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Abstract. Multi-dimensional mean-payoff and energy games provide the mathematical foundation for the quan-
titative study of reactive systems, and play a central role in the emerging quantitative theory of verification and
synthesis. In this work, we study the strategy synthesis problem for games with such multi-dimensional objectives
along with a parity condition, a canonical way to expressω-regular conditions. While in general, the winning strate-
gies in such games may require infinite memory, for synthesisthe most relevant problem is the construction of a
finite-memory winning strategy (if one exists). Our main contributions are as follows. First, we show a tight ex-
ponential bound (matching upper and lower bounds) on the memory required for finite-memory winning strategies
in both multi-dimensional mean-payoff and energy games along with parity objectives. This significantly improves
the triple exponential upper bound for multi energy games (without parity) that could be derived from results in
literature for games on VASS (vector addition systems with states). Second, we present an optimal symbolic and
incremental algorithm to compute a finite-memory winning strategy (if one exists) in such games. Finally, we give
a complete characterization of when finite memory of strategies can be traded off for randomness. In particular, we
show that for one-dimension mean-payoff parity games, randomized memoryless strategies are as powerful as their
pure finite-memory counterparts.

1 Introduction

Two-player games on graphs provide the mathematical foundation to study many important problems in computer
science. Game-theoretic formulations have especially proved useful for synthesis [25,42,40], verification [3], refine-
ment [36], and compatibility checking [26] of reactive systems, as well as in analysis of emptiness of automata [45].

Games played on graphs are repeated games that proceed for aninfinite number of rounds. Thestatespace of
the graph is partitioned into player 1 states and player 2 states (player 2 is adversary to player 1). The game starts
at an initial state, and if the current state is a player 1 (resp. player 2) state, then player 1 (resp. player 2) chooses
an outgoingedge. This choice is made according to astrategyof the player: given the sequence of visited states, a
pure (resp.randomized) strategy chooses an outgoing edge (resp. probability distribution over outgoing edges). This
process of choosing edges is repeated forever, and gives rise to an outcome of the game, called aplay, that consists of
the infinite sequence of states that are visited. When randomized strategies are used, there is in general not a unique
outcome, but a set of possible outcomes, as the choice of edges is stochastic rather than deterministic.

Traditionally, games on graphs have been studied with Boolean objectives such as reachability, liveness,ω-regular
conditions formalized as the canonical parity objectives,strong fairness objectives, etc [35,31,32,48,45,34]. While
games withquantitativeobjectives have been studied in the game theory literature [30,49,38], their application in
synthesis and other problems in verification is quite recent. The two classical quantitative objectives that are most
relevant in verification and synthesis are themean-payoffandenergyobjectives. In games on graphs with quantitative
objectives, the game graph is equipped with a weight function that assigns integer-valued weights to every edge. For
mean-payoff objectives, the goal of player 1 is to ensure that the long-run average of the weights is above a threshold.
For energy objectives, the goal of player 1 is to ensure that the sum of the weights stays above 0 at all times. In applica-
tions of verification and synthesis, the quantitative objectives that typically arise are (i) multi-dimensional quantitative
objectives (i.e., conjunction of several quantitative objectives), e.g., to express properties like the average response
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time between a grant and a request is below a given thresholdν1, and the average number of unnecessary grants is
below thresholdν2; and (ii) conjunction of quantitative objectives with a Boolean objective, such as a mean-payoff
parity objective that can express properties like the average response time is below a threshold along with satisfying a
liveness property. In summary, the quantitative objectives can express properties related to resource requirements,per-
formance, and robustness; multiple objectives can expressthe different, potentially dependent or conflicting objectives;
and the Boolean objective specifies functional properties such as liveness or fairness. The game theoretic framework
of multi-dimensional quantitative games and games with conjunction of quantitative and Boolean objectives has re-
cently been shown to have many applications in verification and synthesis, such as synthesizing systems with quality
guarantee [6], synthesizing robust systems [7], performance aware synthesis of concurrent data structure [14], ana-
lyzing permissivity in games and synthesis [11], simulation between quantitative automata [19], generalizing Boolean
simulation to quantitative simulation distance [15], etc. Moreover, multi-dimensional energy games are equivalent to
a decidable class of games on VASS (vector addition systems with states). This model is equivalent to games over
multi-counter systems and Petri nets [12].

In literature, there are many recent works on the theoretical analysis of multi-dimensional quantitative games, such
as, mean-payoff parity games [22,11], energy-parity games [17], multi-dimensional energy games [20], and multi-
dimensional mean-payoff games [20,47]. Most of these works focus on establishing the computational complexity
of the problem of deciding if player 1hasa winning strategy. From the perspective of synthesis and other related
problems in verification, the most important problem is to obtain a witnessfinite-memorywinning strategy (if one
exists). The winning strategy in the game corresponds to thedesired controller for (or implementation of) the system
in synthesis, and for implementability a finite-memory strategy is essential. In this work we consider the problem of
finite-memory strategy synthesis in multi-dimensional quantitative games in conjunction with parity objectives, and
the problem of existence of memory-efficient randomized strategies for such games. These are some of the core and
foundational problems in the emerging theory of quantitative verification and synthesis.

Our contributions. In this work, we give an extended presentation of the resultsof [23], the first study of multi-
dimensional energy and mean-payoff objectives in conjunction with parity objectives. Conjunction of parity objectives
with multi-dimensional quantitative objectives had neverbeen considered before [23]. Our presentation is based on
the journal publication [24]. Since we consider the synthesis of finite-memory strategies, it follows from the results
of [20] that both the problems (multi-dimensional energy with parity and multi-dimensional mean-payoff with par-
ity) are equivalent. Our main results for finite-memory strategy synthesis for multi-dimensional energy parity games
are as follows.(i) Optimal memory bounds. We first show that memory of exponential size is sufficient inmulti-
dimensional energy parity games. Our result is a significantimprovement over the result that can be obtained naively
from the results known in literature that yields a triple exponential bound, even in the case of multi-dimensional en-
ergy games without parity. Second, we show a matching lower bound by presenting a family of game graphs where
exponential memory is necessary in multi-dimensional energy games (without parity), even when all the transition
weights belong to{−1,0,+1}. Thus we establishoptimal memory boundsfor the finite-memory strategy synthesis
problem.(ii ) Symbolic and incremental algorithm.We present asymbolicalgorithm (in the sense of [28], i.e., using
a compact antichain representation of sets by their minimalelements) to compute a finite-memory winning strategy, if
one exists, for multi-dimensional energy parity games. Ouralgorithm is parameterized by the range of energy levels to
consider during its execution. So, we can use it in anincremental approach: first, we search for finite-memory winning
strategies with a small range, and increment the range only when necessary. We also establish a bound on the maximal
range to consider which ensures completeness of the incremental approach. In the worst case the algorithm requires
exponential time. Since exponential size memory is required (and also the decision problem is coNP-complete [20]),
the worst case exponential bound can be considered asoptimal. Moreover, as our algorithm is symbolic and incremen-
tal, in most relevant problems in practice, it is expected tobe efficient.(iii ) Randomized strategies.We also consider
when the (pure) finite-memory strategies can be traded off for conceptually much simpler randomized strategies. We
show that for energy objectives randomization is not helpful (as energy objectives are similar in spirit with safety
objectives), even with only one player, neither it is for two-player multi-dimensional mean-payoff objectives. How-
ever, randomized memoryless strategies suffice for one-player multi-dimensional mean-payoff parity games. For the
important special case of mean-payoff parity objectives (conjunction of a single mean-payoff and parity objectives),
we show that in games, finite-memory strategies can be tradedoff for randomized memoryless strategies.
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Related works. This paper extends the results presented in its preceding conference version [23] and gives a full
presentation of the technical details published in [24]. Games with a single mean-payoff objective have been studied
in [30,49], and games with a single energy objective in [16]; their equivalence was established in [10]. One-dimensional
mean-payoff parity games problem has been studied in [22]: an exponential algorithm was given to decide if there
exists a winning strategy (which in general was shown to require infinite memory); and an improved algorithm was
presented in [11]. One-dimensional energy parity games problem has been studied in [17]: it was shown that deciding
the existence of a winning strategy is in NP∩ coNP, and an exponential algorithm was given. It was also shown in [17]
that, for one-dimensional energy parity objectives, finite-memory strategies with exponential memory are sufficient,
and the decision problem for mean-payoff parity objective can be reduced to energy parity objective. Alternative
objectives based on the mean-payoff but with improved tractability in the one-dimensional setting were considered
in [21]. Extension of the worst-case threshold problem - the classical decision problem on mean-payoff games - with
guarantees on the expected performance faced to a stochastic adversary was studied in [13].

Games on VASS with several different winning objectives have been studied in [12], and from the results of [12] it
follows that in multi-dimensional energy games, winning strategies with finite memory are sufficient (and a triple ex-
ponential bound on memory can be derived from the results). The complexity of multi-dimensional energy and mean-
payoff games was studied in [20,47]. It was shown in [20] that in general, winning strategies in multi-dimensional
mean-payoff games require infinite memory, whereas for multi-dimensional energy games, finite-memory strategies
are sufficient. Moreover, for finite-memory strategies, themulti-dimensional mean-payoff and energy games coincide,
and optimal computational complexity for deciding the existence of a winning strategy was established as coNP-
complete [20,47]. Multi-dimensional mean-payoff games with infinite-memory strategies were studied in [47], and
optimal computational complexity results were established. Various decision problems over multi-dimensional energy
games were studied in [33].

2 Preliminaries

We consider two-player game structures and denote the twoplayersbyP1 andP2.

Multi-weighted two-player game structures. A multi-weighted two-player game structureis a tuple G =
(S1,S2,sinit ,E,k,w) where (i)S1 andS2 resp. denote the finite sets ofstatesbelonging toP1 andP2, with S1∩S2 = /0;
(ii) sinit ∈ S= S1∪S2 is the initial state; (iii)E ⊆ S×S is the set ofedgessuch that for alls∈ S, there existss′ ∈ S
such that(s,s′) ∈ E; (iv) k∈N is thedimensionof the weight vectors; and (v)w: E → Zk is the multi-weight labeling
function. The game structureG is one-playerif S2 = /0. A play in G is an infinite sequence of statesπ = s0s1s2 . . .
such thats0 = sinit and for all i ≥ 0, we have(si ,si+1) ∈ E. Theprefixup to then-th state of playπ = s0s1 . . .sn . . .
is the finite sequenceπ(n) = s0s1 . . .sn. Let First(π(n)) andLast(π(n)) resp. denotes0 andsn, the first and last states
of π(n). A prefix π(n) belongs toPi , i ∈ {1,2}, if Last(π(n)) ∈ Si . The set of plays ofG is denoted byPlays(G)
and the corresponding set of prefixes is denoted byPrefs(G). The set of prefixes that belong toPi is denoted by
Prefsi(G). Theenergy level vectorof a sequence of statesρ = s0s1 . . .sn such that for alli ≥ 0, we have(si ,si+1) ∈ E,
is EL(ρ) = ∑i=n−1

i=0 w(si ,si+1) and themean-payoff vectorof a playπ = s0s1 . . . isMP(π) = lim infn→∞
1
nEL(π(n)).

Parity. A game structureG is extended with a priority functionp: S→N to the structureGp = (S1,S2,sinit ,E,k,w, p).
Given a playπ = s0s1s2 . . . , we defineInf(π) = {s∈ S| ∀m≥ 0,∃n> m such thatsn = s}, the set of states that ap-
pear infinitely often alongπ . Theparity of a playπ is defined asPar(π) = min{p(s) | s∈ Inf(π)}. In the following
definitions, we denote any game byGp with no loss of generality.

Strategies.Given a finite setA, a probability distributionon A is a functionp: A → [0,1] such that∑a∈A p(a) = 1.
We denote the set of probability distributions onA by D(A). A pure strategyfor Pi , i ∈ {1,2}, in Gp is a function
λi : Prefsi(Gp)→Ssuch that for allρ ∈Prefsi(Gp), we have(Last(ρ),λi(ρ))∈E. A (behavioral) randomized strategy
is a functionλi : Prefsi(Gp)→D(S) such that for allρ ∈Prefsi(Gp), we have{(Last(ρ),s) | s∈ S,λi(ρ)(s)> 0}⊆E.
A pure strategyλi for Pi hasfinite memoryif it can be encoded by a deterministic Moore machine(M,m0,αu,αn)
whereM is a finite set of states (the memory of the strategy),m0 ∈ M is the initial memory state,αu : M ×S→ M
is an update function, andαn : M ×Si → S is the next-action function. If the game is ins∈ Si and m∈ M is the
current memory value, then the strategy choosess′ = αn(m,s) as the next state of the game. When the game leaves a
states∈ S, the memory is updated toαu(m,s). Formally,〈M,m0,αu,αn〉 defines the strategyλi such thatλi(ρ · s) =
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αn(α̂u(m0,ρ),s) for all ρ ∈ S∗ ands∈ Si , whereα̂u extendsαu to sequences of states as expected. A pure strategy is
memorylessif |M|= 1, i.e., it does not depend on history but only on the current state of the game. Similar definitions
hold for finite-memory randomized strategies, such that thenext-action functionαn is randomized, while the update
functionαu remains deterministic. We resp. denote byΛi ,ΛPF

i ,ΛPM
i ,ΛRM

i the sets of general (i.e., possibly randomized
and infinite-memory), pure finite-memory, pure memoryless and randomized memoryless strategies for playerPi .

Given a prefixρ ∈ Prefsi(Gp) belonging to playerPi , and a strategyλi ∈ Λi of this player, we define thesupport
of the probability distribution defined byλi asSuppλi

(ρ) = {s∈ S| λi(ρ)(s)> 0}, with λi(ρ)(s) = 1 if λi is pure and
λi(ρ) = s. A play π is said to beconsistentwith a strategyλi of Pi if for all n ≥ 0 such thatLast(π(n)) ∈ Si , we
haveLast(π(n+1)) ∈ Suppλi

(π(n)). Given two strategies,λ1 for P1 andλ2 for P2, we defineOutcomeGp(λ1,λ2) =
{

π ∈ Plays(Gp) | π is consistent withλ1 andλ2
}

, the set of possibleoutcomesof the game. Note that if both strategies
λ1 andλ2 are pure, we obtain a unique playπ = s0s1s2 . . . such that for allj ≥ 0, i ∈ {1,2}, if sj ∈ Si , then we have
sj+1 = λi(sj).

Given the initial statesinit and strategies for both playersλ1 ∈ Λ1, λ2 ∈ Λ2, we obtain a Markov chain. Thus, every
eventA ⊆ Plays(Gp), a measurable set of plays, has a uniquely defined probability [46] (Carathéodory’s extension

theorem induces a unique probability measure on the Borelσ -algebra overPlays(Gp)). We denote byPλ1,λ2
sinit (A) the

probability that a play belongs toA when the game starts insinit and is played consistently withλ1 and λ2. Let
f : Plays(Gp)→ R be a measurable function, we denoteE

λ1,λ2
sinit ( f ) the expected value of functionf over a play when

the game starts insinit and is played consistently withλ1 andλ2. We use the same notions for prefixes by naturally
extending them to their infinite counterparts.

Objectives.An objectivefor P1 in Gp is a set of playsφ ⊆ Plays(Gp). We consider several kinds of objectives:

– Multi Energy objectives. Given an initial natural energy vectorv0 ∈ Nk, the objectivePosEnergyGp
(v0) =

{

π ∈ Plays(Gp) | ∀n≥ 0 : v0+EL(π(n)) ∈ Nk
}

requires that the energy level in all dimensions stays positive
at all times.

– Multi Mean-payoff objectives. Given a rational threshold vectorv ∈ Qk, the objectiveMeanPayoffGp
(v) =

{

π ∈ Plays(Gp) |MP(π)≥ v
}

requires that for all dimensionj, the mean-payoff on this dimension is at least
v( j).

– Parity objectives. ObjectiveParityGp
=

{

π ∈ Plays(Gp) | Par(π) mod 2= 0
}

requires that the minimum priority
visited infinitely often be even. When the set of priorities is restricted to{0,1}, we have aBüchi objective. Note
that every multi-weighted game structureG without parity can trivially be extended toGp with p : S→{0}.

– Combined objectives. Parity objectives can naturally be combined with multi mean-payoff and multi energy ob-
jectives, resp. yieldingMeanPayoffGp

(v)∩ParityGp
andPosEnergyGp

(v0)∩ParityGp
.

Sure, satisfaction and expectation semantics.A strategyλ1 for P1 is surely winningfor an objectiveφ in Gp if for all
playsπ ∈ Plays(Gp) that are consistent withλ1, we haveπ ∈ φ . When at least one of the players plays a randomized
strategy, the notion of sure winning in general is too restrictive and inadequate, as the set of consistent plays that do
not belong toφ may have zero probability measure. Therefore, it is useful to usesatisfactionor expectationcriteria.
Let λ1 ∈ Λ1 be the strategy ofP1.

– Given a thresholdα ∈ [0,1] and a measurable objectiveφ ⊆ Plays(Gp), α-satisfactionasks that for allλ2 ∈ Λ2,

we havePλ1,λ2
sinit (φ) ≥ α. If λ1 satisfiesφ with probabilityα = 1, we say thatλ1 is almost-surely winningfor φ in

Gp.
– Given a thresholdβ ∈ Qk, a function f : Plays(Gp) → Q, β -expectationasks that for allλ2 ∈ Λ2, we have

E
λ1,λ2
sinit ( f ) ≥ β .

Note that energy objectives are naturally more enclined towards satisfaction semantics, as they model safety properties.

Strategy synthesis problem.For multi energy parity games, the problem is to synthesize afinite initial creditv0 ∈Nk

and a purefinite-memorystrategyλ p f
1 ∈ ΛPF

1 that is surely winning forP1 in Gp for the objectivePosEnergyGp
(v0)∩

ParityGp
, if one exists. So, the initial credit is not fixed, but is part of the strategy to synthesize. For multi mean-payoff

games, given a thresholdv∈ Qk, the problem is to synthesize a purefinite-memorystrategyλ p f
1 ∈ ΛPF

1 that is surely
winning forP1 in Gp for the objectiveMeanPayoffGp

(v)∩ParityGp
, if one exists. Note that multi energy and multi
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mean-payoff games are equivalent for finite-memory strategies, while in general, infinite memory may be necessary
for the latter [20].

Trading finite memory for randomness.We study when finite memory can be traded for randomization. The question
is: given a strategyλ p f

1 ∈ΛPF
1 which ensures surely winning of some objectiveφ , does there exist a strategyλ rm

1 ∈ΛRM
1

which ensures almost-surely winning for the same objectiveφ? For mean-payoff objectives, one can also ask for a
weaker equivalence, that is: can randomized memoryless strategies achieve the same expectation as pure finite-memory
ones?

3 Optimal memory bounds

In this section, we establish optimal memory bounds for purefinite-memory winning strategies on multi-dimensional
energy parity games (MEPGs). Also, as a corollary, we obtainresults for pure finite-memory winning strategies on
multi-dimensional mean-payoff parity games (MMPPGs). We show that single exponential memory is both sufficient
and necessary for winning strategies. Additionally, we show how the parity condition in a MEPG can be removed by
adding additional energy dimensions.

Multi energy parity games. A sample game is depicted on Fig.1. The key point in the upper bound proof on memory
is to understand that forP1 to win a multi energy parity game, he must be able to force cycles whose energy level is
positive in all dimensions and whose minimal parity is even.As stated in the next lemma, finite-memory strategies are
sufficient for multi energy parity games for both players.

s0
2

s1
3

s2
1

s3
2

s4
3

s5
0

(−1,1) (0,2)

(0,1) (0,0)

(1,−1) (−2,1)

(0,−1)

(2,0)

〈s0,(0,0)〉

〈s1,(−1,1)〉 〈s2,(0,2)〉

〈s3,(−1,2)〉 〈s3,(0,2)〉

〈s4,(0,1)〉 〈s5,(−2,3)〉

〈s0,(0,0)〉 〈s3,(0,3)〉

Fig. 1. Two-dimensional energy parity game and even-parity self-covering tree representing an arbitrary finite-memory winning
strategy. Circle states belong toP1, square states toP2.

Lemma 1 (Extension of [20, Lemma 2 and 3]).If P1 has a winning strategy in a multi energy parity game, then
he has a pure finite-memory one. IfP2 has a winning strategy in a multi energy parity game, then he has a pure
memoryless one.

Proof. The first part of the result follows using the standard well-quasi ordering argument (straightforward extension
of [20, Lemma 2]). The second part follows by the classical edge induction argument: Lemma 3 of [20] and Lemma
3 of [17] show the result using edge induction for multi energy and energy parity games, respectively. Repeating the
arguments of Lemma 3 of [17], and replacing the part on single energy objectives by the argument of Lemma 3 of [20]
for multi energy objectives, we obtain the desired result. ⊓⊔

By Lemma1, we know that w.l.o.g. both players can be restricted to playpure finite-memory strategies. The
property on the cycles can then be formalized as follows.
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Lemma 2. Let Gp = (S1,S2,sinit ,E,k,w, p) be a multi energy parity game. Letλ p f
1 ∈ ΛPF

1 be a winning strategy
of P1 for initial credit v0 ∈ Nk. Then, for allλ pm

2 ∈ ΛPM
2 , the outcome is a regular playπ = ρ · (η∞)

ω , with ρ ∈
Prefs(G),η∞ ∈ S+, such thatEL(η∞)≥ 0 andPar(π) = min{p(s) | s∈ η∞} is even.

Proof. Recall that both players play with pure finite memory strategies. Therefore, a finite number of decisions are
made and the outcome is a regular playπ = ρ · (η∞)

ω . Note thatEL(ρ) does not have to be positive, asP1 may have
v0 > EL(ρ). Similarly, priorities of states visited inρ have no impact on winning as they are only visited a finite
number of times. First, supposeEL(η∞)< 0 on some dimension 1≤ j ≤ k. Then, afterm> 0 cycles, for somen> 0,
the energy level will beEL(π(n)) = EL(ρ · (η∞)

m) = EL(ρ)+m·EL(η∞). Sincev0 is finite andm→ ∞, there exist
somem,n> 0, such thatv0+EL(π(n))< 0 on dimensionj andλ1 is not winning. Second, suppose min{p(s) | s∈ η∞}
is odd. Since the set of states visited infinitely often is exactly the set of states inη∞, this implies thatPar(π) is odd,
and thusλ1 is not winning. ⊓⊔

A self-covering pathin a game, straightforwardly extending the notion introduced by Rackoff [41] for Vector
Addition Systems(VAS), is a sequence of statess0s1s2 . . .sm such that there exist two positionsi and j that verify
0≤ i < j ≤m, si = sj andEL(s0 . . .si)≤ EL(s0 . . .si . . .sj). In other words, such a path describes a finite prefix followed
by a cycle which has a non-negative effect on the energy level. Ensuring such cycles is crucial to win the energy
objective. With the notion of regular play of Lemma2, we generalize the notion of self-covering path to include the
parity condition. We show here that, if such a path exists, then the lengths of its cycle and the prefix needed to reach it
can be bounded. Bounds on the strategy follow. In [41], Rackoff showed how to bound the length of self-covering paths
in VAS. This work was extended to Vector Addition Systems with States (VASS) by Rosier and Yen [43]. Recently,
Brázdil et al. introduced reachability games on VASS and the notion ofself-covering trees[12]. Their Zero-safety
problem withω initial marking is equivalent to multi energy games with weights in{−1,0,1}, and without the parity
condition. They showed that if winning strategies exist forP1, then some of them can be represented asself-covering
treesof bounded depth. Trees have to be considered instead of paths, as in a game setting all the possible choices of
the adversary (P2) must be considered. Here, we extend the notion of self-covering trees toeven-parity self-covering
trees, in order to handle parity objectives.

Even-parity self-covering tree. An even-parity self-covering tree(epSCT) fors∈ S is a finite treeT = (Q,R), where
Q is the set of nodes,Θ : Q→ S×Zk is a labeling function andR⊂ Q×Q is the set of edges, such that

• The root ofT is labeled〈s,(0, . . . ,0)〉.
• If ς ∈ Q is not a leaf, then letΘ(ς) = 〈t,u〉, t ∈ S, u∈ Zk, such that

- if t ∈ S1, thenς has a unique childϑ such thatΘ(ϑ) = 〈t ′,u′〉, (t, t ′) ∈ E andu′ = u+w(t, t ′);
- if t ∈ S2, then there is a bijection between children ofς and edges of the game leavingt, such that for each

successort ′ ∈ Sof t in the game, there is one childϑ of ς such thatΘ(ϑ) = 〈t ′,u′〉, u′ = u+w(t, t ′).
• If ς is a leaf, then letΘ(ς) = 〈t,u〉 such that there is some ancestorϑ of ς in T such thatΘ(ϑ) = 〈t,u′〉, with

u′ ≤ u, and the downward path fromϑ to ς , denoted byϑ  ς , has minimal priority even. We say thatϑ is an
even-descendance energy ancestorof ς .

Intuitively, each path from root to leaf is a self-covering path of even parity in the game graph so that plays
unfolding according to such a tree correspond to winning plays of Lemma2. Thus, the epSCT fixes howP1 should
react to actions ofP2 in order to win the MEPG (Fig.1). Note that as the tree is finite, one can take the largest negative
number that appears on a node in each dimension to compute an initial credit for which there is a winning strategy
(i.e., the one described by the tree). In particular, letW denote the maximal absolute weight appearing on an edge in
Gp. Then, for an epSCTT of depthl , it is straightforward to see that the maximal initial credit required is at mostl ·W
as the maximal decrease at each level of the tree is bounded byW. We supposeW > 0 as otherwise, any strategy of
P1 is winning for the energy objective, for any initial credit vectorv0 ∈ Nk.

Let us explicitely state howP1 can deploy a strategyλ T
1 ∈ ΛPF

1 based on an epSCTT = (Q,R). We refer to such
a strategy as anepSCT strategy. It consists in following a path in the treeT, moving a pebble from node to node
and playing in the game depending on edges taken by this pebble. Each time a nodeς such thatΘ(ς) = 〈t,u〉 is
encountered, we do the following.
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• If ς is a leaf, the pebble directly goes up to its oldest even-descendance energy ancestorϑ . By oldest we mean the
first encountered when going down in the tree from the root. Note that this choice is arbitrary, in an effort to ease
following proof formulations, as any one would suit.

• Otherwise, ifς is not a leaf,
- if t ∈ S2 andP2 plays statet ′ ∈ S, the pebble is moved along the edge going to the only childϑ of ς such that

Θ(ϑ) = 〈t ′,u′〉, u′ = u+w(t, t ′);
- if t ∈ S1, the pebble moves toϑ , Θ(ϑ) = 〈t ′,u′〉, the only child ofς , andP1 strategy is to choose the statet ′

in the game.

If such an epSCTT of depthl exists for a gameGp, thenP1 can play the strategyλ T
1 ∈ ΛPF

1 to win the game with
initial credit bounded byl ·W.

Bounding the depth of epSCTs.Consider a multi energy gamewithoutparity. Then, the priority condition on down-
ward paths from ancestor to leaf is not needed and self-covering trees (i.e., epSCTs without the condition on priorities)
suffice to describe winning strategies. One can bound the size of SCTs using results on the size of solutions for linear
diophantine equations (i.e., with integer variables) [9]. In particular, recent work on reachability games over VASS
with weights{−1,0,1}, Lemma 7 of [12], states that ifP1 has a winning strategy on a VASS, then he can exhibit one
that can be described as an SCT whosedepthis at mostl = 2(d−1)·|S| · (|S|+1)c·k2

, wherec is a constant independent
of the considered VASS andd its branching degree (i.e., the highest number of outgoing edges on any state). Naive use
of this bound for multi energy games with arbitrary integer weights would induce atriple exponential bound for mem-
ory. Indeed, recall thatW denotes the maximal absolute weight that appears in a gameGp = (S1,S2,sinit ,E,k,w, p).
A straightforward translation of a game with arbitrary weights into an equivalent game that uses only weights in
{−1,0,1} induces a blow-up byW in the size of the state space, and thus an exponential blow-up byW in the depth
of the tree, which becomes doubly exponential as we have

l = 2(d−1)·W·|S| · (W · |S|+1)c·k2
= 2(d−1)·2V ·|S| · (W · |S|+1)c·k2

,

whereV denotes the number of bits used by the encoding ofW. Moreover, the width of the tree increases asdl ,
i.e., it increases exponentially with the depth. So straight application of previous results provides an overall tree of
triple exponential size. In this paper we improve this boundand prove a single exponential upper bound, even for
multi energyparity games. We proceed in two steps, first studying the depth of theepSCT, and then showing how to
compress the tree into adirected acyclic graph(DAG) of singleexponential size.

Lemma 3. Let Gp = (S1,S2,sinit ,E,k,w, p) be a multi energy parity game such that W is the maximal absolute weight
appearing on an edge and d the branching degree of Gp. Suppose there exists a finite-memory winning strategy for

P1. Then there is an even-parity self-covering tree for sinit of depth at most l= 2(d−1)·|S| · (W · |S|+1)c·k
2
, where c is a

constant independent of Gp.

Lemma 3 eliminates the exponential blow-up in depth induced by a naive coding of arbitrary weights into
{−1,0,1} weights, and implies an overall doubly exponential upper bound. Our proof is a generalization of [12,
Lemma 7], using a more refined analysis to handle bothparity andarbitrary integer weights. The idea is the follow-
ing. First, consider the one-player case. The epSCT is reduced to a path. By Lemma2, it is composed of a finite prefix,
followed by an infinitely repeated sequence of positive energy level and even minimal priority. The point is to bound
the length of such a sequence by eliminating cycles that are not needed for energy or parity. Second, to extend the
result to two-player games, we use an induction on the numberof choices available forP2 in a given state. Intuitively,
we show that ifP1 can win with an epSCTTA whenP2 plays edges from a setA in a states, and if he can also win
with an epSCTTB whenP2 plays edges from a setB, then he can win whenP2 chooses edges from bothA andB, with
an epSCT whose depth is bounded by the sum of depths ofTA andTB.

Proof. The proof is made in two steps. First, we consider the one-player case, whereS2 = /0. Second, we use an
induction scheme over the choice degree ofP2 to extend our results to the two-player case.
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We start withS2 = /0, the one-player game. By Lemma2, a winning play is of the formπ = ρ · (η∞)
ω such that

EL(η∞) ≥ 0 andPar(π) = min{p(s) | s∈ η∞} is even. Notice that such a play corresponds to the epSCT defined
above, as it reduces to an even-parity self-covering path〈sinit ,(0, . . . ,0)〉 〈s,u〉 〈s,u′〉 with u′ ≥ u. Therefore its
existence is guaranteed and it remains to bound its length. Given such a path, the idea is to eliminate unnecessary
cycles, in order to reduce its length while maintaining the needed properties (i.e., positive energy and even minimal
priority). First, notice that cycles in the sub-path〈sinit ,(0, . . . ,0)〉 〈s,u〉 can be trivially erased as they are only
visited a finite number of times and thus (a) the initial credit can compensate for the loss of their potential positive
energy effect, and (b) they do not contribute in the parity. Now consider the sub-path〈s,u〉 〈s,u′〉. Since it induces a
winning play, its minimal priority is even. Letpm be this priority. We may suppose w.l.o.g. thatp(s) = pm, otherwise
it suffices to shift this sub-path to〈s′,v〉 〈s′,v′〉 for some states′ such thatp(s′) = pm andv′ ≥ v, and add the
sub-path〈s,u〉 〈s′,v〉 to the finite prefix. Now we may eliminate each cycle of〈s,u〉 〈s,u′〉 safely in regards to
the parity objective as they only contain states with greater or equal priority. Thus, we only need to take care of the
energy, and fall under the scope of [12, Lemma 15] for the special case of weights in{−1,0,1}, where an upper bound

h(|S|,k) = (|S|+1)c·k
2

on the length of such a path is shown.
We claim that for a one-player gameG, with weights in {−W,−W+1, . . . ,W−1,W}, an upper bound

h(W, |S|,k) = (W · |S|+1)c·k
2

is obtained. Indeed, one can translateGp = (S1,S2,sinit ,E,k,w, p) into an equivalent
gameG′

p′ = (S′1,S2,sinit ,E′,k,w′, p′) such that each edge ofGp is split into at mostW edges inG′
p′ , with at most

(W−1) dummy states in between, so that each edge ofG′
p′ only uses weights in{−1,0,1}. Let Sd denote the set of

these added dummy states. We define this translationTr : Gp 7→G′
p′ with Tr(S1) =S1∪Sd,Tr(S2) =S2,Tr(sinit ) = sinit ,

Tr(E) =
⋃

(s,t)∈ETr((s, t)), Tr(k) = k, Tr(w) = w′ : E′ → {−1,0,1}k, Tr(p) = p′ : S′ → N such that for all(s, t) ∈ E

such thatm= max{w(s, t)( j) | 1≤ j ≤ k}−1, we have thatTr((s, t)) =
{

(s,s1
d),(s

1
d,s

2
d), . . . ,(s

m−1
d ,sm

d ),(s
m
d , t)

}

such
that

(

∀ j > 0, sj
d ∈ Sd ∧ p′(sj

d) = p(s)
)

∧ ∑
(q,r)∈Tr((s,t))

w′(q, r) = w(s, t).

To be formally correct, we have to add that for allsd ∈ Sd, we havedegreein(sd) = degreeout(sd) = 1, and for all
s 6∈ Sd, we havep′(s) = p(s). This translation does not hinder the outcome of the game as each edge inGp has a
unique corresponding path inG′

p′ that preserves the weights and the visited priorities, and that offers no added choice

to P1. SinceGp possesses|E| ≤ |S|2 edges, and for each edge ofGp, we add at most(W−1) dummy states inG′
p′ ,

we have|S′| ≤ |S|+ |S|2 · (W−1)≤ |S|2 ·W. Therefore, by applying [12, Lemma 15] onG′
p′ , we obtain the following

upper bound:

h(W, |S|,k) = h
(

|S′|,k
)

≤
(

|S|2 ·W+1
)c·k2

≤ (W · |S|+1)c
′ ·k2

for some constantc′ that is independent ofGp.
Now, considerS2 6= /0. (I) We extend [12, Lemma 16] for parity. This will help us to establish an induction scheme

over the choice degree ofP2. Supposes∈ S2 has more than one outgoing edge. Letτ = (s, t) ∈ E be one of them and
R⊂ E denote the nonempty set of other outgoing edges. LetGτ

p (resp.GR
p) be the game induced when removingR

(resp.τ) from Gp. Suppose that (a)s is winning forP1 in GR
p for initial creditvR ∈ Nk, and (b) there exists some state

s′ ∈ Ssuch thats′ is winning forP1 in Gτ
p for initial creditvτ ∈ Nk. We claim thats′ is winning inGp for initial credit

v0 = vτ + vR. Indeed, letλ τ
1 andλ R

1 resp. denote winning strategies forP1 in Gτ
p andGR

p. Let P1 use the following
strategy. PlayerP1 playsλ τ

1 as long asP2 does not play any edge ofR. If such an edge is played, thenP1 switches to
strategyλ R

1 and plays it until edgeτ is played again byP2, in which caseP1 switches back toλ τ
1 , and so on. In this

way, the outcome of the game is guaranteed to be a playπ = s′ . . .s. . .s. . .s. . . resulting from a merge between a play
consistent withλ τ

1 overGτ
p (whose energy level is bounded by−vτ at all times), and a play consistent withλ R

1 overGR
p

(whose energy level is bounded by−vR at all times). Therefore, the combined overall energy levelof any prefixρ of
this play is bounded by(−vτ − vR) as positive cycles inGτ

p andGR
p do remain positive inGp. Furthermore, the parity

condition is preserved inGp. Indeed, suppose it is not. Thus, there exists a state visited infinitely often in the outcome
such that its priority is minimal and odd. However, as the outcome results from merging plays resp. consistent withλ τ

1
andλ R

1 , this implies that one of those strategies yields an odd minimal priority, which contradicts the fact that they are
winning. This proves the claim.

8



(II) We apply the induction scheme of [12, Lemma 18] onr = |{(s, t)∈ E | s∈S2}|−|S2| ≤ (d−1) · |S|, the choice
degree ofP2. Notice that our translationTr : Gp 7→ G′

p′ maintains this choice degree unchanged. The claim is that for
a winning states′, there is an epSCT of depth bounded by 2r ·h(W, |S|,k). We have proved that for the base caser = 0,
similar toS2 = /0, this claim is true. So assume it holds forr, it remains to prove that it is preserved forr +1. Lets∈ S2

be such thatP2 has at least two outgoing edges. As before, we defineGτ
p andGR

p. Clearly, the choice degree ofP2

is at mostr in both games. Lets′ be a winning state inGp. As P2 has less choices in bothGτ
p andGR

p, clearlys′ is
still winning in those games. If an epSCT in either of them (which are guaranteed to exist and have depth bounded by
2r ·h(W, |S|,k) by hypothesis) do not contain the states, then the claim is verified. Now suppose we have two epSCTs
for gamesGτ

p andGR
p such that they both contain states. Notice thats is winning in those two games and as such, is

the root of two respective epSCTs of depth less than 2r ·h(W, |S|,k). Applying (I) on statess′ ands, we get an epSCT
for s′ in Gp of depth 2·2r ·h(W, |S|,k), which concludes the proof. ⊓⊔

From multi energy parity games to multi energy games.Let Gp be a MEPG and assume thatP1 has a winning
strategy in that game. By Lemma3, there exists an epSCT whose depth is bounded byl . As a direct consequence of
that bounded depth, we have thatP1, by playing the strategy prescribed by the epSCT, enforces astronger objective
than the parity objective. Namely, this strategy ensures to“never visit more thanl states of odd priorities before seeing
a smaller even priority” (which is a safety objective). Then, the parity condition can be transformed into additional
energy dimensions.

While our transformation shares ideas with the classical transformation of parity objectives into safety objectives,
first proposed in [5] (see also [29, Lemma 6.4]), it is technically different because energy levels cannot be reset (as
it would be required by those classical constructions). Thereduction is as follows. For each odd priority, we add one
dimension. The energy level in this dimension is decreased by 1 each time this odd priority is visited, and it is increased
by l each time a smaller even priority is visited. IfP1 is able to maintain the energy level positive for all dimensions
(for a given initial energy level), then he is clearly winning the original parity objective; on the other hand, an epSCT
strategy that wins the original objective also wins the new game.

Lemma 4. Let Gp = (S1,S2,sinit ,E,k,w, p) be a multi energy parity game with priorities in{0,1, . . . ,2·m}, such that
W is the maximal absolute weight appearing on an edge. Then wecan construct a multi energy game G with the same
set of states,(k+m) dimensions and a maximal absolute weight bounded by l, as defined by Lemma3, such thatP1

has a winning strategy in G iff he has one in Gp.

Proof. Let Gp = (S1,S2,sinit ,E,k,w, p) be a MEPG with priorities in{0,1, . . . ,2 ·m}. Let G= (S1,S2,E,(k+m),w′)
be the multi energy game (MEG) obtained by applying the following transformation:∀ (s, t) ∈ E, ∀ 1 ≤ j ≤ k,

w′((s, t))( j) = w((s, t))( j), and (a) if p(t) is even,∀ k < j ≤ k+ p(t)
2 , w′((s, t))( j) = 0 and∀ k+ p(t)

2 < j ≤ k+m,

w′((s, t))( j) = l , or (b) if p(t) is odd,∀ k< j ≤ k+m, j 6= k+
⌈

p(t)
2

⌉

, w′((s, t))( j) = 0 andw′((s, t))(k+
⌈

p(t)
2

⌉

) =−1.

We have to prove both ways of the equivalence.
First, supposeλ1 ∈ ΛPF

1 is a winning strategy forP1 in the MEPGGp. By Lemma3, there is an epSCT of depth
at mostl for sinit . Thus, we know that in every repeated sequence ofl states, the minimal visited priority will be
even. Therefore, for all additional dimensions, ranging fromk+1 to k+m, the effect of a sequence ofl states will be
bounded from below by−1 · (l −1)+ l , which is positive. Thus strategyλ1 is also winning inG (with initial credit
bounded byl on additional dimensions).

Second, supposeλ1 ∈ ΛPF
1 is a winning strategy forP1 in the MEGG, as defined above. Sinceλ1 is winning, it

yields an SCT (epSCT without the parity condition) of bounded depth such thatP1 is able to enforce positive energy
cycles. By definition of weights overG, this cannot be the case if the minimal priority infinitely often visited is odd.
Thus this strategy is winning for parity onGp, and stays winning for energy over dimensions 1 tok as weights are
unchanged. ⊓⊔

Bounding the width. Thanks to Lemma4, we continue with multi energy games without parity. In order to bound
the overall size of memory for winning strategies, we consider the width of self-covering trees. The following lemma
states that SCTs, whose width is at most doubly exponential by application of Lemma3, can be compressed into
directed acyclic graphs(DAGs) of single exponential width. Thus we eliminate the second exponential blow-up and
give an overall single exponential bound for memory of winning strategies.
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Lemma 5. Let G= (S1,S2,sinit ,E,k,w) be a multi energy game such that W is the maximal absolute weight appearing
on an edge and d the branching degree of G. Suppose there exists a finite-memory winning strategy forP1. Then, there

existsλ D
1 ∈ ΛPF

1 a winning strategy forP1 described by a DAG D of depth at most l= 2(d−1)·|S| · (W · |S|+1)c·k
2

and
width at most L= |S| · (2 · l ·W+1)k, where c is a constant independent of G. Thus the overall memory needed to win
this game is bounded by the single exponential l·L.

The sketch of this proof is the following. By Lemma3, we know that there exists a treeT, and thus a DAG, that
satisfies the bound on depth. We construct a finite sequence ofDAGs, whose first element isT, so that (1) each DAG
describes a winning strategy for the same initial credit, (2) each DAG has the same depth, and (3) the last DAG of the
sequence has its width bounded by|S| · (2· l ·W+1)k. This sequenceD0 = T,D1,D2, . . . ,Dn is built by merging nodes
on the same level of the initial tree depending on their labels, level by level. The key idea of this procedure is that what
actually matters forP1 is only the current energy level, which is encoded in node labels in the self-covering treeT.
Therefore, we merge nodes with identical states and energy levels: sinceP1 can essentially play the same strategy in
both nodes, we only keep one of their subtrees.

It is possible to further reduce the practical size of the compressed resulting DAG by merging nodes according to
a “greater or equal” relation over energy levels rather thansimply equality (Fig.2). This improvement is part of the
algorithm that follows, and it has a significant impact on thepractical width of DAGs as it can then be bounded by the
number ofincomparablelabeling vectors instead ofunequivalentones.

〈s0,(0,0)〉

〈s1,(−1,1)〉 〈s2,(0,2)〉

〈s3,(−1,2)〉 〈s3,(0,2)〉

〈s4,(0,1)〉 〈s5,(−2,3)〉

〈s0,(0,0)〉 〈s3,(0,3)〉

Fig. 2. Merge between comparable nodes.

r

ϑ

ν

ς
ξ

Fig. 3.Cycles have positive energy levels.

The remainder of this subsection is dedicated to the proof ofLemma5. We need to introduce some notations and
two intermediate lemmas. If he so wishes, the reader may directly proceed to the next subsection and Lemma8 for
results on lower memory bounds.

We first introduce some notations. LetT = (Q,R) be a self-covering tree (i.e., epSCT without the parity condi-
tion). We define the partial order� on Q such that for allς1,ς2 ∈ Q such thatΘ(ς1) = 〈t1,u1〉 andΘ(ς2) = 〈t2,u2〉,
we haveς1 � ς2 iff t1 = t2 and u1 ≤ u2. We denote the equivalence by≃ such thatς1 ≃ ς2 iff ς1 � ς2 and
ς2 � ς1. For all ς ∈ Q, let Anc and EnAnc resp. denote the set ofancestorsand energy ancestorsof ς in T:
Anc(ς) = {ϑ ∈ Q\ {ς} | ϑ � ∃♦ς}, where we use the classicalCTL notation to denote that there exists a path from
ϑ to ς in T, andEnAnc(ς) = {ϑ ∈ Anc(ς) | ϑ � ς}.

We build a sequence of DAGs(Di)0≤i≤n ≡ D0 = T,D1,D2, . . . ,Dn such that for all 0< i ≤ n, Di is obtained from
Di−1 by mergingtwo equivalent nodes of the same minimal level (i.e., closest to the root) ofDi−1. The sequence stops
when we obtain a DAGDn = (Qn,Rn) such that for all levelj of Dn, there does not exist two distinct equivalent nodes
on level j. This construction induces merges by increasing depth, starting with level one. Moreover, if a DAGDi of
the sequence is the result on merges up to levelj, then it has the tree property (i.e., every node has a unique father)

10



for levels greater thanj. As the depth and the branching degree ofT are finite, the defined sequence of DAGs is finite
(and actually bounded).

Let us give a formal definition of themergeoperation. Consider such a DAGDi = (Qi ,Ri). Let j the minimal level
of Di that contains two equivalent nodes. Letς1,ς2 ∈ Qi( j) (i.e., nodes of levelj) be two nodes such thatς1 6= ς2 and
ς1 ≃ ς2. We suppose w.l.o.g. an arbitrary order on nodes of the same level so thatς1,ς2 are the two leftmost nodes that
satisfy this condition. We defineDi+1 = (Qi+1,Ri+1) =merge(Di) as the result of the following transformation:

– Qi+1 = Qi \ ({ς2}∪{ςd ∈ Qi |ς2 ∈ Anc(ςd)}),
– Ri+1 = (Ri ∩ (Qi+1×Qi+1))∪{(ϑ ,ς1) | (ϑ ,ς2) ∈ Ri}.

Thus, we eliminate the subtree starting inς2 and replace all edges that point toς2 by edges pointing toς1. This follows
the idea that the same strategy can be played inς2 as inς1 since the present state and the energy level are the same.

Let Di = (Qi ,Ri) be a DAG of the sequence(Di)0≤i≤n. Givenς ∈Qi , ϑ ∈Anc(ς), we denote byϑ ς an arbitrary
downward path fromϑ to ς in Di . Given a leafς ∈ Qi , we denote its oldest energy ancestor byoea(ς). Recall that a
strategy is described by such a DAG according to moves of a pebble. Given a leafς ∈Qi and one of its energy ancestors
ϑ ∈ EnAnc(ς), we represent the pebble going up fromς to ϑ by ς 	 ϑ . Givenα,β ∈ (Qi)

∗, α 	 β naturally extends
this notation such that we haveLast(α)	 First(β ). We consider energy levels of paths in the tree by refering totheir
counterparts in the game. Note that givenϑ ,ς ∈ Qi , Θ(ϑ) = 〈t,u〉, Θ(ς) = 〈t ′,u′〉, we haveEL(ϑ  ς) = u′−u. We
start with two useful lemmas.

Lemma 6. Let Di = (Qi ,Ri) be a DAG of(Di)0≤i≤n. For all nodesς1,ς2 ∈ Qi such thatς1 ≃ ς2, we have that∀ϑ ∈
Anc(ς1)∩Anc(ς2), EL(ϑ  ς1) = EL(ϑ  ς2).

Proof. The proof is straightforward. ⊓⊔

Lemma 7. Let Di = (Qi ,Ri) be a DAG of(Di)0≤i≤n. Letς ,ϑ ,ν,ξ ∈ Qi be four nodes such thatς andξ are leafs,ν is
the deepest common ancestor ofς andξ , andϑ is an ancestor ofν. Let the oldest energy ancestor ofξ be an ancestor
of ς , i.e.,oea(ξ ) ∈ Anc(ς). We have thatEL(ϑ  ς)≤ EL(ϑ  ν  ξ 	 oea(ξ ) ς).

This lemma states that we can extract pebble cycles, which have positive energy levels, from a given path, in order
to obtain some canonical path whose energy level is lower or equal (Fig.3).

Proof. Let χ = oea(ξ ) andρ = ϑ  ν  ξ 	 χ  ς . Sinceχ ∈ Anc(ς)∩Anc(ξ ), we haveχ ∈ Anc(ν)∪ {ν}.
Therefore, and applying Lemma6, four cases are possible:χ ∈ Anc(ϑ), χ = ϑ , χ ∈ Anc(ν) \ (Anc(ϑ)∪{ϑ}), and
χ = ν. Consider the first case,χ ∈ Anc(ϑ). Thenρ = ϑ  ν  ξ 	 χ  ϑ  ν  ς . We haveEL(ρ) = EL(ϑ  
ν)+EL(ν  ξ )+EL(χ  ϑ)+EL(ϑ  ν)+EL(ν  ς) = EL(χ  ϑ  ν  ξ )+EL(ϑ  ς). By definition of
χ = oea(ξ ), the first term is positive. Thus,EL(ρ)≥ EL(ϑ  ς). Arguments are similar for the other cases. ⊓⊔

We proceed with the proof of Lemma5.

Proof (Lemma5). Let (Di)0≤i≤n be the sequence of DAGs defined above. We claim that(i) each DAG describes a
winning strategy for the same initial credit,(ii) each DAG has the same depthl , and(iii) the last DAG of the sequence
has its width bounded by|S| · (2 · l ·W+1)k.

(i) First, recall thatP1 can play a strategyλ T
1 ∈ ΛPF

1 based on edges taken by a pebble onT. Notice that moving
the pebble as we previously defined is possible because nodesbelonging toP1 have only one child, and nodes ofP2

have childs covering all his choices once, and only once. Fortunately, themerge operation maintains this property.
Therefore, it is straightforward to see thatP1 can also play a strategyλ Di

1 ∈ ΛPF
1 for a DAG Di resulting of some

merges onT. However, while this would be a valid strategy forP1, we have to prove that it is still a winning one, for
the same initial creditv0 asλ T

1 . Precisely, we claim that∀ i ≥ 0, we have thatλ Di
1 is winning forv0.

We show it by induction onDi . The base case is trivial asD0 = T: the strategyλ T
1 is winning forv0 by definition.

Our induction hypothesis is that our claim is valid forDi−1, and we now prove it forDi , by contradiction. Letς1,ς2 ∈
Qi−1( j) be the merged nodes, for some levelj of Di−1. Supposeλ Di

1 is not winning forv0. Thus there exists a finite
pathζ of the pebble inDi , which corresponds to a strategyλ Di

2 ∈ ΛPF
2 of P2, such that it achieves a negative value on

at least one dimensionm, 1≤ m≤ k. We have that(v0+EL(ζ )) (m)< 0. We aim to find a similar pathη in Di−1 such
thatEL(η)≤ EL(ζ ), thus yielding contradiction, as it would witness thatλ Di−1

1 is not winning forv0.
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We denote byςm the father ofς2 in Di−1. The only edge added by themerge operation is(ςm,ς1). Obviously, if
ζ does not involve this edge, then we can takeη = ζ and immediately obtain contradiction. Thus, we can decompose
the witness path

ζ = α(1)ςmς1 β (1)	 α(2)ςmς1 β (2)	 . . . 	 α(q)ςmς1 ξ ,

for someq≥ 1 such that for all 1≤ p≤ q, we have thatα(p),β (p),ξ ∈ (Qi ∪{	})∗ are valid paths of the pebble inDi

(andDi−1); they do not involve edge(ςm,ς1), i.e.,{ςmς1} 6⊆α(p),β (p),ξ ; andβ (p)∩
(

AncDi (ςm)\AncDi−1(ς1)
)

= /0,
Last(β (p)) is a leaf andoea(Last(β (p))) ∈ AncDi (ςm).

Intuitively, ζ is split into several parts in regard toq, the number of times it takes the added edge(ςm,ς1). Each
time, this transition is preceded by some pathα. It is then followed by some pathβ where all visited ancestors ofςm
were already ancestors ofς1 in Di−1 (thus,β paths can be kept inη). Finally, after theq-th transitionςmς1 is taken,
the pathζ ends with a finite sub-pathξ .

We define the witness pathη in Di−1 asη = κ(1)β (1) 	 κ(2)β (2)	 . . . 	 κ(q)ξ , with the following transfor-
mation of sub-pathsα(p)ςmς1:

– κ(1) = r  Di−1 ς1,
– ∀2≤ p≤ q,κ(p) = oea(Last(β (p−1))) Di−1 ς1,

where Di−1 denotes a valid path inDi−1. Note that given preceding definitions, this indeed constitutes a valid path in
Di−1. We have to prove thatEL(η)≤ EL(ζ ). We have

EL(η) = ∑
1≤p≤q

EL(κ(p))+ ∑
1≤p≤q−1

EL(β (p))+EL(ξ ),

and

EL(ζ ) = ∑
1≤p≤q

EL(α(p)ςmς1)+ ∑
1≤p≤q−1

EL(β (p))+EL(ξ ).

Thus, it remains to show that

∑
1≤p≤q

EL(κ(p))≤ ∑
1≤p≤q

EL(α(p)ςmς1).

In particular, we claim that for all 1≤ p≤ q, we haveEL(κ(p)) ≤ EL(α(p)ςmς1). Indeed, notice thatκ(p) and
α(p) share their starting and ending nodes and thatα(p) contains a finite number of pebble cycles. Letϑ denote the
common starting node of bothκ(p) andα(p). Applying Lemma7 on α(p), we can eliminate cycles one at a time,
without ever increasing the energy level, and obtain a pathϑ  Di ςmς1 such thatEL(ϑ  Di ςmς1)≤ EL(α(p)ςmς1).
Sinceς1 ≃ ς2, we have by Lemma6 thatEL(ϑ  Di ςmς1) = EL(ϑ  Di−1 ςmς2) = EL(ϑ  Di−1 ς1), implying the
claim.

Consequently, we obtainEL(η)≤ EL(ζ ), which witnesses thatDi−1 was not winning. This contradicts our induc-
tion hypothesis and concludes our proof that for all 0≤ i ≤ n, λ Di

1 is winning forv0.
(ii) Second, themerge operation only prunes some parts of the treeT, without ever adding any new state, and

added edges are on existing successive levels. Therefore, eachDi has noticeably the same depthl .
(iii) Third, the last DAG of the sequence,Dn, is such that for all levelj, for all ς1,ς2 ∈ Qn( j), we have(ς1 6=

ς2)⇒ (ς1 6≃ ς2). Therefore the width of this DAG is bounded by the number of possible non-equivalent nodes. Recall
that two nodes are equivalent if they have the same labels, i.e., they represent the same state of the game and are
marked with exactly the same energy level vector. Since the maximal change in energy level on an edge isW, and

the depth of the DAG is bounded byl = 2(d−1)·|S| · (W · |S|+1)c·k
2

thanks to Lemma3, we have possible vectors in
{−l ·W,−l ·W+1, . . . , l ·W−1, l ·W}k for each state. Consequently, the width ofDn is bounded by

|S| · (2 · l ·W+1)k = |S| ·
(

2d·|S| · (W · |S|+1)c·k
2 ·W+1

)k
,

which is still single exponential. ⊓⊔
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Fig. 4. Family of games requiring exponential memory.

Lower bound. In the next lemma, we show that the upper bound is tight in the sense that there exist families of games
which require exponential memory (in the number of dimensions), even for the simpler case of multi energy objectives
without parity and weights in{−1,0,1} (Fig. 4). Note that for one-dimension energy parity, it was shown in[17] that
exponential memory (in the encoding of weights) may be necessary.

Lemma 8. There exists a family of multi energy games(G(K))K≥1 = (S1,S2,sinit ,E, k= 2 ·K,w : E →{−1,0,1}k
)

such that for any initial credit,P1 needs exponential memory to win.

The idea is the following: in the example of Fig.4, if P1 does not remember the exact choices ofP2 (which requires
an exponential size Moore machine), there will exist some sequence of choices ofP2 such thatP1 cannot counteract a
decrease in energy. Thus, by playing this sequence long enough,P2 can forceP1 to lose, whatever his initial credit is.

Proof. We define a family of games(G(K))K≥1 which is an assembly ofk= 2·K gadgets, the firstK belonging toP2,
and the remainingK belonging toP1 (Fig. 4). Precisely, we have|S1|= |S2|= 3·K, |S|= |E|= 6·K = 3·k (linear in
k), k= 2 ·K, andw defined as:

∀1≤ i ≤ K,w((◦,si)) = w((◦, ti)) = (0, . . . ,0),

w((si ,si,L)) =−w((si ,si,R)) = w((ti , ti,L)) =−w((ti , ti,R)),

∀1≤ j ≤ k, w((si ,si,L))( j) =











1 if j = 2 · i −1

−1 if j = 2 · i
0 otherwise

,

where◦ denotes any valid predecessor state.
There exists a winning strategyλ exp

1 for P1, for initial creditvexp
0 = (1, . . . ,1). Indeed, for any strategy ofP2, for

any stateti belonging toP1, it suffices to play theoppositechoice asP2 made on its last visit ofsi to maintain at all
times an energy vector which is positive on all dimensions. This strategy thus requires to remember the last choice of
P2 in all gadgets, which meansP1 needsK bits to encode these decisions. Thus, this winning strategyis described by
a Moore machine containing 2K = 2

k
2 states, which is exponential in the number of dimensionsk.

We claim that, for any initial creditv0, there exists no winning strategyλ1 that can be described with less than 2K

states and prove it by contradiction. SupposeP1 plays according to such a strategyλ1. Then there exists some 1≤ x≤K
such thatλ1(s1 . . .sxsx,L . . . tx) = λ1(s1 . . .sxsx,D . . . tx), i.e.,P1 chooses the same action intx against both choices of the
adversary. Suppose thatP1 chooses to playtx,L in both cases, that isλ1(s1 . . .sxsx,L . . . tx) = λ1(s1 . . .sxsx,D . . . tx) = tx,L.
By playingsx,L, P2 can force a decrease of the energy vector by 2 on dimension 2·x every visit in gadgetx. Similarly,
if the strategy ofP1 is to playtx,R, P2 wins by choosing to playsx,R as dimension 2·x−1 decreases by 2 every visit.
Therefore, whatever the finite initial vector ofP1, P2 can enforce a negative dimension by playing long enough. This
contradicts the fact thatλ1 is winning and concludes our proof that exponential memory is necessary for this simple
family of games(G(K))K≥1. ⊓⊔
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We summarize our results in Theorem1.

Theorem 1 (Optimal memory bounds).The following assertions hold: (1) In multi energy parity games, if there
exists a winning strategy, then there exists a finite-memorywinning strategy. (2) In multi energy parity and multi
mean-payoff games, if there exists a finite-memory winning strategy, then there exists a winning strategy with at most
exponential memory. (3) There exists a family of multi energy games (without parity) with weights in{−1,0,1} where
all winning strategies require at least exponential memory.

Proof. Thanks to [20, Theorem 3], we have equivalence between finite-memory winning for multi energy and multi
mean-payoff games. The rest follows from straigthforward application of Lemma1, Lemma 4, Lemma 5, and
Lemma8. ⊓⊔

4 Symbolic synthesis algorithm

We now present asymbolic, incrementalandoptimalalgorithm to synthesize a finite-memory winning strategy ina
MEG.4 This algorithm outputs a (set of) winning initial credit(s)and a derived finite-memory winning strategy (if one
exists) which is exponential in the worst-case. Its runningtime is at most exponential. So our symbolic algorithm can
be considered (worst-case) optimal in the light of the results of previous section.

This algorithm computes the greatest fixed point of a monotone operator that defines the sets of winning initial
(vectors of) credits for each state of the game. As those setsare upward-closed, they are symbolically represented by
their minimal elements. To ensure convergence, the algorithm considers only credits that are below somethreshold,
notedC. This is without giving up completeness because, as we show below, for a gameG= (S1,S2,sinit ,E,k,w), it
is sufficient to take the value 2· l ·W for C, wherel is the bound on the depth of epSCTs obtained in Lemma3 andW
is the largest absolute value of weights used in the game. We also show how to extract a finite state Moore machine
representing a corresponding winning strategy (states of the Moore machine encode the memory of the strategy) from
this set of minimal winning initial credits and how to obtainan incrementalalgorithm by increasing values for the
thresholdC starting from small values.

A controllable predecessor operator.Let G= (S1,S2,sinit ,E,k,w) be a MEG,C ∈N be a constant, andU(C) be the
set(S1∪S2)×{0,1, . . . ,C}k. Let U(C) = 2U(C), i.e., the powerset ofU(C), and the operatorCpreC : U(C)→U(C)
be defined as follows:

E(V) = {(s1,e1) ∈U(C) | s1 ∈ S1∧∃(s1,s) ∈ E,∃(s,e2) ∈V : e2 ≤ e1+w(s1,s)},
A(V) = {(s2,e2) ∈U(C) | s2 ∈ S2∧∀(s2,s) ∈ E,∃(s,e1) ∈V : e1 ≤ e2+w(s2,s)},

CpreC(V) = E(V) ∪ A(V). (1)

Intuitively, CpreC(V) returns the set of energy levels from whichP1 can force an energy level inV in one step. The
operatorCpreC is ⊆-monotone over the complete latticeU(C), and so there exists agreatest fixed pointfor CpreC
in the latticeU(C), denoted byCpre∗C. As usual, the greatest fixed point of the operatorCpreC can be computed by
successive approximations as the last element of the following finite ⊆-descending chain. We define the algorithm
CpreFP that computes this greatest fixed point:

U0 =U(C), U1 = CpreC(U0), . . . , Un = CpreC(Un−1) =Un−1. (2)

The setUi contains all the energy levels that are sufficient to maintain the energy positive in all dimensions fori steps.
Note that the length of this chain can be bounded by|U(C)| and the time needed to compute each element of the chain
can be bounded by a polynomial in|U(C)|. As a consequence, we obtain the following lemma.

Lemma 9. Let G=(S1,S2,sinit ,E,k,w) be a multi energy game andC∈N be a constant. ThenCpre∗C can be computed
in time bounded by a polynomial in|U(C)|, i.e., an exponential in the size of G.

4 Note that the symbolic algorithm can be applied to MEPGs and MMPPGs after removal of the parity condition by applying the
construction of Lemma4.
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Symbolic representation. To define a symbolic representation of the sets manipulated by theCpreC operator, we
exploit the following partial order: let(s,e),(s′,e′) ∈U(C), we define

(s,e)� (s′,e′) iff s= s′ ande≤ e′. (3)

A setV ∈ U(C) is closedif for all (s,e),(s′,e′) ∈U(C), if (s,e) ∈V and(s,e)� (s′,e′), then(s′,e′) ∈V. By definition
of CpreC, we get the following property.

Lemma 10. All sets Ui in Eq. (2) are closed for�.

Therefore, all setsUi in the descending chain of Eq. (2) can be symbolically represented by their minimal elements
Min�(Ui) which is an antichain of elements for�. Even if the largest antichain can be exponential inG, this repre-
sentation is, in practice, often much more efficient, even for small values of the parameters. For example, withC= 4
andk = 4, we have that the cardinality of a set can be as large as|Ui | ≤ 625 whereas the size of the largest antichain
is bounded by|Min�(Ui)| ≤ 35. Antichains have proved to be very efficient: see for example [2,27,28]. Therefore, our
algorithm is expected to have good performance in practice.

Correctness and completeness.The following two lemmas relate the greatest fixed pointCpre∗C and the existence of
winning strategies forP1 in G. We start with the correctness of the symbolic algorithm.

Lemma 11 (Correctness).Let G= (S1,S2,sinit ,E,k,w) be a multi energy game, letC ∈ N be a constant. If there
exists(c1, . . . ,ck) ∈ Nk such that(sinit ,(c1, . . . ,ck)) ∈ Cpre∗C, thenP1 has a winning strategy in G for initial credit
(c1, . . . ,ck) and the memory needed byP1 can be bounded by|Min�(Cpre∗C)| (the size of the antichain of minimal
elements in the fixed point).

Given the set of winning initial credits output byCpreFP, it is straightforward to derive a corresponding winning
strategy of at most exponential size. Indeed, for winning initial credit c ∈ Nk, we build a Moore machine which (i)
states are the minimal elements of the fixed point (antichainat most exponential inG), (ii) initial state is any element
(t,u) among them such thatt = sinit andu≤ c, (iii) next-action function prescribes an action that ensures remaining in
the fixed point, and (iv) update function maintains an accurate energy level in the memory.

Proof. We denote byc thek-dimension credit vector(c1, . . . ,ck). W.l.o.g. we assume that states ofG alternate between
positions ofP1 and positions ofP2 (otherwise, we split needed edges by introducing dummy states). FromCpre∗C, we
construct a Moore machineM= (M,m0,αu,αn) which respects the following definitions:

– M = Min�{(t,u) ∈ S1 ×{0. . .C}k | (t,u) ∈ (Cpre∗C)}. The set of states of the machine is the antichain of�-
minimal elements that belong toP1 in the fixed point. Note that the length of this antichain is bounded by an
exponential in the size of the game.

– m0 is any element(t,u) in M such thatt = sinit andu ≤ c. Note that such an element is guaranteed to exist as
(sinit ,c) ∈ Cpre∗C.

– For all (t,u) ∈ M, we defineαn((t,u)) by choosing any element(t, t ′) ∈ E such that there exists(t ′,u′) ∈ Cpre∗C
with u′ = u+w(t, t ′). Such an element is guaranteed to exist by definition ofCpreC and the fact that(t,u)∈Cpre∗C.

– αu : M × ((S2×S)∩E)→ M is any partial function that respects the following constraint: if αn((t,u)) = (t, t ′)
thenαu((t,u),(t ′, t ′′)) is defined for any(t ′, t ′′) ∈ E and can be chosen to be equal to any(t ′′,u′′) such thatu′′ ≤
u+w(t, t ′)+w(t ′, t ′′), and such anu′′ is guaranteed to exist by definition ofCpreC and becauseCpre∗C is a fixed
point.

Now, let us prove that for any initial prefixs0s1 . . .s2n of even length inG, which is compatible withM, we have
thatc+EL(s0s1 . . .s2n−1)≥ 0 and thatc+EL(s0s1 . . .s2n)≥ 0. To establish this property, we first prove the following
property by induction onn: c+EL(s0s1 . . .s2n) ≥ u whereu is the energy level of the label of the state reached after
reading the prefixs0s1 . . .s2n with the Moore machineM. Base casen= 0 is trivial. Induction: assume that the property
is true forn−1, and let us establish it forn. By induction hypothesis, we have thatc+EL(s0s1 . . .s2(n−1))≥ u where
u is the energy level of the label of statem that is reached after readings0s1 . . .s2(n−1) with the Moore machine. Now,
assume thatαn(m) = (t, t ′). So, s2(n−1) = t and the choice ofP1 is to play (t, t ′). So, s2(n−1)+1 = t ′. Now for all
possible choices(t ′, t ′′) of P2, we know by definition ofM that the energy levelu′′ that labels the stateαu(m,(t ′, t ′′))
is u′′ ≤ u+w(t, t ′)+w(t ′, t ′′), which establishes our property. Therefore, the strategy of P1 based onM is such that
the energy always stays positive for initial creditc, which concludes the proof. ⊓⊔
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Completeness of the symbolic algorithm is guaranteed when asufficiently large thresholdC is used as established
in the following lemma.

Lemma 12 (Completeness).Let G= (S1,S2,sinit ,E,k,w) be a multi energy game in which all absolute values of
weights are bounded by W. IfP1 has a winning strategy in G and T= (Q,R) is a self-covering tree for G of depth l,
then(sinit ,(C, . . . ,C)) ∈ Cpre∗C for C= 2 · l ·W.

Remark 1.This algorithm is complete in the sense that if a winning strategy exists forP1, it outputs at least a winning
initial credit (and the derived strategy) forC= 2· l ·W. However, this is different from thefixed initial credit problem,
which consists in deciding if a particular given credit vector is winning and is known to be EXPSPACE-hard by
equivalence with deciding the existence of an infinite run ina Petri net given an initial marking [12,33]. In general,
there may exist winning credits incomparable to those captured by algorithmCpreFP. More precisely, given a constant
C ∈ N, the algorithm fully captures all the winning initial credits smaller than(C, . . . ,C). Indeed, the fixed point
computation considers the whole range of initial credits upto the given constant exhaustively, and only removes
credits if they do not suffice to win. By Lemma12, it is moreover guaranteed that if an arbitrary winning initial credit
exists, then there exists one in the range defined by the constantC= 2· l ·W. Nevertheless, since our algorithm works
in exponential time while the problem of findingall the winning initial credits is EXPSPACE-hard, there may be some
incomparable credits outside that range that are not captured by the algorithm (comparable credits are captured since
we work with upper closed sets). Indeed, if our algorithm wasable to compute exhaustively all winning credits in
exponential time, this would induce that EXPTIME is equal toEXPSPACE. Notice that defining a class of games for
which the algorithmCpreFP proves to be incomplete (in the sense that incomparable winning credits exist outside the
region captured by constantC= 2 · l ·W) is an interesting open problem.

Proof. To establish this property, we first prove that from the set oflabels ofT, we can construct a setf which is
increasing for the operatorCpreC, i.e.,CpreC( f )⊇ f , and such that(sinit ,(C, . . . ,C))∈ f . We definef fromT = (Q,R)
as follows. LetC∈N be the smallest non-negative integer such that for allq∈Q, with Θ(q) = (t,u), for all dimensions
i, 1≤ i ≤ k, we have thatu(i)+C≥ 0. IntegerC is bounded from above byl ·W because on every path from the root to a
leaf inT, every dimension is at most decreasedl times by an amount bounded byW, and at the root all the dimensions
are equal to 0. For anyq∈ Q, we denote byΘ(q)+C the label ofq where the energy level has been increased byC in
all the dimensions, i.e., ifΘ(q) = (t,u) thenΘ(q)+C= (t,u+(C, . . . ,C)). Note that for all nodes inQ, the label is at
mostl ·W and thus the shifted label remains underC= 2 · l ·W. Now, we define the setf as follows:

f = {(t,u) ∈U(C) | ∃q∈ Q,Θ(q)+C� (t,u)}. (4)

So, f is defined as the�-closure of the set of labels inT shifted byC in all the dimensions.
First, note that(sinit ,(C, . . . ,C)) ∈ f as the label of the root inT is (sinit ,(0, . . . ,0)). Second, let us show that

CpreC( f ) ⊇ f . Take any(t,u) ∈ f and let us show that(t,u) ∈ CpreC( f ). We decompose the proof in two cases.
(A) t ∈ S1. By definition of f , there existsq∈ Q such thatΘ(q)+C � (t,u). W.l.o.g. we can assume thatq is not a
leaf as otherwise there exists an ancestorq′ of q such thatΘ(q′) � Θ(q) (recall the set is described by its minimal
elements). By definition ofT, there exists(t, t ′) ∈ E andq′ ∈ Q such that(q,q′) ∈ R andΘ(q′) =Θ(q)+w(t, t ′). Let
(t ′,v) =Θ(q′)+C. By definition of f , we have(t ′,v) ∈ f . By Eq. (1), it follows that(t,u) ∈ CpreC( f ). (B) t ∈ S2. By
definition of f , there existsq ∈ Q such thatΘ(q)+C � (t,u). Again, w.l.o.g. we can assume thatq is not a leaf as
otherwise there exists an ancestorq′ of q such thatΘ(q′)�Θ(q). By definition ofT, for all (t, t ′) ∈ E, there isq′ ∈ Q
such that(q,q′) ∈ R andΘ(q′) = Θ(q)+w(t, t ′). Let (t ′,v) = Θ(q′)+C. By definition of f , we have(t ′,v) ∈ f . By
Eq. (1), it follows that(t,u) ∈ CpreC( f ).

Now, let us show thatf ⊆ Cpre∗C. This is a direct consequence of the monotonicity ofCpreC: it is well known
that for any monotone function on a complete lattice, its greatest fixed point is equal to the least upper bound of all
post-fixed points (pointse such thate⊆ CpreC(e)), i.e.,Cpre∗C =

⋃{e | e⊆ CpreC(e)} ⊇ f . As (sinit ,(C, . . . ,C)) ∈ f ,
that concludes the proof. ⊓⊔

Remark 2.Note that the exponential bound on memory, obtained in Lemma5, can also be derived from the Moore
machine construction of Lemma11 as this method is complete according to Lemma12. Still, the DAG construction
of Lemma5 is interesting in its own right, and introduces the concept of node merging, which is underlying to the
symbolic algorithm correctness, while transparent in its use.
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Incrementality. While the threshold 2· l ·W is sufficient, it may be the case thatP1 can win the game even if its
energy level is bounded above by some smaller value. So, in practice, we can use Lemma11, to justify an incremental
algorithm that first starts with small values for the parameterC and stops as soon as a winning strategy is found or
when the value ofC reaches the threshold 2· l ·W and no winning strategy has been found.

Application of the symbolic algorithm to MEPGs and MMPGs. Using the reduction of Lemma4 that allows us
to remove the parity condition, and the equivalence betweenmulti energy games and multi mean-payoff games for
finite-memory strategies (given by [20, Theorem 3]), along with Lemma9 (complexity), Lemma11(correctness) and
Lemma12(completeness), we obtain the following result.

Theorem 2 (Symbolic and incremental synthesis algorithm).Let Gp be a multi energy (resp. multi mean-payoff)
parity game. AlgorithmCpreFP is a symbolic and incremental algorithm that synthesizes a winning strategy in Gp

of at most exponential size memory, if a winning (resp. finite-memory winning) strategy exists. In the worst-case, the
algorithmCpreFP takes exponential time.

Proof. The correctness and completeness for algorithmCpreFP on multi energy games are resp. given by Lemma11
and Lemma12. Extension to mean-payoff games (under finite memory) is given by [20, Theorem 3], whereas the
parity condition can be encoded as energy thanks to Lemma4. Exponential worst-case complexity of the algorithm
CpreFP is induced by Lemma9. ⊓⊔

Integration in synthesis tools. Following the conference version of this paper [23], our results on strategy synthesis
have been used in theAcacia+ synthesis tool. This tool originally handled the synthesisof controllers for specifications
expressed inLTL (Linear Temporal Logic, a classical formalism for formal specifications [39]) using antichain-based
algorithms and has recently been extended to the synthesis fromLTL specifications with mean-payoff objectives [8].
The addition of multi mean-payoff objectives toLTL specifications provides a convenient way to enforce that syn-
thesized controllers also satisfy some reasonable behavior from a quantitative standpoint, such as minimizing the
number of unsollicited grants in a client-server architecture with prioritized clients. Numerous practical applications
may benefit from this multi-dimension framework.

The authors present an approach in which the corresponding synthesis problem ultimately reduces to strategy
synthesis on a multi energy game [8, Theorem 26]. Their implementation uses fixed point computations similar to
Eq. (2) and has proved efficient (considering the complexity of theproblem) in practice. It uses antichains to provide a
compact representation of upper-closed sets and implements the incremental approach proposed before (regarding the
constantC). In practical benchmarks, winning strategies can generally be found for rather small values ofC. Hence,
the incremental approach overcomes the need to compute up tothe exponential theoretical boundC= 2· l ·W in many
cases. Sample benchmarks and experiments can be found in [8], and the tool can be used online [1].

5 Trading finite memory for randomness

In this section, we answer the fundamental question regarding the trade-off of memory for randomness in strategies:
we study on which kind of gamesP1 can replace a pure finite-memory winning strategy by an equally powerful, yet
conceptually simpler, randomized memoryless one and discuss how memory is encoded into probability distributions.
Note that we do not consider wider strategy classes (e.g., randomized finite-memory), nor do we allow randomization
for P2 (which on most cases is dispensable anyway). Indeed, we aim at a better understanding of the underlying
mechanics of memory and randomization, in order to provide alternative strategy representations of practical use; not
exploration of more complex games with wider strategy classes (Lemma21shows a glimpse of it).

Multi energy and energy parityMulti MP (parity) MP parity

one-player × √ √

two-player × × √

Table 1.When pure finite memory forP1 can be traded for randomized memorylessness.
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(0,0) (0,0)

Fig. 5. Randomization can replace memory, but not the opposite.

We present an overview of our results in Tab.1 and summarize them in Theorem3. Note that we do not consider
the opposite implication, i.e., does there always exist a way of encoding a randomized memoryless strategy into an
equivalent finite-memory one. In general, this is not the case even for classes of games where we can trade memory
for randomness, and it can easily be witnessed on the one-player multi mean-payoff game depicted on Fig.5. Indeed,
expectation(1,1) is achievable with a simple uniform distribution while it isnot achievable with a pure, arbitrary high
memory strategy (even infinite).

We break down these results into three subsections: energy games, multi mean-payoff (parity) games, and single
mean-payoff parity games. We start with energy games.

5.1 Randomization and energy games

Randomization is not helpful for energy objectives, even inone-player games. The proof argument is obtained from
the intuition that energy objectives are similar in spirit to safety objectives.

Lemma 13. Randomization is not helpful for almost-sure winning in one-player and two-player energy, multi energy,
energy parity and multi energy parity games: if there existsa finite-memory randomized winning strategy, then there
exists a pure winning strategy with the same memory requirements.

Proof. Let Gp be a game fitted with an energy objective. Consider an almost-sure winning strategyλ1. If there exists a
single pathπ consistent withλ1 that violates the energy objective, then there exists a finite prefix witnessρ to violate
the energy objective. Moreover, as the finite prefix has positive probability (otherwise the play is not consistent), and
the strategyλ1 is almost-sure winning, it follows that no such path exists.In other words,λ1 is a sure winning strategy.
Since randomization does not help for sure winning strategy, it follows that randomization is not helpful for one-player
and two-player energy, multi energy, energy parity and multi energy parity games. ⊓⊔

5.2 Randomization and multi mean-payoff (parity) games

Randomized memoryless strategies can replace pure finite-memory ones in the one-player multi mean-payoff parity
case, but not in the two-player one, even without parity. We first note a useful link between satisfaction and expectation
semantics for the mean-payoff objective.

Lemma 14. Let G= (S1,S2,sinit ,E,k,w) be a game structure with mean-payoff objectiveφ = MeanPayoffG(v) for
some threshold vector v∈ Qk. Let λ1 ∈ Λ1 be a strategy ofP1. If λ1 is almost-sure winning forφ (i.e., winning for
1-satisfaction), thenλ1 is also winning for v-expectation for the mean-payoff functionMP. The opposite does not hold.

Proof. We first discuss the claimed implication. Suppose 1-satisfaction is verified. Then, for all strategyλ2 ∈ Λ2 of
P2, the set of consistent plays of value≥ v has measure 1, while the one of value< v has measure 0, by definition.
Therefore, the expectationEλ1,λ2

sinit (MP) is at leastv andv-expectation is verified.
To show that the opposite does not hold, consider the simple one-player game depicted on Fig.5. Letλ1 be a simple

coin flipping ons1, i.e., λ1(s1)(s2) = 1/2, λ1(s1)(s3) = 1/2, λ1(s2)(s2) = 1 andλ1(s3)(s3) = 1. The expectation of
this strategy isv= (1,1). Nevertheless, the probability of achieving mean-payoff of at leastv is 0< 1, which shows
that it does not verify 1-satisfaction forMeanPayoffG(v). ⊓⊔

The fundamental difference between energy and mean-payoffis that energy requires a property to be satisfiedat
all times(in that sense, it is similar to safety), while mean-payoff is alimit property. As a consequence, what matters
here is the long-run frequencies of weights, not their orderof appearance, as opposed to the energy case.
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Lemma 15. Pure finite-memory winning strategies can be traded for equally powerful randomized memoryless ones
for one-player multi mean-payoff parity games, for both satisfaction and expectation semantics. For two-player games,
randomized memoryless strategies are not as powerful, evenlimited to expectation semantics, no parity condition, and
only2 dimensions.

For the one-player case, we extract the frequencies of visitfor edges of the graph from the regular outcome that
arises from the finite-memory strategy ofP1. We build a randomized strategy with probability distributions on edges
that yield the exact same frequencies in the long-run. Therefore, if the original pure finite-memory ofP1 is surely
winning, the randomized one is almost-surely winning. For the two-player case, this approach cannot be used as
frequencies are not well defined, since the strategy ofP2 is unknown. Consider a game which needs perfect balance
between frequencies of appearance of two sets of edges in a play to be winning (Fig.6). To almost-surely achieve
mean-payoff vector(0,0), P1 must ensure that the long-term balance between edges(s4,s5) and(s4,s6) is the same
as the one between edges(s1,s3) and(s1,s2). This is achievable with memory as it suffices to react immediately to
compensate the choice ofP2. However, given a randomized memoryless strategy ofP1, P2 always has a strategy to
enforce that the long-term frequency is unbalanced, and thus the game cannot be won almost-surely byP1 with such
a strategy. Achieving expected mean-payoff(0,0) is also excluded.

s1

s2 s3

s4

s5 s6

(1,−1) (−1,1)

(0,0) (0,0)
(1,−1) (−1,1)

(0,0) (0,0)

Fig. 6. Memory is needed to enforce perfect long-term balance.

Proof. We begin with the one-player case. LetGp be a multi mean-payoff parity game. Letλ p f
1 ∈ ΛPF

1 be the pure
finite-memory strategy of the player. Since it is pure and finite, its outcome is a regular wordπ = ρ1 · (ρ2)

ω , with
ρ1 ∈ S∗, ρ2 ∈ S+. Let φ =MeanPayoffGp

(v)∩ParityGp
be the multi mean-payoff parity objective for some threshold

vectorv∈Qk. Suppose this strategy verifiesα-satisfaction forφ andβ -expectation for theMP function, for someα,
β . We claim that there exists a randomized memoryless strategy λ rm

1 ∈ ΛRM
1 that is alsoα-satisfying forφ and that

satisfiesβ -expectation for theMP function; and we show how to build it.
We denote concatenation by the· symbol. Given a finite wordρ ∈ S∗, two statess,s′ ∈ S, we resp. denote by

occ(s,ρ) andocc((s,s′),ρ) the number of occurences of the statesand the transition(s,s′) in the wordρ . We add the
subscript◦ when we count the first state of the word as the successor of thelast one (i.e., the word is a cycle in the
game graph). That is,occ◦(∗,ρ) = occ(∗,ρ ·First(ρ)).

Let us consider the mean-payoff of the outcome of strategyλ p f
1 . Recall that for a playπ ∈ Plays(G), π =

s1,s2,s3 . . . , we haveMP(π) = lim infn→∞
1
n ∑1≤i<nw(si ,si+1). Since the play induced byλ p f

1 is regular, the limit
is well defined and we may express the mean-payoff in terms of frequencies, that is

MP(π) = ∑
(s,s′)∈E

w(s,s′) · freq∞((s,s
′)),

wherefreq∞ denotes the long-term frequency of a transition defined as

∀(s,s′) ∈ E, freq∞((s,s
′)) =

occ◦((s,s′),ρ2)

|ρ2|
.
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We define the randomized memoryless strategyλ rm
1 as follows: ∀s,s′ ∈ S, (s,s′) ∈ E, X =

{(s, t) | t ∈ S,(s, t) ∈ (ρ1 ·First(ρ2))},

λ rm
1 (s)(s′) =



























1
|X| if s∈ ρ1 ∧ s 6∈ ρ2,

occ◦((s,s′),ρ2)

occ(s,ρ2)
if s∈ ρ2,

0 otherwise.

Intuitively, we fix a uniform distribution over transitionsof the finite prefixρ1 as we only need to ensure reaching
the bottom strongly connected component (BSCC) defined byρ2 with probability 1, and the relative frequencies in
ρ1 do not matter (because these weights and priorities are negligible in the long run). On the contrary, we use the
exact frequencies for transitions ofρ2 as they prevail long-term wise. Note thatλ rm

1 is a correctly defined randomized
memoryless strategy.

Obviously,λ rm
1 yields a Markov chain over states of(ρ1∪ρ2) such that states of(ρ1\ρ2) are transient and states of

ρ2 constitute a BSCC that is reached with probability one. Thus, the mean-payoff induced byλ rm
1 is totally dependent

on this BSCC mean-payoff value. As a consequence, proving that transition frequencies in the BSCC are exactly
the same as frequenciesfreq∞ defined byλ p f

1 will imply the claim on mean-payoff. Moreover, parity will remain
satisfied as the sets of infinitely often visited states will be the same for both the pure and the randomized strategy. Let
T = {t1, t2, . . . , tm} be the set of states that appear inρ2. This BSCC is an ergodic Markov chainMe = (T,P) with the
following matrix of transition probabilities:

P=

t1 . . . tm
























t1
occ◦((t1, t1),ρ2)

occ(t1,ρ2)
...

. . .

tm
occ◦((tm, tm),ρ2)

occ(tm,ρ2)

.

Classical analysis of ergodic Markov chains grants the existence of a unique probability vectorν such thatνP = ν,
i.e.,

∀1≤ i ≤ m, νi = ∑
1≤ j≤m

occ◦ ((t j , ti),ρ2)

occ(t j ,ρ2)
·ν j .

This vectorν represents the occurence frequency of each state in an infinite run over the Markov chain. It is easy to
see that the unique probability vectorν that satisfiesνP= ν is

ν =

(

occ(t1,ρ2)

|ρ2|
, . . . ,

occ(tm,ρ2)

|ρ2|

)

.

Moreover, given a transition of the Markov chain, its frequency is simply the product of the frequency of its starting
state by the probability of the transition when the chain is in this state: for allt, t ′ ∈ T, we havefreqMe

∞ ((t, t ′)) =
ν(t) ·P(t, t ′). By definition ofν andP, that is

freqMe
∞ ((t, t ′)) =

occ◦((t, t ′),ρ2)

|ρ2|
= freq∞((t, t

′)),

thus proving that the randomized strategyλ rm
1 almost-surelyyields the same mean-payoff and parity as the pure finite-

memory oneλ p f
1 . The expected value threshold is also verified by Lemma14.

Now it remains to show that this does not carry over to two-player games. Indeed, we show that randomized
memoryless strategies cannot replace pure finite-memory ones for the expectation semantics, even without parity. By
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Lemma14, this implies that it cannot be verified for 1-satisfaction semantics either. Consider the game depicted on
Fig. 6. PlayerP1 has a pure finite-memory strategyλ p f

1 that ensuresMP(π) ≥ (0,0), against all strategyλ2 of P2.

This strategy is simply to take the opposite choice ofP2: λ p f
1 (∗s2s4) = s6 andλ p f

1 (∗s3s4) = s5. Now supposeP1 uses
a randomized memoryless strategyλ rm

1 such thatλ rm
1 (s4)(s5) = p andλ rm

1 (s4)(s6) = 1− p, for somep ∈ [0,1]. We

claim that whatever the value ofp, there exists a counter-strategyλ2 for P2 such thatE
λ rm

1 ,λ2
s1 (MP) 6≥ (0,0). Suppose

p≥ 1/2 and letλ2(s1) = s2. Then, we have

E
λ rm

1 ,λ2
s1 (MP) =

(1,−1)+ [p · (1,−1)+ (1− p) · (−1,1)]
4

=
1
2
(p,−p) 6≥ (0,0).

Now supposep< 1/2 and letλ2(s1) = s3. Then, we have

E
λ rm

1 ,λ2
s1 (MP) =

(−1,1)+ [p · (1,−1)+ (1− p) · (−1,1)]
4

=
1
2
(p−1,1− p) 6≥ (0,0).

This shows that memory is needed to achieve the(0,0)-expectation objective and concludes our proof. ⊓⊔

5.3 Randomization and single mean-payoff parity games

Randomized memoryless strategies can replace pure finite-memory ones for single mean-payoff parity games. The
proof outline is as follows. We do it in two steps. First, we show that it is the case for the simpler case ofMP Büchi
games(Lemma18). SupposeP1 has a pure finite-memory winning strategy for such a game. We use the existence
of particular pure memoryless strategies on winning states: the classical attractor for Büchi states, and a strategy that
ensures that cycles of the outcome have positive energy (whose existence follows from [17]). We build an almost-
surely randomized memoryless winning strategy forP1 by mixing those strategies in the probability distributions,
with sufficient probability over the strategy that is good for energy. We illustrate this construction on the simple game
Gp depicted on Fig.7. Letλ p f

1 ∈ΛPF
1 be a strategy ofP1 such thatP1 plays(s1,s1) for 8 times, then plays(s1,s2) once,

and so on. This strategy ensures surely winning for the objectiveφ =MeanPayoffGp
(3/5)∩BuchiGp({s2}). Obviously,

P1 has a pure memoryless strategy that ensures winning for the Büchi objective: playing(s1,s2). On the other hand,
he also has a pure memoryless strategy that ensures cycles ofpositive energy: playing(s1,s1). Let λ rm

1 ∈ ΛRM
1 be the

strategy defined as follows: play(s1,s2) with probabilityγ and(s1,s1) with the remaining probability. This strategy
is almost-surely winning forφ for sufficiently small values ofγ (e.g.,γ = 1/9). Second, we extend this result toMP
parity gamesusing an induction on the number of priorities and the size ofgames (Lemma20). We considersubgames
that reduce to the MP Büchi and MP coBüchi cases. For MP coB¨uchi games, pure memoryless strategies are known
to suffice [22].

s1 s21

−1

−1

Fig. 7. Mixing strategies that are resp.good for Büchiandgood for energy.

Büchi case. A particular, simpler case of the parity objective is the Büchi objective. It corresponds to parity with
priorities{0,1}. We denote a Büchi game byG= (S1,S2,sinit ,E,w,F), with F the set of Büchi states such that a play
is winning if it visits infinitely often states of the setF . We first state results on these Büchi objectives, as they are
conceptually simpler to understand. Proof arguments for parity are more involved and make use of results on Büchi
objectives. We sometimes denote the Büchi objective for the setF by �♦F (where� stands forglobally and♦ for
finally), using the classicalLTL formulation [39].
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We first introduce the useful notion ofε-optimality. Given a gameGp with a one-dimension5 mean-payoff objec-
tive, we define its value as

val= sup
λ1∈Λ1

inf
λ2∈Λ2

{v|OutcomeGp(λ1,λ2)⊆MeanPayoffGp
(v)}.

A strategy is said optimal for the mean-payoff objective if it achieves this value. Such a strategy may not need to
exist in general, even in one-player games [22,11,18] (Fig. 8, P1 has to delay its visits ofs1 for longer and longer
intervals in order to tend towards value 1). However, it is known that for allε > 0, ε-optimal strategies (i.e., that
achieve value(val− ε)) always exist in one-dimension mean-payoff games, as a consequence of Martin’s theorem on
Borel determinacy [37].

s0 s11

1

0

Fig. 8. Mean-payoff Büchi requires infinite memory for optimality.

Here, we show finite-memory strategies can be traded off for randomized memoryless ones for mean-payoff Büchi
games. Precisely, we prove thatε-optimality for mean-payoff Büchi games can as well be achieved by randomized
memoryless strategies. We first need to state two useful lemmas granting the existence of pure memoryless strategies
that are resp.good-for-energyor good-for-B̈uchi, in all states that are winning for the mean-payoff Büchi objective.
These strategies will help us build the neededε-optimal strategies.

Lemma 16 (Extension of [17, Lemma 4]).Let G= (S1,S2,sinit ,E,w,F), with F the set of B̈uchi states. LetWin⊆ S
be the set of winning states for the mean-payoff Büchi objective with threshold0. For all s∈Win, P1 has a uniform
(i.e., independent of the starting state) memoryless good-for-energy strategyλ gfe

1 whose outcome never leaves the set
Win, such that any cycle c of this outcome has energyEL(c)≥ 0.

Lemma 17 (Classical attractor).Let G= (S1,S2,sinit ,E,w,F), with F the set of B̈uchi states. LetWin ⊆ S be the
set of winning states for the mean-payoff Büchi objective with threshold0. For all s∈ Win, P1 has a uniform (i.e.,
independent of the starting state) memoryless good-for-Büchi strategyλ♦F

1 , an attractor strategy for F, whose outcome
never leaves the setWin, such that it ensures reaching F in at most|S| steps.

The randomized memoryless strategy ofP1 will thus consist in mixing these two strategies, with a verylow
probability on the good-for-Büchi strategy. Indeed, the Büchi objective will be satisfied whatever this probabilityis,
provided it is strictly positive. On the other hand, by giving more weight to the good-for-energy strategy,P1 can obtain
a mean-payoff that is arbitrary close to the optimum.

Lemma 18. In mean-payoff B̈uchi games,ε-optimality can be achieved surely by pure finite-memory strategies and
almost-surely by randomized memoryless strategies.

Proof. Let G = (S1,S2,sinit ,E,w,F), with F the set of Büchi states. We consider the mean-payoff objective with
threshold 0 (w.l.o.g.). LetWin ⊆ S be the set of winning states for the mean-payoff Büchi objective. By Lemma16
and Lemma17, for all s∈Win, P1 has two uniform memoryless strategiesλ gfe

1 andλ♦F
1 , whose outcomes never leave

the setWin, such thatλ gfe
1 ensures that any cyclec of its outcome has energyEL(c)≥ 0, andλ♦F

1 , an attractor strategy
for F, ensures reachingF in at most|S| steps.

We first buildε-optimalpure finite-memorystrategies based on these two pure memoryless strategies. Letε > 0. As

usual,W denotes the largest absolute weight on any edge. Let us defineλ p f
1 such that (a) it playsλ gfe

1 for
⌈

2·W·|S|
ε

⌉

−|S|
steps, then (b) it playsλ♦F

1 for |S| steps, then again (a). This ensures thatF is visited infinitely often asλ♦F
1 is played

5 The multi-dimensional setting gives rise to incomparable outcomes and the need to considerPareto-optimality.
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infinitely many times for|S| steps in a row. Furthermore, the total cost of phases (a) + (b)is bounded by−2 ·W · |S|,
and thus the mean-payoff of the outcome is at least−ε, against any strategy of the adversary.

Second, we show that based on the same pure memoryless strategies, it is possible to obtain almost-surelyε-
optimalrandomized memorylessstrategies, i.e.,

∀ε > 0, ∃λ rm
1 ∈ ΛRM

1 , ∀λ2 ∈ Λ2,

P
λ rm

1 ,λ2
sinit (π � �♦F) = 1 ∧ P

λ rm
1 ,λ2

sinit (MP(π)≥−ε) = 1.

Note that pure memoryless strategies suffice forP2 as he essentially has to win against the Büchior the mean-payoff
criterion [11]. Therefore, givenε > 0, we need to build some strategyλ rm

1 ∈ ΛRM
1 such that

∀λ pm
2 ∈ ΛPM

2 , P
λ rm

1 ,λ pm
2

sinit (π � �♦F) = 1 ∧ P
λ rm

1 ,λ pm
2

sinit (MP(π)≥−ε) = 1.

We build such a strategy as follows:

∀s∈ S, λ rm
1 (s) =

{

λ gfe
1 (s) with probability 1− γ,

λ♦F
1 (s) with probabilityγ,

for somewell-chosenγ ∈ ]0,1[.
It is straightforward to see that the Büchi objective is almost-surely satisfied for all values ofγ > 0 as at all times,

the probability of playing according toλ♦F
1 for |S| steps in a row, and thus ensuring a visit ofF , is γ |S|, which is strictly

positive.
It remains to study if it is always possible to choose such a constantγ such that objectiveMeanPayoffGp

(−ε) is

almost-surely satisfied. Consider such a strategyλ rm
1 ∈ ΛRM

1 and some fixed strategyλ pm
2 ∈ ΛPM

2 of P2: the game
reduces to the finite Markov chainMc = (S,δ ,w), whereδ : E → [0,1] is the transition probability function resulting
from fixing those strategies. Supposeλ pm

2 is winning forP2. Thus,PMc
sinit

(MP(π)<−ε)> 0. The mean-payoff depends
on limit behavior: the probability measure of plays that do not enter in a bottom strongly connected component (BSCC)
is zero [4], whereas in a BSCC, the expected mean-payoff is the same in all states and it is obtained almost-surely (as
follows from definition of BSCCs and prefix-independence of the mean-payoff). This implies that there exists some
BSCCC in Mc such thatPMc

sinit
(♦C)> 0 andEC (MP)<−ε.

We claim that it is possible to chooseγ such that all BSCCs, in all Markov chains induced by pure memoryless
strategies ofP2, have expectation greater than or equal toε, thus proving that strategyλ rm

1 is almost-surelyε-optimal
with regard to the mean-payoff value function. Intuitively, the smaller this constantγ is chosen, the nearer will the
expected mean-payoff induced byλ rm

1 be to the one induced byλ gfe
1 , that is at least zero. Since the number of pure

memoryless strategies ofP2 is finite, and so is the number of BSCCs induced byλ rm
1 (regardless of the exact value of

γ ∈ ]0,1[, we obtain the same BSCCs in terms of states and edges), one can compute a suitableγ for each of them, and
take the mininum to ensure that the property will be satisfiedin all possible cases.

Therefore, let us fix some strategyλ pm
2 of P2, and some BSCCC of the induced Markov chain when played against

strategyλ rm
1 of P1. It remains to show that (claim) there existsγ ∈ ]0,1] such thatEC(γ)(MP) ≥ −ε to conclude this

proof. Observe that we writeC(γ) as transition probabilities insideC depend onγ. By contradiction, suppose the claim
is false. Precisely, we assume that (contradiction hypothesis) for all γ ∈ ]0,1], we have thatEC(γ)(MP)<−ε.

Besides, observe that forγ = 0, strategyλ rm
1 is exactly equal toλ gfe

1 . As we know thatλ gfe
1 ensures a worst-case

mean-payoff at least equal to zero, we trivially deduce thatEC(0) ≥ 0. This implies that supγ∈[0,1]E
C(γ) ≥ EC(0) ≥ 0.

Notice that in this case, interval[0,1] is closed.
By results in the literature, it is known that this supremum is continuous. See for example Solan [44] on the

continuity of the optimal expected value function in the general context of competitive Markov decision processes
(equivalent to 212-player games). Therefore, we have that supγ∈]0,1]E

C(γ) = supγ∈[0,1]E
C(γ) ≥ EC(0) ≥ 0. On the other

hand, by (contradiction hypothesis), we also have that supγ∈]0,1]E
C(γ) ≤−ε. Sinceε is strictly positive, there is a clear

contradiction, which concludes our proof. ⊓⊔
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Parity Case. Given those results for mean-payoff Büchi games, we now consider the more general case of mean-
payoff parity games. We start by introducing the useful notion ofsubgames.

Subgame.Let Gp = (S1,S2,sinit ,E,k,w, p) be a game andA⊆ S be a subset of states inGp. If E is such that for all
s∈ A, there existss′ ∈ A with (s,s′) ∈ E, then we define thesubgame Gp ↓ A as(S1∩A,S2∩A,E∩ (A×A),w′, p′)
wherew′, p′ are the functionsw, p restricted to the subdomainA. Note that for subgames, we do not consider an initial
state.

Let Gp = (S1,S2,sinit ,E,k,w, p) andU ⊆ S. We defineAttr1(U) as the set that is obtained as the limit of the
following increasing sequence:U0 = U , andUi = Ui−1 ∪ {s∈ S1 | ∃s′ ∈ Ui−1, (s,s′) ∈ E} ∪ {s∈ S2 | ∀s′, (s,s′) ∈
E, s′ ∈ Ui−1}, for i ≥ 1. As this sequence of sets is increasing, there existsi ≤ |S| such thatU j = Ui for all j ≥ i.
Attr1(U) contains all the states inG from whichP1 can force a visit toU , and it is well known thatP1 has a pure
memoryless strategy to force such a visit from those states.Also, it is clear thatP1 does not have a strategy to leave the
states inS\Attr1(U). Attractors can be defined symmetrically forP2 and are notedAttr2(·). As direct consequence,
we have the following proposition.

Proposition 1. Let Gp = (S1,S2,sinit ,E,k,w, p) be a game, let U⊆ S andAttr1(U) be such that B= S\Attr1(U) is
non-empty, then Gp ↓ B is a subgame.

The following lemma states that optimal pure memoryless strategies exist forP1 in games with mean-payoff
coBüchi objectives (i.e., parity with priorities{1,2}). For mean-payoff Büchi objectives, we showed in Lemma18
that, for allε > 0, ε-optimal randomized memoryless strategies exist.

Lemma 19 ([22, Theorem 5]).Let Gp = (S1,S2,sinit ,E,k,w, p) be a game with priorities{1,2}, andWIN
p
≥0 be the

set of nodes in Gp from whichP1 wins the mean-payoff coBüchi objective for threshold0 (w.l.o.g.). Then from all
states inWIN

p
≥0, P1 has a pure memoryless winning strategy for the coBüchi mean-payoff objective for threshold0.

We now establish thatε-optimal randomized memoryless strategies also exist for mean-payoffparity games, and
thus, can replace pure finite-memory ones.

Lemma 20. Let Gp = (S1,S2,sinit ,E,k,w, p) and WIN
p
≥0 be the set of nodes in Gp from whichP1 wins the mean-

payoff parity objective for threshold0. Then for allε > 0, there existsλ rm
1 ∈ ΛRM

1 , such that for all s∈ WIN
p
≥0 and for

all λ2 ∈ Λ2, we have that:

P
λ rm

1 ,λ2
s (MP(π)≥−ε) = 1 ∧ P

λ rm
1 ,λ2

s (Par(π) mod2= 0) = 1.

Proof. The proof is by induction on the lexicographic order� on games, defined as follows:G1
p � G2

p if G1
p has

less priorities thanG2
p or G1

p has the same priorities than inG2
p but less states. Clearly, this lexicographic order is

well-founded.
The base cases are twofold: one for the number of states, and one for priorities. First, if the game is such that|S|= 1,

then obviously, ifP1 can win, he can do so with a pure memoryless strategy, which respects the claim. Second, for two
priorities. W.l.o.g., we can assume that all priorities areeither in{0,1} or in {1,2}. Those cases resp. correspond to
mean-payoff Büchi and mean-payoff coBüchi games. The result for mean-payoff Büchi games has been established in
Lemma18, while the result for mean-payoff coBüchi games is a directconsequence of Lemma19, as pure memoryless
strategies are a special case of randomized memoryless strategies.

Let us now consider the inductive case. Suppose we have a mean-payoff parity gameGp with m priorities and|S|
states. W.l.o.g., we can make the assumption that the lowestpriority in Gp is either 0 or 1, otherwise we subtract an even
number to all priorities so that we are in that case. LetU0 = {s∈ WIN

p
≥0 | p(s) = 0} andU1 = {s∈ WIN

p
≥0 | p(s) = 1}.

We consider the two possible following situations corresponding toU0 empty or not.

1. U0 empty.In that caseU1 is not empty. Let us considerA2 = Attr2(U1) the attractor ofP2 for U1. It must be the
case that WIN

p
≥0\A2 is non-empty, otherwise this would contradict the fact thatP1 is winning the parity objective

from states in WIN
p
≥0. Indeed, if it was not the case, thenP2 would be able to force an infinite number of visits

to U1 from all states in WIN
p
≥0, and the parity would be odd asU0 is empty, a contradiction with the definition of
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WIN
p
≥0. (i) Let B= WIN

p
≥0 \A2. First note that, asB is non-empty, by Proposition1, Gp ↓ B is a subgame. Also,

note that from all states inB, it must be the case thatP1 has a winning strategy that does not require visits of the
states outsideB, i.e., states inA2, for otherwise this would lead to a contradiction with the fact thatP1 is winning
the parity objective in WIN

p
≥0. So all states in the subgameGp ↓ B are winning forP1. The gameGp ↓ B does not

contain states with priority 0, and so we can apply our induction hypothesis to conclude thatP1 has a memoryless
randomized strategy from all states inB, as(Gp ↓B)�Gp since it has one less priority.(ii) Now, let us concentrate
on states inA2. Let A1 = Attr1(B). From states inA1, P1 has a pure memoryless strategy to reach states inB, and
so from thereP1 can play as inGp ↓ B, and we are done. LetC= A2\A1. If C is empty, we are done. Otherwise,
by Proposition1, Gp ↓ C is a subgame (P2 can force to stay withinC). We conclude that all states in this game
must be winning forP1. This game has the same minimal priority than in the originalgame (i.e., priority 1) but
it has at least one state less, and so we can apply our induction hypothesis to conclude thatP1 has a memoryless
randomized strategy from all states inC. Therefore, by(i) and(ii) ,P1 has a memoryless randomized strategy from
all states in WIN

p
≥0, which proves the claim in that case.

2. U0 is not empty.Let us considerA1 = Attr1(U0). (iii) First, consider the case whereA1 = WIN
p
≥0. In this case, it

means thatP1 can force a visit to states inU0 from any states in WIN p
≥0. So, we conclude thatP1 wins in Gp the

mean-payoff Büchi game with threshold 0, and by Lemma18, we conclude thatP1 has a memoryless randomized
strategy from all states inGp for almost surely winning the parity game with mean-payoff threshold 0 so we are
done.(iv) Second, consider the case whereB = WIN

p
≥0 \A1 is non-empty. Then by Proposition1, Gp ↓ B is a

subgame. SoP2 can force to stay withinB in the original game and so we conclude that all states in the game
Gp ↓ B are winning forP1. As Gp ↓ B does not contain states of priority 0, and thus has at least one less priority,
we can apply the induction hypothesis to conclude thatP1 has a memoryless randomized strategy from all states
in B. Therefore, by(iii) and(iv), P1 has a memoryless randomized strategy from all states in WIN

p
≥0, which also

proves the case.

As we have proved the claim in both possible cases, this concludes the proof. ⊓⊔

5.4 Summary for randomization

We sum up results for these different classes of games in Theorem3 (cf. Table1).

Theorem 3 (Trading finite memory for randomness).The following assertions hold: (1) Randomized strategies are
exactly as powerful as pure strategies for energy objectives. Randomized memoryless strategies are not as powerful
as pure finite-memory strategies for almost-sure winning inone-player and two-player energy, multi energy, energy
parity and multi energy parity games. (2) Randomized memoryless strategies are not as powerful as pure finite-memory
strategies for almost-sure winning in two-player multi mean-payoff games. (3) In one-player multi mean-payoff parity
games, and two-player single mean-payoff parity games, if there exists a pure finite-memory sure winning strategy,
then there exists a randomized memoryless almost-sure winning strategy.

Proof. (1) For energy games, results follow from Lemma13. (2) For two-player multi mean-payoff games, they
follow from Lemma15. (3) For one-player multi mean-payoff games, they follow from Lemma15. For two-player
single mean-payoff parity, they are direct consequence of Lemma20. ⊓⊔

We close this section by observing that there are even more powerful classes of strategies. Their study, as well as
their practical interest, remains open.

Lemma 21. Randomized finite-memory strategies are strictly more powerful than both randomized memoryless and
pure finite-memory strategies for multi-mean payoff games with expectation semantics, even in the one-player case.

The intuition is essentially that memory permits to achievean exact payoff by sticking to a given side, while
randomization permits to combine payoffs of pure strategies to achieve any linear combination in between.

Proof. Consider the gameG depicted on Fig.9. Whatever the pure finite-memory strategy ofP1, the only achievable
mean-payoff values are(1,−1) (if (s0,s1) is never taken) and(−1,1) (if (s0,s1) is taken). This is also true for ran-
domized memoryless strategies: either the probability of(s0,s1) is null and the mean-payoff has value(1,−1), or this
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s0 s1

(1,−1) (−1,1)

(0,0)

Fig. 9. Randomized finite memory is strictly more powerful than randomized memorylessness and pure finite memory.

probability is strictly positive, and the mean-payoff has value(−1,1) as the probability mass will eventually reachs1.
On the contrary, value(0,0) is achievable by a randomized finite-memory strategy. Indeed, consider the strategy that
tosses a coin in its first visit ofs0 to decide if it will always play(s0,s0) or if it will play (s0,s1) and then always
(s1,s1). This strategy only needs one bit of memory and one bit to encode probabilities, and still, it is strictly more
powerful than any amount of pure memory or any arbitrary highprecision for probabilities without memory. ⊓⊔

6 Conclusion

In this work, we considered the finite-memory strategy synthesis problem for games with multiple quantitative (energy
and mean-payoff) objectives along with a parity objective.We established tight (matching upper and lower) exponen-
tial bounds on the memory requirements for such strategies (Theorem1), significantly improving the previous triple
exponential bound for multi energy games (without parity) that could be derived from results in literature for games
on VASS. We presented an optimal symbolic and incremental strategy synthesis algorithm (Theorem2). As discussed
in Section4, the presented algorithm has been used as part of the synthesis toolAcacia+ for specifications combining
LTL properties and multi-dimensional quantitative objectives [8] and has proved efficient in practice. Finally, we also
presented a precise characterization of the trade-off of memory for randomness in strategies (Theorem3).
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