed by
our fact base augmented with the stream facts having timestamp ≤ T.

Therefore, our PCWA for a single data stream revises the standard CWA
of deductive databases with the provision that the world is in fact expanding
according to its timestamps. Therefore, we will also allow the standard notions of
entailment that guarantee consistency: besides the least models of Horn Clauses
these also include the perfect models of (locally) stratified programs.

In the next section, we derive from the PCWA simple conditions that ensure
syntactic well-formedness and efficient implementation for our programs.

4 Streamlog

In Streamlog, base predicates, derived predicates, and the query goal are all
timestamped in their first arguments. These will be called temporal, to distin-
guish them from non-timestamped database facts and predicates that might also
be used in the programs.

The same safety criteria used in Datalog can be used in Streamlog. Further-
more, we assume that timestamp variables are made safe by equality chains
equating their values to the timestamps in the base stream predicates. There-
fore, even if T 1 is safe, expressions such as T 2 = f(T 1) or T 2 = T 1 + 1 cannot
be used to deduce the safety of T 2. Only equality can be used for timestamp
arguments.

We can now propose obvious syntactic rules that will avoid blocking behavior
in the temporal rules of safe Streamlog programs.

– Strictly Sequential:A rule is said to be Strictly sequential when the timestamp
of its head is > than every timestamp in the body of the rule. A predicate
is strictly sequential when all the rules defining it are strictly sequential.

– Sequential: A rule is said to be sequential when it satisfies the following three
conditions:
(i) the timestamp of its head is equal to the timestamp of some positve goal,
(ii) the timestamp of its head is > or ≥ than the timestamps of the remaining
goals, and

Logical Foundations of Continuous Query Languages for Data Streams 183

(iii) its negated goals are strictly sequential or have a timestamp that is <
than the timestamp of the head.

– A program is said to be sequential when all its rules are sequential or strictly
sequential.

The programs in Examples 4, and 5 are sequential, given that the predicates
previous and befr in their negated goals are strictly sequential.

Next observe that the programs in Examples 4, and 5 are stratified with
respect to negation with previous occupying a lower stratum than first, which
is in a stratum not higher than befr, which is in a stratum lower than second.

Stratified Datalog programs have a syntactic structure that is easy for a com-
piler to recognize and turn into an efficient implementation [22]. In fact, the
unique stable model of these programs, called the perfect model, can be com-
puted efficiently using a stratified iterated fixpoint [22]. Unfortunately stratified
programs do not allow negation or aggregates in recursive rules, and therefore,
are not conducive to efficient expression of algorithms such as shortest path.
Much previous research was devoted to overcoming this limitation. In particu-
lar, there is a class of programs called locally stratified programs that have a
unique stable model, called perfect model. Unfortunately, the stratification for a
locally stratified programs can only be verified against its instantiated version,
whereby supporting perfect models is, in general, an Π1

1-complete problem [9].
Overcoming this limitation and supporting negation or aggregates in recursion

has thus provided a major focus of topical research where progress has been very
slow. Therefore, we were pleasantly surprised to find out that the simple notion
of sequential programs for Streamlog avoids the non-monotonicity problems that
have hamstrung Datalog and frustrated generations of researchers. To illustrate
this point, let us first use the stratified program of Example 7 to express the
well-known shortest path problem. In this example, we use the paths computed
for previous timestamps to discard longer arcs in the incoming stream. We also
use a simple predicate lgr(T1, T2, T) whereby T is equal to the larger of the first
two arguments:

Example 7. Continuous shortest paths in graphs defined by stream of arcs.

path(T, X, Y, D)← arc(T, X, Y, D),¬shorter(T, X, Y, D).
shorter(T, X, Y, D)← path(T1, X, Y, D1), T1< T, D1 ≤ D.

path(T, X, Z, D)← path(T1, X, Y, D1), path(T2, Y, Z, D2),
lgr(T1, T2, T), D = D1+D2.

According to these rules, the arrival of one or more new arc will trigger addition
of new edges in path. Then these new edges can trigger the addition of additional
ones in recursive rule, where path appears twice. The differential fixpoint used
in this computation [22] will result in at least one of these two path goals to have
a timstamp equal to T—i.e., the larger of the two values is used to timestamp
new fact generated in the head. This quadratic expression of transitive closure
requires only the memorization of path; it is thus preferable to a linear rule that
uses both arc and path, both of which then require memorization.

184 C. Zaniolo

5 Declarative Semantics and Operational Semantics

Example 8 above, shows how to improve our rules by pushing negation into
recursion. The program so obtained is sequential, and therefore it has a formal
semantics and efficient implementation that are discussed after the example.

Example 8. Negation can be pushed inside recursion.

minpath(T, X, Y, D)← arc(T, X, Y, D),¬shorter(T, X, Y,D).
minpath(T, X, Z, D)← minpath(T1, X, Y, D1), minpath(T2, Y, Z, D1), lgr(T1, T2, T),

¬shorter(T, X, Z, D), D = D1+ D2.
shorter(T, X, Z, D)← minpath(T1, X, Z, D1), D≤ D1, T1 < T.

The timestamps in our data stream form a sequence that is unbound but finite.
We can denote them by their position in the sequence, and talk about the nth

timestamp, without fear of ambiguity. Then, sequential programs are locally
stratified by their timestamp values as discussed next. To prove this we will
construct the bistate equivalent of our program. The first step is a temporal
expansion, where a rule with a condition ≤ (≥) between temporal arguments, is
replaced by two rules: in the first rule, the temporal arguments are set to equal,
and in the other they are set to < (> S). Likewise, a rule with lgr is replaced
by three rules, resp. for =, < and>. Then we have the following rewriting:

1. In each rule, rename with the suffix new the head predicate and the body
predicates that have a timestamp equal to the that of the head,

2. Rename all the predicates in the body whose temporal argument is less than
that of the head by the suffix old

3. Remove the temporal arguments from the rules.

Thus, for Example 8 we obtain:

Example 9. Bistate represention for the program of Eample 8

minpath new(X, Y, D)← arc new(X, Y, D),¬shorter new(X, Y, D).
minpath new(X, Z, D)← minpath new(X, Y, D1), minpath new(Y, Z, D1),

¬shorter new(X, Z, D), D = D1+ D2.
minpath new(X, Z, D)← minpath old(X, Y, D1), minpath new(Y, Z, D1),

¬shorter new(X, Z, D), D = D1+ D2.
minpath new(X, Z, D)← minpath new(X, Y, D1), minpath old(Y, Z, D1),

¬shorter new(X, Z, D), D = D1+ D2.

shorter new(X, Z, D)← minpath old(X, Z, D1), D ≤ D1.

The program so obtained is stratifiable in several ways, including the following
one: we assign to stratum 0 all and only the predicates with suffix old, and the
predicates with suffix new are all in higher strata. For instance, we will assign
minpath old to level 0, and then shorter new, and arc new to level 1, and
minpath new to level 2. Thus here we have one stratum with old predicates,
and S = 2 strata for new predicates.

Logical Foundations of Continuous Query Languages for Data Streams 185

Now we can generate a local stratification based on the distinct temporal
values of the timestamps which form a finite sequence τ1, . . . , τn. In our case
minpath(0, . . .) will be asigned to stratum 0, shorter(τ1, . . .) and arc(τ1, . . .)
are assigned to stratum 1, and minpath(τ1, . . .) are assigned to stratum 2. Then
the process repeats with with temporal argument T2 being assigned as follows:
shorter(τ2, . . .) and arc(τ2, . . .) to stratum 3, and minpath(τ2, . . .) to stratum 4.
Thus, for our sequence τ1, . . . , τn we have 1+n×S strata, where a p new(τj, . . .)
that belonged to state k in the bistate version will now be assigned to stratum
j × S + k in the local stratification.

The computation of perfect model for the locally stratified program now be-
comes straightforward. Basically, we iterate over the following two steps for each
set of tuples arriving with a new timestamp: (i) the stratified bistate version of
the program is used to derive additional new values for the predicates, and (ii)
the old version is incremented with this newly derived atoms.

6 Multiple Streams

A much studied DSMS problem is how to best ensure that binary query oper-
ators, such as unions or joins, generate outputs sorted by increasing timestamp
values [14,5,6]. To derive a logic-based characterization of this problem, assume
that our msg stream is in fact built by combining the two message streams sensr1
and sensr2. For stored data, this operation requires a simple disjunction as fol-
lows:

Example 10. Disjunction expressing the union of two streams.

msg(T1, S1)← sensr1(T1, S1).
msg(T2, S2)← sensr2(T2, S2).

However even if sensr1 and sensr2 are ordered by their timestamps, this dis-
junction says nothing about the fact that the output should be ordered. Indeed,
assuring such an order represents a serious problem for a DSMS, due to the
time-skews that normally occur between different data streams. Thus, for the
union in Figure 1, when one of the two input buffers is empty, we cannot take
the first item from the other buffer, until we know what its timestamp value will
be. This problem has been extensively studied, but only at the implementation
level [14,5,6]. At the logical level the problem can be solved as follows:

Example 11. Union of synchronized streams.

msg(T1, S1)← sensr1(T1, S1),¬missing2(T1).
msg(T2, S2)← sensr2(T2, S2),¬missing1(T2).

Now we check that all the stream2 tuples (resp. the stream1 tuples) with times-
tamp less than T1 (resp. less than T2) added to msg:

missing2(T1)← sensr2(T2, S2), T2 < T1,¬msg(T2, S2).
missing1(T2)← sensr1(T1, S), T1 < T2,¬msg(T1, S1).

186 C. Zaniolo

The expression given in Example 11 is clearly better than the sort-merge ap-
proach proposed in the literature that can be described as follows:

Example 12. Union of unsynchronized streams by sort merging.

msg(T1, S1)← sensr1(T1, S1), sensr2(T2,), T2 ≥ T1.
msg(T2, S2)← sensr2(T2, S2), sensr1(T1,), T1 ≥ T2.

This expression is correct but not complete1. As a result, this operator might
have to enter an idle-waiting state that is akin to temporary blocking [5].

From the viewpoint of users, neither the solution in Example 11 nor that in
Example 12 are satisfactory. What users instead want is to write the simple rules
shown in Example 10 and let the system take care of time-skews. Therefore in
Streamlog, we will allow users to work under the Perfect Syncronization Assump-
tion (PSA), whereby the data streams of interest are perfectly synchronized. Un-
der PSA, we ca now extend the PCWAwe had previously defined for a single data
stream to a collection of N data streams streamj(T, . . .) , j = 1, . . . , N as fol-
lows: We can assume ¬streamj(Tj, . . .) iff for some i, 1 ≤ i ≤ N streami(Ti, . . .)
with Ti > Tj, and stream(Tj, . . .) is not entailed by our fact base augmented
with all the stream facts with timestamp ≤ Ti Since in reality PSA does not
hold, the DSMS is given the responsibility to enforce efficient policies and condi-
tions needed to ensure that queries return the same answers as those produced
under PSA. For instance, for the query at hand, the DSMS system might in
fact enforces conditions such as ¬missing2(T1) in the first rule of our union.
Efficient support of these PSA-emulating conditions requires the use of sophis-
ticated techniques, such as intelligent backtracking [5]. For instance in Figure
1, say that the lower buffer feeding the union has a tuple with timestamp t1,
while the other buffer is empty. Rather than waiting idly for the arrival of some
tuples in the empty buffer, we can backtrack to the previous operators feeding
the buffer. If a tuple with timestamp < t1 is found, it must be moved quickly
through the operators since this is the one that must pass through to the union
next. But if only tuples with timestamps > t1 are found, then the union operator
will be signalled (e.g., via punctuation marks) to let the tuple with timestamp
t1 to go through. Finally, if the buffer is empty, an additional backtracking step
will be performed to visit the buffer supplied by Source1, and so on. As dis-
cussed in [5], this backtracking approach can lead to significant improvements
in the response time of our DSMS. Although space limitations prevent us from
discussing this approach further, we observe that (i) while Streamlog is clearly
inspired by Datalog, its execution exploits Prolog’s backtracking mechanism,
and (ii) the techniques used to support PSA are also very useful to control and
expedite execution of single-stream queries.

To illustrate (ii), say that tempr(Time, Locat, Celcius) is the stream con-
taining the temperature readings of our sensors, from various locations. Then
the following rules could be used to continuously return each new temperature
maximum:

1 For instance, the sensr2 stream might have ended and the current clock is past T1.

Logical Foundations of Continuous Query Languages for Data Streams 187

max(T, Loc, Cel)← tempr(T, Loc, Cel),¬hotter(T, Cel).
hotter(T1, C1)← tempr(T2,, C2), C2 ≥ C1, T2 ≤ T1.

Here the backtracking technique used to support NSA for union can be used to
detect that all the the tempr tuples with timestamp ≤ T have already arrived and
thus the query ?max(T, Loc, Celcius) can be answered at once without await-
ing for tuples with timestamps larger than T. Also, if we construct the bistate
equivalent of our rules we see that we obtain a stratified program, whereby the
original program is locally stratified and the efficient execution techniques pre-
viously discussed remain valid. Therefore we can relax the definition of Strictly
Sequential rules as follows:
Strictly Sequential: A rule is said to be Strictly sequential when the timestamp
of the head of the rule is > than the timestamp of each recursive goal and ≥ the
timestamps of the non-recursive goals.

This extension does not compromise the key properties of our sequential pro-
grams, for which the following properties hold2:

Theorem 1. If P is a Sequential Program then: (i) P is locally stratified, and
(ii) the unique stable model of P can be computed by repeating the iterated fixpoint
of its bistate version for each timestamp value.

For an additional example illustrating the uses of this generalization, let us return
to our shortest-path program in Example 8. When several arcs arrive with the
same timestamp, they might result in the addition of multiple paths between the
same node pair. Thus we could add an additional rule (and stratum) to select
the shortest among such paths that share the same timestamp.

7 Conclusion

While the results presented here are still preliminary, they show that logic can
bring sound theoretical foundations and superior expressive power to DSMS
languages which, currently, are dreadfully lacking in both. In terms of syntax,
Streamlog is just standard Datalog over timestamed predicates; however Stream-
log obtains the greater level of expressive power that negation (and aggregates) in
recursive rules entail by guaranteeing that simple sequentiality conditions holds
between the timestamped predicates in the rules. The use of standard Datalog
implies that the implementation techniques developed for XY-stratification [23]
can be used for Streamlog, and similar results are at hand for the many DSMS
that use continuous versions of SQL. This also sets our approach apart from
that proposed in [2] that relies on an explicit sequencing operator seq and an
operational semantics that is realized through a Prolog-based implementation.
2 The outline of the proof of this property is similar to that outlined in previous
section and it is based on a similar proof for XY-stratification presented in [22]. In
fact, the temporal arguments define an explicit stratification that is similar to that
of XY-stratified programs [23] and Statelog programs [15].

188 C. Zaniolo

Acknowledgements. This work was supported in part by NSF (Grant No. IIS
1118107). Thanks are due to the reviewers for many useful comments.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Anicic, D., et al.: A rule-based language for complex event processing and reason-
ing. In: RR, pp. 42–57 (2010)

3. Arasu, A., Babu, S., Widom, J.: CQL: A Language for Continuous Queries over
Streams and Relations. In: Lausen, G., Suciu, D. (eds.) DBPL 2003. LNCS,
vol. 2921, pp. 1–19. Springer, Heidelberg (2004)

4. Babcock, B., et al.: Models and issues in data stream systems. In: PODS (2002)
5. Bai, Y., Thakkar, H., Wang, H., Zaniolo, C.: Optimizing timestamp management

in data stream management systems. In: ICDE (2007)
6. Bai, Y., Thakkar, H., Wang, H., Zaniolo, C.: Time-stamp management and query

execution in data stream management systems. IEEE Internet Computing 12(6),
13–21 (2008)

7. Carney, D., et al.: Monitoring streams - a new class of data management applica-
tions. In: VLDB, Hong Kong, China (2002)

8. Chandrasekaran, S., Franklin, M.: Streaming queries over streaming data. In:
VLDB (2002)

9. Cholak, P., Blair, H.A.: The complexity of local stratification. Fundam. In-
form. 21(4), 333–344 (1994)

10. Cranor, C., Gao, Y., Johnson, T., Shkapenyuk, V., Spatscheck, O.: Gigascope:
High performance network monitoring with an sql interface. In: SIGMOD, p. 623.
ACM Press (2002)

11. Gallaire, H., Nicolas, J.-M., Minker, J. (eds.): Advances in Data Base Theory.
Advances in Data Base Theory, vol. 1. Plemum Press (1981)

12. Golab, L., Tamer Özsu, M.: Issues in data stream management. ACM SIGMOD
Record 32(2), 5–14 (2003)

13. Gurevich, Y., Leinders, D., Van den Bussche, J.: A Theory of Stream Queries. In:
Arenas, M. (ed.) DBPL 2007. LNCS, vol. 4797, pp. 153–168. Springer, Heidelberg
(2007)

14. Johnson, T., Muthukrishnan, S., Shkapenyuk, V., Spatscheck, O.: A heartbeat
mechanism and its application in gigascope. In: VLDB, pp. 1079–1088 (2005)

15. Lausen, G., Ludäscher, B., May, W.: On Active Deductive Databases: The Statelog
Approach. In: Freitag, B., Decker, H., Kifer, M., Voronkov, A. (eds.) DYNAMICS
1997, and ILPS-WS 1997. LNCS, vol. 1472, pp. 69–106. Springer, Heidelberg (1998)

16. Law, Y.-N., Wang, H., Zaniolo, C.: Data models and query language for data
streams. In: VLDB, pp. 492–503 (2004)

17. Law, Y.-N., Wang, H., Zaniolo, C.: Relational languages and data models for con-
tinuous queries on sequences and data streams. ACM Trans. Database Syst. 36,
8:1–8:32 (2011)

18. Madden, S., Shah, M.A., Hellerstein, J.M., Raman, V.: Continuously Adaptive
Continuous Queries over Streams. In: SIGMOD, pp. 49–61 (2002)

19. Reiter, R.: On closed world data bases. In: Logic and Data Bases, pp. 55–76 (1977)
20. Thakkar, H., Laptev, N., Mousavi, H., Mozafari, B., Russo, V., Zaniolo, C.: Smm:

A data stream management system for knowledge discovery. In: ICDE, pp. 757–768
(2011)

Logical Foundations of Continuous Query Languages for Data Streams 189

21. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. I.
Computer Science Press (1988)

22. Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R.T., Subrahmanian, V.S., Zicari,
R.: Advanced Database Systems. Morgan Kaufmann (1997)

23. Zaniolo, C., Arni, N., Ong, K.: Negation and Aggregates in Recursive Rules: The
LDL++ Approach. In: Ceri, S., Tsur, S., Tanaka, K. (eds.) DOOD 1993. LNCS,
vol. 760, pp. 204–221. Springer, Heidelberg (1993)

	Logical Foundations of Continuous Query Languages for Data Streams
	Introduction
	Continuous Queries on Relational Data Streams
	Single Stream Processing
	Streamlog
	Declarative Semantics and Operational Semantics
	Multiple Streams
	Conclusion

