
This is the Full Version of the Extended Abstract that appears
in the Proceedings of 8th Conference on Security and Cryptography for Networks (SCN 2012)
(5 – 7 september 2012, Amalfi, Italy)
I. Visconti and R. De Prisco Eds., Springer-Verlag, LNCS 7485, pages 95–112.

Compact Round-Optimal Partially-Blind Signatures

Olivier Blazy, David Pointcheval, and Damien Vergnaud
{olivier.blazy, david.pointcheval, damien.vergnaud}@ens.fr

ENS, Paris, France ?

Abstract Partially-blind signatures find many applications in the area of anonymity, such as in e-cash or e-voting
systems. They extend classical blind signatures, with a signed message composed of two parts: a public one (common
to the user and the signer) and a private one (chosen by the user, and blindly signed). The signer cannot link later
the message-signature to the initial interaction with the user, among other signatures on messages with the same
public part.
This paper presents a one-round partially-blind signature which achieves perfect blindness in the standard model
using a Common Reference String, under classical assumptions: CDH and DLin assumptions in symmetric groups,
and similar ones in asymmetric groups. This scheme is more efficient than the previous ones: reduced round
complexity and communication complexity, but still weaker complexity assumptions. A great advantage is also to
end up with a standard Waters signature, which is quite short.
In addition, in all the previous schemes, the public part required a prior agreement between the parties on the public
part of the message before running the blind signature protocol. Our protocol does not require such pre-processing:
the public part can be chosen by the signer only.
Our scheme even allows multiple messages provided from independent sources to be blindly signed. These messages
can either be concatenated or aggregated by the signer, without learning any information about them, before
returning the blind signature to the recipient. For the aggregation (addition of the messages), we provide a new
result, of independent interest, about the Waters hash function over non binary-alphabets.

1 Introduction

Blind signatures were proposed by Chaum in 1982 [8]: they are an interactive signature scheme between a
user and a signer, in a way that the signed message, and even the resulting signature, are unknown to the
signer, this is the blindness property. More precisely, if the signer runs several executions of the protocol that
led to several message-signature pairs, he cannot link back any pair to a specific execution: the view of the
signer is unlinkable to the resulting message-signature pair. This unlinkability can either be computational,
we then talk about computational blindness, or perfect, we then talk about perfect blindness. In addition, they
guarantee some kind of unforgeability for the signer, which has been formalized in [18] to cope with e-cash
properties: the user cannot produce more message-signature pairs (coins) than the number of interactions
(withdrawals).

There have been several highly interactive schemes (like [17]), but Fischlin [10] gave a generic construction
of round-optimal blind signatures. Recent schemes have instantiated this construction, the user obtains an
actual signature on the message, of which he proves knowledge [1, 11] or can simply randomize it to make it
unlinkable [4,5]. In the latter case, the blind signature has the same format as the underlying signatures and,
in addition to being round-optimal, is thus short. Our construction, like this last one produced a simple (ran-
domized) Waters signature on the message m so two group elements and a scalar m under basic assumptions
DLin, where [1] uses less standard assumption SXDH and ADH-CDH, and around 38 elements in G1 and 34 in
G2 for the final signature because of the required proofs of knowledge. [12] presented a round-optimal blind
signature without CRS but less efficient than the construction relying on the Common Reference String.

A loophole in standard blind signatures was detailed by Abe and Okamoto [3]: the signer has no control
over the signed messages (except in some sense the unforgeability which limits their number). In e-cash
schemes, we want the bank to sign a coin (a random, and thus unknown, serial number), but with a specific
expiration date. Partially-Blind Signatures proposed by Abe and Fujisaki [2] solve this problem, by allowing

? CNRS – UMR 8548 and INRIA – EPI Cascade, Université Paris Diderot

c© Springer 2012.

2

the user and the signer to agree on a predetermined piece of information which must be included in the final
signed message.

Recently, in [19], Seo and Cheon presented a construction leading to (Partially) Blind-Signatures in the
standard model. However their construction relies on a trick consisting in starting from prime order groups
G1,G2,G3 and considering group elements in G = G1⊕G2⊕G3. While their approach provides nice theoretical
tools, the resulting signatures lies in G2 and are therefore three times longer than our proposal.

Our contributions. In this paper, we go one step further, improving [4] in several directions. We first
present a blind signature scheme with perfect blindness, using the perfectly hiding instantiation of Groth-Sahai
commitments [13]. We also widen the model of partially-blind signatures to supplement the predetermined
communication with an on-the-fly public information generated by the signer: the signer can simply include
it during the signing process, even if the user does not want this extra information. In the latter case, the user
can simply discard the signature and start anew. We call this new primitive signer-friendly partially-blind
signatures. This new notion allows to skip the prior agreement and allow the public information to be set
on-the fly. Of course this new notion does not forbid any kind of prior agreement on the public part, it just
strengthens the existing notion.

It is now possible to get rid of the prior agreement on the common piece of information in the signed
message and our instantiation allows the signer to do so in a round-optimal way. These two constructions being
compatible, we can present a round-optimal partially-blind signature with perfect blindness. Our protocol
does not need any pre-processing for the public part of the message. Basically both the user and the signer
can choose a piece of the public part, but instead of having a computational overhead for the agreement
both can simply choose during the 2 flows interaction what they want. The signer can always refuse to sign
something where the user’s public information doesn’t suit him and the user can always choose not to exploit
an uninteresting signature, so a protocol should avoid to waste communication costs when one can manage
without any security loss to stay in a two-flows protocol.

Eventually, discarding the perfect blindness, we take advantage of this asynchronous property (the user
and the signer can independently choose their inputs) and we consider the new context where the message
to be signed comes from several independent sources that cannot communicate together. We first present a
way to obtain a signature on the concatenation of the input messages. We also present a shorter instantiation
which gives a signature on the sum of the input messages. Such a sum can be useful when working on ballots,
sensor information, etc. Since we still apply the Waters signature, this led us to consider the Waters function
programmability over a non-binary alphabet, in a similar way as it was done in [14] for the binary alphabet. We
prove a negative result on the (2, 1)-programmability, but a nice positive one on the (1, poly)-programmability,
which is of independent interest.

Instantiations. We give several instantiations of our different blind signatures, all of which are based on weak
assumptions. Our constructions mainly use the two following building blocks, from which they inherit their
security: Groth-Sahai proofs for languages over pairing-friendly groups [13] and Waters signatures derived
from the scheme in [20] and used in [7]. Since verification of the revisited Waters signatures [4] is a statement of
the language for Groth-Sahai proofs, these two building blocks combine smoothly. The first instantiations are
in symmetric pairing-friendly elliptic curves and additionally use linear commitments [6]. Both unforgeability
and semantic security of these constructions rely solely on the decision linear assumption (DLin). The blindness
property is easily achieved granted the homomorphic property of the Waters signature. An instantiation
with improved efficiency, in asymmetric bilinear groups, using the SXDH variant of Groth-Sahai proofs and
commitments is drafted in the Appendix E. This setting requires an asymmetric Waters signature scheme
secure under a slightly stronger assumption, called CDH+, where some additional elements in the second
group are given to the adversary.

Applications. Our blind signature schemes find various kinds of applications:

3

E-voting. The security of several e-voting protocols relies on the fact that each ballot is certified by an election
authority. Since this authority should not learn the voter’s choice, a blind signature scheme (or even partially-
blind, if the authority wants to specify the election in the ballot) is usually used to achieve this property.
In order to achieve privacy of the ballot in an information-theoretic sense, it is necessary to use a signature
scheme that achieves perfect blindness. Our scheme is the first to achieve this property in the standard model
and under classical complexity assumptions.

E-cash. As mentioned above, partially-blind signatures played an important role in many electronic commerce
applications. In e-cash systems, for instance, the bank issuing coins must ensure that the message contains
accurate information such as the face value of the e-cash without seeing it and moreover in order to prevent
double-spending, the bank’s database has to record all spent coins. Partially-blind signatures can cope with
these problems, since the bank can explicitly include some information such as the expiration date and the
face value in the coin. Thanks to our proposal, the coin issuing protocol can be done without prior agreement
between the bank and the client.

Data aggregation in networks. A wireless (ad hoc) sensor network (WSN) consists of many sensor nodes that
are deployed for sensing the environment and collecting data from it. Since transmitting and receiving data
are the most energy consuming operations, data aggregation has been put forward as an essential paradigm
in these networks. The idea is to combine the data coming from different sources – minimizing the number
of transmissions and thus saving energy. In this setting, a WSN consists usually of three types of nodes:

– sensor nodes that are small devices equipped with one or more sensors, a processor and a radio transceiver
for wireless communication.

– aggregation nodes (or aggregators) performing the data aggregation (e.g. average, sum, minimum or
maximum of data).

– base stations responsible for querying the nodes and gathering the data collected by them.

WSNs are at high security risk and two important security goals when doing in-network data aggregation
are data confidentiality and data integrity. When homomorphic encryption is used for data aggregation, end-
to-end encryption allows aggregation of the encrypted data so that the aggregators do not need to decrypt
and get access to the data and thus provides end-to-end data confidentiality. Achieving data integrity is a
harder problem and usually we do not consider the attack where a sensor node reports a false reading value
(the impact of such an attack being usually limited). The main security flaw is a data pollution attack in
which an attacker tampers with the intermediate aggregation result at an aggregation node. The purpose of
the attack is to make the base station receive the wrong aggregation result, and thus make the improper or
wrong decisions.

While in most conventional data aggregation protocols, data integrity and privacy are not preserved at the
same time, our multi-source blind signature primitive permits to achieve data confidentiality and to prevent
data pollution attacks simultaneously by using the following simple protocol:

1. Data aggregation is initiated by a base station, which broadcasts a query to the whole network.
2. Upon receiving the query, sensor nodes report encrypted values of their readings (for the base station

public key) to their aggregators
3. The aggregators check the validity of the received values, perform data aggregation via the homomorphic

properties of the encryption scheme, (blindly) sign the result and route the aggregated results back to
the base station.

4. The base station decrypts the aggregated data and the signature which proves the validity of the gathered
information to the base station (but also to any other third party).

4

2 Definition

This section presents the global framework and the security model for partially-blind signature schemes. A
reminder of standard definition and security notions on Blind Signature can be found in the Appendix A.

Blind signatures introduced a nice feature, however it may be undesirable that requesters can ask the
signer to blindly sign any message. For example, in an e-cash scheme, some expiration date information should
be embedded in the e-coin, to avoid the bank’s database an uncontrolled growth when storing information for
double-spending checking. Partially-blind signatures are thus a natural extension of blind signatures: instead
of signing an unknown message, the signer signs a message which contains a shared piece of information in
addition to the hidden part. This piece is called info and, in the standard definition, is expected to have been
defined before the execution of the protocol. But since our schemes will not require the public part to be
agreed on by the two players before the protocol execution (as opposed to all the previous schemes from the
literature), we extend the usual partially-blind signature scheme with two public parts in the message, in
addition to the hidden part: info = infoc‖infos, where infoc is the common public part with prior agreement,
and infos is set on-the-fly by the signer. This provides a more flexible scheme, and this definition generalizes
all the above ones. If infos = ⊥, we are in the regular case of partially blind signature, whereas in case of
regular blind signature both parts are empty ⊥.

Definition 1 (Partially-Blind Signature Scheme). A PBS scheme is defined by 4 algorithms or proto-
cols (SetupPBS ,KeyGenPBS , 〈S,U〉,VerifPBS) where

– SetupPBS(1λ) generates the global parameters parampbs of the system;
– KeyGenPBS(parampbs) generates a pair of keys (pkPBS , skPBS);
– Signature Issuing: this is an interactive protocol between S(skPBS , info = infoc‖infos) and U(pkPBS ,m, info),

for a message m ∈ {0, 1}n and shared information info. It generates an output σ for the user:
σ ← 〈S(skPBS , info),U(pkPBS ,m, info)〉.

– VerifPBS(pkPBS ,m, info, σ) outputs 1 if the signature σ is valid with respect to the message m‖info and
pkPBS , 0 otherwise.

Quick note on security: The security requirements are a direct extension of the classical ones: for unforgeabil-
ity, we consider m‖info instead of m, and for the blindness, we condition the unlinkability between signatures
with the same public part info. Without the latter restriction, anyone can simply distinguish which message
was signed by comparing the public information. The unforgeability is strengthened by considering also the
public information so that the signer can be sure that the user won’t be able to exploit his signature in
another context.

Definition 2 (Signer-Friendly Partially-Blind Signature Scheme). A signer-friendly partially-blind
signature scheme PBS is defined by 4 algorithms or protocols (SetupPBS ,KeyGenPBS , 〈S,U〉,VerifPBS) where

– Setup(1λ) generates the global parameters parampbs of the system;
– KeyGen(parampbs) generates a pair of keys (pkPBS , skPBS);
– Signature Issuing: this is an interactive protocol between S(skPBS , infoc, infos) and U(pkPBS ,m, infoc), for

a message m ∈ {0, 1}n, signer information infos and common information infoc. It generates an output σ
for the user: σ ← 〈S(skPBS , infoc, infos),U(pkPBS ,m, infoc)〉.

– Verif(pkPBS ,m, infoc, infos, σ) outputs 1 if the signature σ is valid with respect to the messagem‖infoc‖infos
and pkPBS , 0 otherwise.

One notes that infoc = info and infos = ⊥ lead to a standard partially-blind signature; whereas the case
infoc = infos = ⊥ is the standard blind signature.

The signer always has the last word in the process, and so if he does not want to sign a specific info,
he will simply abort the protocol several times until the shared part suits his will. So, in the following, we

5

decided that it was wiser to let him choose this input. If the user wants a specific word in the final message
he can always add it to the blinded message. Intuitively this strengthens the unforgeability notion as the
adversary (the user in this case) won’t be able to chose the whole message to be signed because of infos. This
is ensured in the security game, because the adversary should outputs valid signatures, therefore they should
be done with the chosen infos. For the blindness property, the adversary should guess on signatures with the
same public infoc‖infos component, if it is not the case we answer with a blind-signature ⊥.

The complete security games can be found in the Appendix B.

3 Partially-Blind Signature

Our constructions will combine Groth-Sahai Linear Commitments [13] and the Waters signature [20] as
follows: given a commitment on the “Waters hash” F(M) (and some additional values proving we know the
message M and the randomness used), a pre-agreed shared information infoc, the signer can make a partially-
blind signature on M, infoc and an extra piece of public information infos. This construction makes use of a
symmetric pairing, but we extend it to asymmetric pairings in the Appendix E.

3.1 Assumptions

We rely on classical assumptions only: CDH for the unforgeability of signatures and DLin for the blindness
property (when not perfect), and also for soundness of the proofs:

Definition 3 (The Computational Diffie-Hellman problem (CDH)). The CDH assumption, in a cyclic
group G of prime order p, states that for a generator g ∈ G and random a, b ∈ Zp, given (g, ga, gb) it is hard
to compute gab.

Definition 4 (Decision Linear Assumption (DLin)). The DLin assumption, in a cyclic group G of prime
order p, states that given (g, gx, gy, gxa, gyb, gc) for random a, b, x, y ∈ Zp, it is hard to determine whether
c = a + b or a random value. When (g, u = gx, v = gy) is fixed, a tuple (ua, vb, ga+b) is called a linear tuple
w.r.t. (u, v, g), whereas a tuple (ua, vb, gc) for a random and independent c is called a random tuple.

One can easily see that if an adversary is able to solve a CDH challenge, then he can easily solve a DLin one.
So the DLin assumption implies the CDH assumption. Some reminders on Groth-Sahai Commitments and
Waters function can be found in the Appendix C as those are the main building blocks of our construction.

3.2 Partially-Blind Signature with Perfect Blindness

With those building blocks, we design a partially-blind signature scheme, which basically consists in com-
mitting the message to be signed. And granted the random coins of the commitment, the user can unblind
the signature sent by the signer. Eventually, using the randomizability of the Waters signature, the user
breaks all the links that could remain between the message-signature pair and the transaction. Our pro-
tocol proceeds as follows, on a commitment of F = F(M), a public common message infoc, and a public
message infos chosen by the signer. It is split into five steps, that correspond to an optimal 2-flow protocol:
BlindBS , which is first run by the user, SignBS , which is thereafter run by the signer, and VerifBS , UnblindBS ,
RandomBS that are eventually successively run by the user to generate the final signature. We thus have
U = (BlindBS ;VerifBS ,UnblindBS ,RandomBS) and S = SignBS :

– SetupBS(1λ) first chooses a bilinear group (p,G,GT , e, g). We need an additional vector u = (u0, . . . , uk)
$←

Gk+1 which defines the Waters function F (where k is the global length of M ||infoc||infos), a gen-

erator h
$← G, and a tuple of Groth-Sahai parameters (u1,u2,u3) in the perfectly hiding setting:

parambs = (p,G,GT , e, g, h,F ,u1,u2,u3);

6

– KeyGenBS(parambs) chooses a random scalar x
$← Zp, which defines the public key as pkBS = Y = gx,

and the secret key as skBS = Z = hx;
– Signature Issuing (S(skBS , infoc, infos),U(pkBS ,M, infoc)), which is split in several steps:

• BlindBS(M, pkBS ; (r1, r2, r3)): For a message M ∈ {0, 1}` and random scalars (r1, r2, r3)
$← Zp, define

the commitment as c =
(
c1 = ur11,1u

r3
3,1, c2 = ur22,2u

r3
3,2, c3 = gr1+r2ur33,3 · F(M)

)
and compute Y1,2 =

Y r1+r2 , Y3 = Y r3 . One also generates additional proofs of validity of the commitment:
∗ A proof ΠM of knowledge of M in c, the encrypted F(M), which consists of a bit-by-bit com-

mitment CM = (C′(M1), . . . , C′(M`)) and proofs that each committed value is a bit, and a proof
that c3 is well-formed. ΠM is therefore composed of 9`+ 3 group elements.
∗ A proof Πr containing the commitments Cr = (C(Y1,2), C(Y3)) and proofs asserting that they are

correctly generated. It requires 9 additional group elements.
Π thus consists of 9`+ 12 group elements, where ` is the bit-length of the message M

• SignBS(skBS , (c,Π), infoc, infos; s): To sign the commitment c, one first checks if the proof Π is valid.
It then appends the public message info = infoc‖infos to c3 to create c′3 = c3 ·

∏
uinfoii+` , which thus

becomes a commitment of the Waters function evaluation on M‖infoc‖infos of global length k. It
eventually outputs σ = (Z · c′3

s, us3,3, g
s) together with the additional public information infos, for a

random scalar s ∈ Zp.
• Verif(pkBS , (c, infoc, infos), σ = (σ1, σ2, σ3)): In order to check the validity of the signature, one first

computes c′3 as above, and then checks whether the following pairing equations are verified: e(σ1, g) =
e(h, pkBS) · e(c′3, σ3) and e(σ2, g) = e(u3,3, σ3). If it is not the case, then this is not a valid signature
on the original ciphertext, and the blind signature is set as Σ = ⊥.
• UnblindBS((r1, r2, r3), pkBS , (c, infoc, infos), σ): If the previous tests are positive, one can use the ran-

dom coins r1, r2, r3 to get back a valid signature on M‖infoc‖infos: σ′ = (σ′1 = σ1/(σ
r1+r2
3 σr32), σ′2 =

σ3), which is a valid Waters signature.
• RandomBS(pkBS , (c, infoc, infos), σ

′; s′): The latter can eventually be rerandomized to get Σ = (σ′1 ·
F(M ||infoc||infos)s

′
, σ′2 · gs

′
).

One can note thatΣ is a random Waters signature onM ||infoc||infos, where we denote F = F(M ||infoc||infos):

Σ = (σ′1 · F s
′
, σ′2 · gs

′
) = (F s

′ · σ1/(σr1+r23 σr32), gs
′ · σ3)

= (F s
′ · Z · c′3

s
/(gs(r1+r2)usr33,3), gs+s

′
)

= (F s
′ · Z · gs(r1+r2)usr33,3 · F

s/(gs(r1+r2)usr33,3), gs+s
′
) = (M s+s′ · Z, gs+s′)

– VerifBS(pkBS , (M, infoc, infos), Σ = (Σ1, Σ2)): One checks whether the following pairing equations holds
(Waters signature): e(Σ1, g) = e(h, pkBS) · e(F(M ||infoc||infos), Σ2).

Theorem 5. This signer-friendly partially-blind signature scheme is unforgeable under the CDH assumption
in G.

Proof. Let us denote PBS our above partially-blind signature (but omit it in the subscripts for clarity). Let
us assume there is an adversary A against the unforgeability that succeeds within probability ε, we will build
an adversary B against the CDH problem.

DLin Assumption. The unforgeability means that after qs interactions with the signer, the adversary manages
to output qs + 1 valid message-signature pairs on distinct messages. If the adversary A can do that with
probability ε with the above commitment scheme using a perfectly hiding setting, under the DLin assumption,
A can also generate qs + 1 valid message-signature pairs in a perfectly binding setting, with not too small
probability ε′.

7

s′

rF(M)

r

RandomBS

User
BlindBS
pkBS , r

S
ig
n B
S

σ(F ′)

Verif

UnblindBS

Signer

C ′

σ(C ′)

infos

C info

sk
B
S
,C
′ ,
in
fo
s
;s

A message M can be hidden using random coins r
(BlindBS).
The signer can adapt this commitment and concatenate a
public message infos into the original commitment, with
also the common public information infos, creating a com-
mitment C′ on F = F(M ||infoc||infos).
A signature on the plaintext can be obtained using the
randomness r (for UnblindBS); the result is the same as a
direct signature on M ||infoc||infos by the signer.
Randomizing this signature is easy, and prevents the signer
to actually know which ciphertext was the one involved.

Figure 1. Partially-Blind Signatures with Perfect Blindness

Signer Simulation. Let us thus now consider the above blind signature scheme with a commitment scheme
using a perfectly binding setting (named PBS ′), and our simulator B can extract values from the commitments
since it knows ν and µ. We thus now assume that A is able to break the unforgeability of PBS ′ with
probability ε′ after qs interactions with the signer. And we build an adversary B against the CDH problem:
Let (A = ga, B = gb) be a CDH-instance in a bilinear group (p,G,GT , e, g).

We now generate the global parameters using this instance: for simulating SetupBS/KeyGenBS , B picks a

random position j
$← {0, . . . , k}, chooses random indexes y0, y1, . . . , yk

$← {0, . . . , 2qs−1}, and random scalars

z0, z1, . . . , zk
$← Zp. One defines Y = A = ga, h = B = gb, u0 = hy0−2jqsgz0 , and ui = hyigzi for i = 1, . . . , k.

B also picks two random scalars ν, µ,and generates the Groth-Sahai parameters (u1,u2,u3) in the perfectly
binding setting, and thus with (u1 = (u1,1 = gx1 , 1, g),u2 = (1, u2,2 = gx2 , g),u3 = uν1 � uµ2), for two random
scalars x1, x2. Note that u3,3 = gν+µ. It outputs parambs = (p,G,GT , e, g, h,F ,u1,u2,u3); one can note that
the signing key is implicitly defined as Z = ha = Ba = gab, and is thus the expected Diffie-Hellman value.

To answer a signing query on ciphertext c = (c1, c2, c3), with the additional proofs, one first checks the
proof Π. From the proof Π and the commitment secret parameters x1, x2, B can extract M from the bit-by-bit
commitments in ΠM , and Y1,2 = Y r1+r2 , Y3 = Y r3 , from Πr, where c1 = ur11,1u

r3
3,1 and c2 = ur22,2u

r3
3,2. Further-

more, we can compute c′3 = gr1+r2ur33,3 · F , where we denote M ′ = M ||infoc||infos and F = F(M ||infoc||infos).
B defines

H = −2jqs + y0 +
∑
i

yiM
′
i , J = z0 +

∑
i

ziM
′
i : F = hHgJ .

If H ≡ 0 (mod p) then B aborts, otherwise it sets

σ = (Y −J/H(Y1,2Y
ν+µ
3)−1/H(F (c

1/x1

1 c
1/x2

2))s, (Y −1/Hgs)ν+µ, Y −1/Hgs).

Defining s̃ = s− a/H, we have

σ1 =Y −J/H(Y1,2Y
ν+µ
3)−1/H(hHgJ(c

1/x1

1 c
1/x2

2))s = Z · (c′3)s̃

σ3 =Y −1/Hgs = Y −1/Hgs̃+a/H = gs̃

σ2 =(σ3)
ν+µ = g(ν+µ)s̃ = us̃3,3

It thus exactly looks like a real signature sent by the signer.

8

Diffie-Hellman Extraction. After at most qs signing queries A outputs qs + 1 valid Waters signatures. Since
there are more than the number of signing queries, there is a least one message M∗ that is different from all
the messages M ||infoc||infos involved in the signing queries. We define

H∗ = −2jqs + y0 +
∑
i

yiM
∗
i , J∗ = z0 +

∑
i

ziM
∗
i : F(M∗) = hH

∗
gJ
∗
.

If H∗ 6≡ 0 (mod p) then B abort, otherwise, for some s∗, σ∗ = (haF(M∗)s
∗
, gs
∗
) = (hags

∗J∗ , gs
∗
). Then,

σ∗1/(σ
∗
2)J

∗
= ha = gab: one has solved the CDH problem.

Success Probability. (Based on [14]) The Waters hash function is (1, qs)-programmable (i.e., we can find with
non negligible probability a case where qs intermediate hashes are not null, and the last one is), therefore the
previous simulation succeeds with non negligible probability (Θ(ε/qs

√
k)), and so B breaks CDH. ut

Theorem 6. This signer-friendly partially-blind signature scheme achieves perfect blindness.

Proof. The transcript sent to the signer contains a commitment on the message to be signed, but in a perfectly
hiding setting: no information leaks about M . The additional proofs are perfectly witness-indistinguishable
and thus do not provide any additional information about M . This is due to the fact that in the Groth
Sahai framework in the perfectly hiding setting, for any message M , committed with randomness r and
a message M ′, one can find random r′ such that c(M, r) = c(M ′, r′). Granted the randomizability of the
Waters signature, the final output signature is a random signature on M ||infoc||infos, on which no information
leaked, and so the resulting signature is perfectly independent from the transcript seen by the signer, and
any adversary. ut

4 Multi-Source Blind Signature

4.1 Concatenation

The previous constructions lead to a good way to allow a user to obtain a signature on a plaintext without
revealing it to the signer. But what happens when the original message is in fact coming from various users?
We now present a new way to obtain a blind signature without requiring multiple users to combine their
messages, providing once again a round-optimal way to achieve our goal.

We thus consider a variation of our blind signature scheme. In the Setup phase we no longer create
perfectly hiding Groth-Sahai generators, but perfectly binding parameters, so we do not need to compute
us3,3 to run Unblind, since it will be performed with the decryption key and not the random coins. In addition,
in this scenario, we do not consider a unique user providing a ciphertext, but several users. As a consequence,
the signer will have to produce a signature on a multi-source message, provided as ciphertexts. The signature
and the messages will actually be encrypted under a third-party key. The third-party only will be able to
extract the message and the signature.

Basically the instantiation is similar to the previous ones in the perfectly binding setting. For the sake of
clarity, we remove the partially-blind part, but of course it could be adapted in the same way.

A full instantiation of such protocol and its security analysis can be found in the Appendix D. One can
see that it can be efficiently instantiated under DLin assumption.

4.2 Addition

The previous scheme presents a way to combine multiple blind messages into one in order to sign it. However
it requires a huge number of generators and the final unblinded signature gives a lot of information on the
repartition of the original messages, since they are simply concatenated. We now want to improve the previous

9

SignerBlindBS

S
ig
n B
S

RandomBS

s′

pkBS , ri

ri Ci

σ(
∏
Ci)

Fi

σ(
∏
F)

dkBS

User i

T sk
B
S
,C

1
,.
..
,C

n
;s

UnblindBS

Verif

Several messages Mi can be hidden using random coins ri
(BlindBS) by different users.
The signer can adapt these commitments and concatenate
the messages inside them, creating a commitment on F =∏
Fi.

A signature on the plaintext can be obtained by the tallier
using the decryption key dkBS (for UnblindBS); the result
is the same as a direct signature on ||Mi by the signer.
Randomizing this signature is easy, and prevent the signer
from knowing which ciphertexts were involved.

Figure 2. Multi-Source Blind Signature on Concatenation

scheme to drastically reduce the public key size, and the information leaked about the individual messages
when one would like a signature on some computation on these messages, such as the addition or the mean.
Instead of signing the concatenation of the messages, we now allow the users to use the same generators, and
thus the messages will add together instead of concatenating.

The resulting algorithm is the same as before except during the Setup phase where u = (u0, . . . , uk)
$←

Gk+1. We then proceed as before considering F(Mi) =
∏
` u

mi,`
` . The Unblind algorithm now returns a valid

signature on the sum of the messages. The various Groth-Sahai proofs help to ensure that the messages given
to the Waters hash function are of reasonable size.

With this construction, the exponents in the Waters hash function are not longer bits but belong to a
larger alphabet (e.g. {0, . . . , t} if t users sign only bit strings). Following the work done in [14], we will show in
the next section that over a non-binary alphabet the Waters function remains (1, poly)-programmable as long
as the size of the alphabet a polynomial in the security parameter. This result readily implies the security of
the multi-source blind signature scheme for addition:

Theorem 7. This multi-source blind signature scheme for addition is blind and unforgeable under the DLin
assumption as long the alphabet size and the number of sources are polynomial in the security parameter.

5 Non-Binary Waters Function Programmability

In this section, we prove that for a polynomial-size alphabet, the Waters function remains programmable.
We recall some notations introduced in [14] and show our result which can be seen as an improvement over
the result presented by Naccache [16] where he considered a variant of Waters identity-based encryption [20]
with shorter public parameters.

5.1 Definitions

Let us recall some basic definitions. A family of cyclic groups G = (Gλ)λ∈N, indexed by a security parameter
λ, is called a group family. A group hash function H for G, an alphabet Σ = Σ(λ) and an input length
` = `(λ) is a pair of probabilistic polynomial-time algorithms (PHF.Gen,PHF.Eval) such that:

– PHF.Gen takes as input a security parameter λ and outputs a key κ
– PHF.Eval takes as input a key κ output by PHF.Gen and a string X ∈ Σ` and outputs an element of Gλ.

10

Definition 8 (cf. [14]). A group hash function (PHF.Gen,PHF.Eval) is (m,n, δ)-programmable, if there
exist two PPT algorithms (PHF.TrapGen,PHF.TrapEval) such that

– Syntactics: For g, h ∈ G,PHF.TrapGen(1λ, g, h) generates a key κ′ and a trapdoor t such that PHF.TrapEval(t,X)
produces integers aX , bX for any X ∈ Σ`

– Correctness: For all generators g, h ∈ G, all (κ′, t)← PHF.TrapGen(1λ, g, h) and all X ∈ Σ`, Hκ′(X) :=
PHF.Eval(κ′, X) satisfies Hκ′(X) = gaXhbX where (aX , bX) := PHF.TrapEval(t,X).

– Statistically close trapdoor keys: For all generators g, h ∈ G2, the functions PHF.Gen(1λ) and
PHF.TrapGen(1λ, g, h) output keys κ and κ′ statistically close.

– Well-distributed logarithms: For all generators g, h ∈ G, all (κ′, t) output by PHF.TrapGen(1λ, g, h)
and all bit-strings (Xi)1,...,m, (Zi)1,...,n ∈ Σ` such that ∀i, j,Xi 6= Zj , we have Pr[aX1 = . . . , aXm =
0 ∧ aZ1 · . . . · aZn 6= 0] ≥ δ, where the probability is taken over the random coins used by PHF.TrapGen
and (aXi , bXi) := PHF.TrapEval(t,Xi) and (aZi , bZi) := PHF.TrapEval(t, Zi).

5.2 Instantiation with Waters function

Let us consider the Waters function presented in [20].

Definition 9 (Multi-Generator PHF). Let G = (Gλ) be a group family, and ` = `(λ) a polynomial. We
define F = (PHF.Gen,PHF.Eval) as the following group hash function:

– PHF.Gen(1λ) outputs κ = (h0, . . . , h`)
$← G`+1;

– PHF.Eval(κ,X) parses κ and X = (x1, . . . , x`) ∈ {0, 1}` and outputs Fκ(X) = h0
∏`
i=1 h

xi
i .

This function was shown to be (1, q, δ)-programmable with a δ = O(1/(q
√
`)) and (2, 1, δ)-programmable

with a δ = O(1/`) (cf. [14]). However this definition requires to generate and store n + 1 group generators
where n is the bit-length of the messages one wants to hash. We consider a more general case where instead
of hashing bit-per-bit we decide to hash blocks of bits.

Definition 10 (Improved Multi-Generator PHF). Let G = (Gλ) be a group family, Σ = {0, . . . , τ} a
finite alphabet and ` = `(λ) a polynomial. We define F = (PHF.Gen,PHF.Eval) as the following group hash
function:

– PHF.Gen(1λ) returns κ = (h0, . . . , h`)
$← G`+1;

– PHF.Eval(κ,X) parses κ and X = (x1, . . . , x`) ∈ Σ` and returns F+
κ(X) = h0

∏`
i=1 h

xi
i .

Using a larger alphabet allows to hash from a larger domain with a smaller hash key, but it comes at a
price since one can easily prove that the function is no longer (2, 1)-programmable (i.e., no longer (2, 1, δ)
programmable for a non-negligible δ):

Theorem 11 ((2,1)-Programmability). For any group family G with known order and τ > 1, the function
F+ is not a (2,1)-programmable hash function if the discrete logarithm problem is hard in G.

Proof. Consider a discrete logarithm challenge (g, h) in a group Gλ and suppose by contradiction that the
function F+ is (2, 1)-programmable with τ ≥ 2 (i.e., we suppose that there exist two probabilistic polynomial-
time algorithms (PHF.TrapGen,PHF.TrapEval) satisfying the definition 8 for a non-negligible δ).

For any hash key κ′ and trapdoor t generated by PHF.TrapGen(1λ, g, h), we can consider the messages
X1 = (2, 0), X2 = (1, 1), Z = (0, 2) and with non-negligible probability over the random coins used by
PHF.TrapGen we have aX1 = aX2 = 0 and aZ 6= 0 where (aX1 , bX1) := PHF.TrapEval(t,X1), (aX2 , bX2) :=
PHF.TrapEval(t,X2) and (aZ , bZ) := PHF.TrapEval(t, Z). By the correctness property, we have gaZhbZ =
h0h

2
2 = h2bX2/hbX1 and we can extract the discrete logarithm of g in base h as follows:

logh(g) =
2bX2 − bX1 − bZ

aZ
mod |Gλ|. ut

11

However we still have the interesting property:

Theorem 12 ((1,poly)-Programmability). For any polynomial q and a group family G with groups of
known order, the function F+ is a (1, q, δ)-programmable hash function with a δ = Ω(1/τq

√
`).

Remark 13. This theorem improves the result presented by Naccache in [16] where the lower bound on the
(1, q, δ)-programmability was only δ = Ω(1/τq`).

Remark 14. In order to be able to sign all messages in a set M, we have to consider parameters τ and `
such that τ ` ≥ #M, but the security is proved only if the value δ is non-negligible (i.e. if ` = λO(1) and
τ = λO(1)). In particular ifM is of polynomial size in λ (which is the case in our WSN application with data
aggregation), one can use τ = #M and ` = 1 (namely, the Boneh-Boyen hash function), and therefore get
data confidentiality.

Proof. Let us first introduce some notations. Let n ∈ N∗, let Aj be independent and uniform random variables
in {−1, 0, 1} (for j ∈ {1, . . . , n}). If we denote 2σ2j their quadratic moment, we have 2σ2j = 2/3 and σj =

√
1/3.

We note s2n =
∑n

j=1 σ
2
j = n/3.

The Local Central Limit Theorem. Our analysis relies on a classical result on random walks, called the Local
Central Limit Theorem. It basically provides an approximation of Pr[

∑
Aj = a] for independent random

variables Aj . This is a version of the Central Limit Theorem in which the conclusion is strengthened from
convergence of the law to locally uniform pointwise convergence of the densities. It is worded as follows
in [9, Theorem 1.1], where φ and Φ are the standard normal density and distribution functions:

Theorem 15. Let Aj be independent, integer-valued random variables where Aj has probability mass function
fj (for j ∈ N∗). For each j, n ∈ N∗, let q(fj) =

∑
k min(fj(k), fj(k + 1)) and Qn =

∑n
j=1 q(fj). Denote

Sn = A1 + · · ·+An. Suppose that there are sequences of numbers (αn), (βn) such that

1. limn→∞ Pr[(Sn − αn)/βn) < t] = Φ(t),−∞ < t <∞,
2. βn →∞,
3. and lim supβ2n/Qn <∞,

then supk |βn Pr[Sn = k]− φ((k − αn)/βn)| → 0 as n→∞1.

While those notations may seem a little overwhelming, this can be easily explained in our case. With Aj ∈
{−1, 0, 1} with probability 1/3 for each value.

1. It requires the variables to verify the Lindeberg-Feller theorem. However as long as the variables verify
the Lindeberg’s condition2, this is true for βn = sn and αn = 0.

2. In our application, βn = sn =
√
n/3, so again we comply with the condition.

3. Since fj(k) is simply the probability that Aj equals k, then q(fj) = 2/3. This leads to Qn = 2n/3. As a
consequence, β2n/Qn = 1/2.

So we have: supk |βn Pr[Sn = k]− φ((k − αn)/βn)| → 0, that is, in our case

sup
k
|
√
n/3 Pr[Sn = k]− φ(k/

√
n/3)| → 0.

We solely focus on the case k = 0: since φ(0) = 1/
√

2π, Pr[Sn = 0] = Θ(1/
√
n). In addition, it is clear that

Pr[Sn = k] ≤ Pr[Sn = 0] for any k 6= 0 (c.f. [14]).

1 The so-called Berry-Esseen theorem gives the rate of convergence of this supremum.
2 Lindeberg’s condition is a sufficient criteria of the Lindeberg-Feller theorem, for variables with a null expected value it requires

that ∀ε > 0, limn→∞ 1/s2
n

∑n
j=1 E[A2

j · 1{|Aj |>εsn}]→ 0. In our case, as soon as n > 3/ε2, we have |Aj | ≤ 1 ≤ ε
√
n/3 ≤ εsn, so

the sum is null. (1{|Aj |>εsn} is the indicator function of variables greater that εsn)

12

Lemma 16. Let (Aij)[[1,n]]×[[1,J]] be independent, integer-valued random variables in {−1, 0, 1}, then ∀X ∈
[[1, τ]]n, Pr[

∑n
i=1

∑J
j=1XiAij = 0] = Ω(1/τ

√
nJ), where the probability distribution is over the Aij.

This lemma will be useful to prove the lower bound in the following, we only consider word with no null
coefficient Xi, if a Xi is null, we simply work with a shorter random walk of length J · (n− 1) instead of Jn.

Proof. Let us denote dij , the random variable defined as XiAij : they are independent, integer-valued random

variables. As above, s2n =
∑n

i=1

∑J
j=1 σ

2
j =

∑n
i=1 JX

2
i /3. So nJ/3 ≤ s2n ≤ nτ2J/3.

1. The Lindeberg’s condition is verified. As soon as n > 3τ/Jε2 we have εsn > τ and so |dij | < sn, and so
once again the sum is null.

2. sn →∞.
3. Each dij ∈ {−Xi, 0, Xi} with probability 1/3 for each value, so q(fij) = 2/3 and Qn =

∑
i,j q(fij) =

2nJ/3. So β2n/Qn ≤ (nτJ/3)/(2nJ/3) ≤ τ/2 <∞.

Then we can apply the Local Central Limit Theorem to the dij ’s, and conclude: Pr[
∑n

i=1

∑J
j=1XiAij = 0] =

Θ(1/sn) = Θ(1/τ
√

(nJ). ut

In the following, we will denote a(X) =
∑n

i=1 aiXi, where X ∈ {0, . . . , τ}n. The probabilities will be over the
aij ’s variables while X and Y are assumed to be chosen by the adversary. Our goal is to show that even for
bad choices of X and Y , a random draw of aij ’s provides enough freedom.

Let J = J(λ) be a positive function. We define the following two probabilistic polynomial-time algorithms
(PHF.TrapGen,PHF.TrapEval):

– PHF.TrapGen(1λ, g, h): which chooses some independent and uniform elements (aij)(0,...,`),(1,...,J) in {−1, 0, 1},
and random group exponents (bi)(0,...,`). It sets ai =

∑J
j=1 aij and hi = gaihbi for i ∈ {0, . . . , `}. It then

outputs the hash key κ = (h0, . . . , h`) and the trapdoor t = (a0, b0, . . . , a`, b`).
– PHF.TrapEval(t,X): which parses X = (X1, . . . , X`) ∈ Σ` = {0, . . . , τ}` and outputs aX = a0 +

∑
aiXi

and bX = b0 +
∑
biXi.

As this definition verifies readily the syntactic and correctness requirements, we only have to prove the two
other ones. We stress the importance of the hardwired 1 in front of a0 this allows us to consider multisets
X ′ = 1 :: X and Y ′ = 1 :: Y , and so there is no k such that X ′ = kY ′. And we also stress that ai =

∑J
j=1 aij

is already a random walk of length J (described by the aij), on which we can apply the Local Central Limit
Theorem and so Pr[ai = 0] = Θ(1/

√
J). By noticing that summing independent random walks is equivalent

to a longer one and applying the Local Central Limit Theorem, we have:

Θ(1/τ
√

(`+ 1)J) ≤ Pr[a(X ′) = 0] ≤ Θ(1/
√
J).

To explain further the two bounds:

– For the upper bound: we consider X fixed, and note t =
∑`

i=1 aiXi, by construction ai are independent,
so a0 is independent from t then

Pr[a(X ′) = 0] = Pr[a0 = −t] ≤ Pr[a0 = 0] ≤ Θ(1/
√
J)

using the above remark that a random walk is more likely to reach 0 than any other value, and a0 is a
random walk of length J .

– For the lower bound, we proceed by recurrence on `, to show

H` : Θ(1/τ
√

(`+ 1)J) ≤ Pr[a(X ′) = 0] (where X ′ ∈ 1 :: [[0, τ]]`).

For ` = 0, we consider X ′ = 1, we have a random walk of length J , so Θ(1/τ
√
J) ≤ Θ(1/

√
J) ≤

Pr[a(X ′) = 0]. We note X0 = 1 for the hardwired 1 in X ′. Let us suppose the property true at rank k,
let us prove it at rank k + 1:

13

• If ∃i0, Xi0 = 0 then we can consider a random walk of length k and apply the previous step, and
conclude because Θ(1/τ

√
(k + 1)J) ≤ Θ(1/τ

√
kJ)

• Else, one can apply Lemma 16 to conclude.
Therefore, ∀`,∀X ′ ∈ 1 :: [[0, τ]]`, Θ(1/τ

√
(`+ 1)J) ≤ Pr[a(X ′) = 0].

We can now deduce that ∀X,Y ∈ [[0, τ]]` with X 6= Y : Pr[a(Y ′) = 0|a(X ′) = 0] ≤ Θ(1/
√
J). This can easily

be seen by noting i0 the first index where Yi 6= Xi. We will note X̄ ′ = X ′ −Xi0 , in the following we will use
the fact that a(X ′) = 0⇔ a(X̄ ′) = −ai0Xi0 .3

Pr[a(Y ′) = 0|a(X ′) = 0] ≤ Pr[a(Y ′) = a(X ′)|a(X ′) = 0]

≤ Pr[Yi0ai0 + a(Ȳ ′) = Xi0ai0 + a(X̄ ′)|a(X ′) = 0]

≤ max
t

Pr[(Yi0 −Xi0)ai0 = t|a(X̄ ′) = −Xi0ai0] (1)

≤ max
s,t′

Pr[ai0 = t′|a(X̄ ′) = s] (2)

≤ max
t′

Pr[ai0 = t′] (3)

≤ Pr[ai0 = 0] ≤ Θ(1/
√
J)

(1) we start with (Yi0 −Xi0)ai0 = a(X̄ ′)− a(Ȳ ′), and then consider the maximum probability for all values
a(X̄ ′)− a(Ȳ ′).

(2) We consider the maximum probability for all values of −Xi0ai0 .
(3) ai0 and a(X̄ ′) are independent.

Hence, for all X1, Y1, . . . , Yq, we have

Pr[aX1 = 0 ∧ aY1 , . . . , aYq 6= 0] = Pr[aX1 = 0] Pr[aY1 , . . . , aYq 6= 0|aX1 = 0]

≥ Θ(1/τ
√
`J)

(
1−

q∑
i=1

Pr[aYi = 0|aX1 = 0]

)
≥ Θ(1/τ

√
`+ 1J)(1− qΘ(1/

√
J)).

Now we set J = q2, to obtain the result. In that case the experiment success is lower-bounded by something
linear in 1/(qτ

√
`+ 1). ut

Acknowledgments

This work was supported in part by the European Commission through the ICT Program under Contract
ICT-2007-216676 ECRYPT II.

References

1. Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. Structure-preserving signatures
and commitments to group elements. In CRYPTO 2010, LNCS, pages 209–236. Springer, August 2010.

2. Masayuki Abe and Eiichiro Fujisaki. How to date blind signatures. In ASIACRYPT 1996, volume 1163 of LNCS, pages
244–251. Springer, November 1996.

3. Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind signatures. In CRYPTO 2000, volume 1880 of LNCS,
pages 271–286. Springer, August 2000.

4. Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Signatures on randomizable ciphertexts. In
PKC 2011, volume 6571 of LNCS. pages 403–422, Springer, 2010.

3 X 6= Y so i0 exists, and thanks to the hardwired 1 we do not have to worry about Y ′ being a multiple of X ′

14

5. Olivier Blazy, David Pointcheval, and Damien Vergnaud. Round-optimal privacy-preserving protocols with smooth projective
hash functions. In TCC 2012, volume 7194 of LNCS, pages 94–111, Springer, 2012.

6. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO 2004, volume 3152 of LNCS, pages
41–55. Springer, August 2004.

7. Xavier Boyen and Brent Waters. Compact group signatures without random oracles. In EUROCRYPT 2006, volume 4004
of LNCS, pages 427–444. Springer, May / June 2006.

8. David Chaum. Blind signatures for untraceable payments. In CRYPTO 1982, pages 199–203. Plenum Press, New York,
USA, 1983.

9. Burgess Davis and David McDonald. An elementary proof of the local central limit theorem. Journal of Theoretical Probability,
8(3), jul 1995.

10. Marc Fischlin. Round-optimal composable blind signatures in the common reference string model. In CRYPTO 2006, volume
4117 of LNCS, pages 60–77. Springer, August 2006.

11. Georg Fuchsbauer. Commuting signatures and verifiable encryption and an application to non-interactively delegatable
credentials. Cryptology ePrint Archive, Report 2010/233, 2010.

12. Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique Schröder, and Dominique Unruh. Round optimal blind signatures. In
CRYPTO 2011, pages 630–648. Springer, August 2011.

13. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In EUROCRYPT 2008, volume 4965
of LNCS, pages 415–432. Springer, April 2008.

14. Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applications. In CRYPTO 2008, volume 5157 of
LNCS, pages 21–38. Springer, August 2008.

15. Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential aggregate signatures and multisig-
natures without random oracles. In EUROCRYPT 2006, volume 4004 of LNCS, pages 465–485. Springer, 2006.

16. David Naccache. Secure and practical identity-based encryption. Cryptology ePrint Archive, Report 2005/369, 2005.
17. Tatsuaki Okamoto. Efficient blind and partially blind signatures without random oracles. In TCC 2006, volume 3876 of

LNCS, pages 80–99. Springer, March 2006.
18. David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures. Journal of Cryptology,

13(3):361–396, 2000.
19. Jae Hong Seo and Jung Hee Cheon. Beyond the limitation of prime-order bilinear groups, and round optimal blind signatures.

In TCC 2012, volume 7194 of LNCS, pages 133–150. Springer, 2012.
20. Brent R. Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT 2005, volume 3494 of LNCS,

pages 114–127. Springer, May 2005.

A Blind Signatures

Definition 17 (Blind Signature Scheme). BS = (SetupBS ,KeyGenBS , 〈S,U〉,VerifBS(pkBS ,m, σ)) where

– SetupBS(1λ), where λ is the security parameter, generates the global parameters parambs of the system;
– KeyGenBS(parambs) generates a pair of keys (pkBS , skBS);
– Signature Issuing: this is an interactive protocol between the algorithms S(skBS) and U(pkBS ,m), for a

message m ∈ {0, 1}n. It generates an output σ for the user: σ ← 〈S(skBS),U(pkBS ,m)〉.
– VerifBS(pkBS ,m, σ) outputs 1 if the signature σ is valid with respect to m and pkBS , 0 otherwise.

The security of a blind signature scheme is defined through two different notions, blindness and unforgeability.
An adversary U against the unforgeability tries to generate qs + 1 valid signatures after at most qs complete
interactions with the honest signer. The blindness condition is, on the other hand, linked to the signer.
It states that a malicious signer S∗ should be unable to decide which of two messages m0,m1 has been
signed first in two executions with an honest user U . In the following we note σb the signature on mb. If
S∗ refuses to sign one of the input (i.e. σi = ⊥), then the two resulting signatures are set to ⊥, therefore
he cannot have any advantage if he decides to prevent the normal game execution and he has to sign both
inputs. We also define an unforgeability notion, which slightly differs from the original one [18], in the
sense that we do not exclude malleability since we will eventually use randomizable signature. We thus
count the number of distinct signed messages, which should not be larger than the number of interactions
with the signer, whereas the initial definition counted the number of distinct message-signature pairs: BS is
unforgeable if, for any polynomial adversary U∗ (malicious user), the advantage SuccufBS,U∗(λ) is negligible,

15

ExpblbBS,S∗(λ)

(pkBS ,m0,m1, stFIND)← S∗(FIND, 1λ);
b← {0, 1};
stISSUE ← S∗〈·,U(pkBS ,mb)〉1,〈·,U(pkBS ,m1−b)〉1(ISSUE, stFIND);
IF σ0 = ⊥ OR σ1 = ⊥, (σ0, σ1)← (⊥,⊥);
b∗ ← S∗(GUESS, σ0, σ1, stISSUE);
IF b = b∗RETURN 1 ELSE RETURN 0.

Figure 3. Blindness for blind signatures

ExpufBS,U∗(λ)

(parambs)← SetupBS(1λ);
(pkBS , skBS)← KeyGenBS(parambs);(
(m1, σ1), . . . , (mqs+1, σqs+1)

)
← U∗S

qs (skBS ,·)(pkBS);
IF ∃i 6= j,mi = mj OR ∃i,VerifBS(pkBS ,mi, σi) = 0 RETURN 0
ELSE RETURN 1

Figure 4. Unforgeability for blind signatures (One-More Forgery)

where SuccufBS,U∗(λ) = Pr[ExpufBS,U∗(λ) = 1], in the security game presented in Figure 4. In this experiment, the

adversary U∗ can interact qs times with the signing oracle S(skBS , ·) (hence the notation U∗Sqs (skBS ,·)(pkBS))
to execute the blind signature protocol: the adversary should not be able to produce more signatures on
distinct messages than interactions with the signer. Our relaxation from the original One-More Forgery
security comes from the fact that we will come up with randomizable signatures: from a message-signature
pair, one can generate many signatures on the same message.

B Security Games of User-Friendly Partially Blind Signatures

ExpblbPBS,S∗(λ)

(pkBS ,m0,m1, stFIND, infoc, infos)← S∗(FIND, 1λ);
b← {0, 1};
stISSUE ← S∗〈·,U(pkBS ,mb)〉1,〈·,U(pkBS ,m1−b,infoc,infos)〉1(ISSUE, stFIND);
IF σ0 = ⊥ OR σ1 = ⊥, (σ0, σ1)← (⊥,⊥);
b∗ ← S∗(GUESS, σ0, σ1, stISSUE);
IF b = b∗RETURN 1 ELSE RETURN 0.

Figure 5. Blindness for User-Friendly Partially Blind signatures

PBS is blind if, for any polynomial adversary S∗ (malicious signer), the advantage SuccblbPBS,S∗(k) is

negligible, where SuccblPBS,S∗(k) = |Pr[ExpblPBS,S∗(k) = 1]− 1/2|, in the security game presented in Figure 5.
If S∗ refuses to sign one of the input (i.e. σi = ⊥), then the two resulting signatures are set to ⊥, therefore
he cannot have any advantage if he decides to prevent the normal game execution and he has to sign both
inputs. S∗ is able to chose both pieces of the public information, in the real case the signer can abort as long
as the user’s public information doesn’t suit him, however the public information should be the same on both
challenged message.

16

ExpufPBS,U∗(λ)

(parambs)← SetupBS(1λ);
(pkBS , skBS)← KeyGenBS(parambs);(
(m1, infoc,1, infos,1, σ1), . . . , (mqs+1, infoc,qs+1, infos,qs+1, σqs+1)

)
← U∗S

qs (skBS ,·)(pkBS);
IF ∃i 6= j, (mi, infoc,i, infos,i) = (mj , infoc,j , infos,j) OR ∃i,VerifBS(pkBS ,mi, infoc,i, infos,i, σi) = 0 RETURN 0
ELSE RETURN 1

Figure 6. Unforgeability for User-Friendly Partially Blind signatures (One-More Forgery)

PBS is unforgeable if, for any polynomial adversary U∗ (malicious user), the advantage SuccufPBS,U∗(λ)

is negligible, where SuccufPBS,U∗(λ) = Pr[ExpufPBS,U∗(λ) = 1], in the security game presented in Figure 6. In
this experiment, the adversary U∗ can interact qs times with the signing oracle S(skBS , ·) (hence the notation
U∗Sqs (skBS ,·)(pkBS)) to execute the user-friendly partially blind signature protocol: the adversary should not
be able to produce more signatures on distinct tuple (m, infoc, infos) than interactions with the signer. Once
again we consider the adversary has full control over the public information.

C Building Blocks

First, let us briefly sketch the basic building blocks: Groth-Sahai commitments, and a variation of the Waters
signature. They both need a pairing-friendly environment (p,G,GT , e, g), where e : G × G → GT is an
admissible, non-degenerated, bilinear map, for two groups G and GT , of prime order p, generated by g
and gt = e(g, g) respectively. From the following descriptions, it is clear that the different primitives are
randomizable.

Groth-Sahai Commitments. In the following, several group elements will have to be committed so that proofs
can be done on them. We will use perfectly hiding Groth-Sahai commitments: The commitment parameter
is of the form (u1 = (u1,1 = gx1 , 1, g),u2 = (1, u2,2 = gx2 , g),u3 = (u3,1, u3,2, u3,3)) ∈ (G3)3.

– To commit a group element X ∈ G, one chooses three random scalars r1, r2, r3 ∈ Zp and sets C(X) :=
(c1 = ur11,1 · u

r3
3,1, c2 = ur22,2 · u

r3
3,2, c3 = X · gr1+r2 · ur33,3).

– To commit a scalar x ∈ Zp, one chooses two random scalars γ1, γ2 ∈ Zp and sets (where � is the
component-wise multiplication) C′(x) := (ux3,1, u

x
3,2, (u3,3g)x) � uγ1

1 � uγ2
3 = (c′1 = ux+γ2

3,1 · uγ1
1,1, c

′
2 =

ux+γ2
3,2 , c′3 = ux+γ2

3,3 · gx+γ1).

A Groth Sahai proof will be a vector of group elements constructed to help the commitments to verify a pairing
equation derived from the one verified by the associated plaintext. The idea is that with a regular initialization
of the commitment parameters (u3 = uν1 � uµ2 , for two random scalars ν, µ ∈ Zp), these commitments are
perfectly binding and thus the proofs will be perfectly sound. The committed group elements can even be

extracted if one knows x1, x2: c3/(c
1/x1

1 c
1/x2

2) = X, and c′3/(c
′
1
1/x1c′2

1/x′2) = gx. However, if u3 is defined as
u3 = uν1 � uµ2 � (1, 1, g−1) = (u3,1 = uν1,1, u3,2 = uµ2,2, u3,3 = gν+µ−1), for two random scalars ν, µ ∈ Zp,
the commitments are perfectly hiding and thus the proofs will perfectly hide the witnesses used in the
instantiations. However the two parameter initializations being indistinguishable under the DLin assumptions,
we will be able to use the perfectly binding setting in some simulations for the security proofs, whereas the
real situation will use the perfectly hiding setting.

Waters Signature. The Waters signature scheme was formally described in [20]. It has been proven existen-
tially unforgeable against chosen-message attacks under the CDH assumption.

17

– Setup(1λ): The scheme is defined over a bilinear group (p,G,GT , e, g). The parameters are a randomly

chosen generator h
$← G, and a vector (u0, . . . , uk)

$← Gk+1, those define the Waters function F such
that for a message M,F(M) = u0

∏
uMi
i . We set param := (p,G,GT , e, g, h, (u0, . . . , uk)).

– SKeyGen(param): Choose a random scalar y
$← Zp, which defines vk = Y = gy, and sk = Z = hy.

– Sign(sk,M ; s): To sign a message M = (M1, . . . ,Mk) ∈ {0, 1}k, choose s
$← Zp and define σ =

(
σ1 =

Z · F(M)s, σ2 = gs
)
.

– Verif(vk = Y,M, σ): Check whether e(g, σ1)
?
= e(Y, h) · e(F(M), σ2).

We also use another useful result on the Waters signature (like used in [15]):

Property 18 (Randomizability). The Waters signature scheme is randomizable: for a valid pair (M,σ), if we
define σ′ = (σ1 · F(M)s

′
, σ2 · gs

′
), for a random scalar s′, σ′ is a random signature of M .

Proof. If the initial signature has been generated with s as random, the modified signature corresponds to
the signature of M with s+ s′ as random coins. Since this scalar lies in the group Zp, it leads to a perfectly
random signature of M . ut

Suffixed Waters Signatures. We will use Waters signatures, however instead of signing one message, we will
sign, with the same additional parameters, a concatenation of 3 messages:

m = M ||infoc||infos = (M1, . . . ,M`, info1, . . . , infof) ∈ {0, 1}k

D Multi-Blind Signature: Concatenation

With the previous building blocks, we will sign several commitments of Fi = Fi(Mi), instead of the standard
(U ,S) interactions we now have three main kind of users, Ui, the user i will blind a commitment on Fi(Mi),
S who signs the blinded message, and T the tallier who will verify/unblind/randomize this signature:

– SetupBS(1λ): In a pairing-friendly environment (p,G,GT , e, g), the algorithm outputs a vector

u = (u0, (ui,1, . . . , ui,λ)1≤i≤j)
$← Gjk+1

where k is a polynomial in λ, and a generator h
$← G. We define Fi(Mi) =

∏
` u

mi,`
i,` .

– KeyGenBS(parambs): Choose x
$← Zp, which defines pkBS = Y = gx, and skBS = Z = hx and generates a

pair of perfectly-binding Groth-Sahai generators, which define a decryption key dkBS = (x1, x2) composed
of two scalars.

– (Ui,S, T):
• BlindBS(M, pkBS ; (r1, r2, r3)) (where we omit the subscripts i): For a messageM ∈ {0, 1}k and random

scalars in Zp, define the commitment c = C(F(M)) = (c1, c2, c3). We also add, as before, proofs of
validity of this commitment:
∗ A proof ΠM of knowledge of M in c, the encrypted F(M), which consists of a bit-by-bit com-

mitment CM = (C′(M1), . . . , C′(Mk)) and proofs that each committed value is a bit. A proof that
c3 is well-formed i.e.c is a double linear encryption of the message M committed in CM .

∗ A proof Πr containing the commitments Cr = (C(Y r1+r2), C(Y r3)) together with proofs asserting
that they are well-formed.

• SignBS(skBS , (c = (c1,i, c2,i, c3,i), Πi)1≤i≤j ; s): To sign several commitments, first check if they are
valid with respect to the proofs Π’s, and after some randomization of those commitments, compute
the global commitment C = (

∏
c1,i,

∏
c2,i, u0

∏
c3,i) which is still verifiable thanks to the previous

(randomized) proofs, and then output C = (C1, C2, C3) and σ = (Cs1 , C
s
2 , Z · Cs3 ; gs).

18

• Verif(pkBS , (C = (C1, C2, C3)), σ = (σ1, σ2, σ3;σ4)): In order to check the validity of the signature,
one checks whether the following equations are verified: e(σ1, g) = e(C1, σ4), e(σ2, g) = e(C2, σ4),
and e(σ3, g) = e(h, pkBS) · e(C3, σ4)
• UnblindBS(dkBS , pkBS , (c = (C1, C2, C3), Π, σ)): On a valid signature, knowing the decryption key

(x1, x2), one can obtain F = F(M), and extract the message M from the bit-by-bit commitments.

One can also extract the corresponding valid signature: σ′ = (σ′1 = σ3/(σ
1/x1

1 σ
1/x2

2), σ′2 = σ4), which
is a valid Waters signature on the concatenation of the messages.
• RandomBS(pkBS ,M, σ′; s′): The latter can eventually be rerandomized to getΣ = (σ′1·F(M)s

′
, σ′2·gs

′
).

– VerifBS(pkBS ,M, σ = (σ1, σ2)): In order to check the validity of the signature, one checks whether:

e(σ1, g)
?
= e(h, pkBS)e(F(M), σ2).

Theorem 19. This multi-source blind signature scheme for concatenation is blind and unforgeable under the
CDH and DLin assumptions: no adversary can generate more message-signature pairs on distinct messages,
than the number of interactions with the signer.

It directly follows from the previous result, combining the different partial Waters hashes into a global one
does not weaken the security as we are still using single exponents on the ui elements. Groth-Sahai proofs
are in the perfectly binding setting to guarantee that each user really outputs Waters hash of their message
on their generators and so no strange collision may occur and alter the final message.

E Asymmetric Version

All the previous schemes can be updated to work in asymmetric groups. The main, and only difference, comes
from the Groth-Sahai commitments.

As symmetric bilinear groups are in general less efficient than asymmetric groups, we show how to instan-
tiate our primitive with Groth-Sahai commitments in an asymmetric pairing-friendly group setting, relying
on the SXDH assumption.

E.1 Assumptions

The security of Waters signatures in asymmetric bilinear groups was proven under the following variant of
the CDH assumption, which states that CDH is hard in G1 when one of the random scalars is also given as
an exponentiation in G2.

Definition 20 (The Advanced Computational Diffie-Hellman problem (CDH+)). Let us be given
two (multiplicative) groups (G1,G2) of prime order p with (g1, g2) as respective generators and e an admissible
bilinear map G1×G2 → GT . The CDH+ assumption states that given (g1, g2, g

a
1 , g

a
2 , g

b
1), for random a, b ∈ Zp,

it is hard to compute gab1 .

ElGamal encryption is secure under the DDH assumption. Since Groth-Sahai commitments are basically
double ElGamal encryption, we assume SXDH, defined below.

Definition 21 (Decisional Diffie-Hellman Assumption (DDH)). Let G be a cyclic group of prime order
p. The DDH assumption states that given (g, ga, gb, gc) ∈ G, it is hard to determine whether c = ab.

Definition 22 (Symmetric external Diffie-Hellman Assumption (SXDH) [6]). Let G1,G2 be cyclic
groups of prime order, e : G1 ×G2 → GT be a bilinear map. The SXDH assumption states that the DDH as-
sumption holds in both G1 and G2.

19

E.2 Groth-Sahai Commitments

As above, several elements will have to be committed so that proofs can be done on them. We will use SXDH-
based Groth-Sahai commitments, which are a direct transposition of the previous ones in an asymmetric
setting and replace double linear encryption by a double ElGamal one.

Proofs. This time, a Groth-Sahai proof, is a pair of elements (π, θ) ∈ G2×2
1 ×G2×2

2 . As above, we will note 〈x〉1
for a committed scalar x in G1, 〈x〉2 for a committed scalar x in G2,or 〈X〉 for a committed group element
X.

One has to pay attention to the fact that Groth-Sahai bit-by-bit proofs in SXDH require bits to be
committed both in G1 and G2 and thus require to use 2 quadratic equations by bit.

E.3 Asymmetric Partially-Blind Signature with Perfect Blindness

The construction is really straightforward. If we follow the steps from the DLin-version: We will need 2
group elements for the commitment of M in G1, 4 group elements to commit Y1, Y2 in G1, the proofs will
require 4 group elements in G2. We will need 6` elements in each group to commit M and prove we indeed
committed it bit-by-bit, and 2 extra group elements in G2 to prove c2 is well-formed. The signatures on the
committed elements will require 3 groups elements in G1 and one in G2. Therefore the overall scheme will
require (6`+ 9, 6`+ 7) group elements communication.

