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Abstract—While it was defined long ago, the extension of
CTL with quantification over atomic propositions has never
been studied extensively. Considering two different semantics
(depending whether propositional quantification refers to the
Kripke structure or to its unwinding tree), we study its expressive-
ness (showing in particular that QCTL coincides with Monadic
Second-Order Logic for both semantics) and characterize the
complexity of its model-checking problem, depending on the
number of nested propositional quantifiers (showing that the
structure semantics populates the polynomial hierarchy while the
tree semantics populates the exponential hierarchy). We also show
how these results apply to model checking ATL-like temporal
logics for games.

I. INTRODUCTION

Temporal logics. Temporal logics extend propositional logics
with modalities for specifying constraints on the order of events
in time. Since [1], [2], [3], they have received much attention
from the computer-aided-verification community, since they
fit particularly well for expressing and automatically verifying
(model checking) properties of reactive systems.

Two important families of temporal logics have been
considered: linear-time temporal logics (e.g. LTL [1]) can
be used to express properties of one single execution of the
system under study, while branching-time temporal logics
(e.g. CTL [2], [3] and CTL∗ [4]) consider the execution tree as
a whole. Since the 90s, many extensions of these logics have
been introduced, of which alternating-time temporal logics
(such as ATL, ATL∗ [5]) extend CTL towards the study of
open systems (in which several agents are involved).

In this landscape of temporal logics, both CTL and ATL
enjoy the nice property of having polynomial-time model-
checking algorithms. In return for this, both logics have quite
limited expressiveness. Several extensions have been defined
in order to increase this limited expressive power.
Our contributions. We are interested in the present paper in
the extension of CTL (and CTL∗) with propositional quantifica-
tion [6], [7]. In that setting, propositional quantification can take
different meaning, depending whether the extra propositions
label the Kripke structure under study (structure semantics)
or its execution tree (tree semantics). While these extensions
of CTL with propositional quantification have been in the air
for thirty years, they have not been extensively studied yet:
some complexity results have been published for existential
quantification [8], for the two-alternation fragment [9] and for
the full extension [10]; but expressiveness issues, as well as
a complete study of model checking for the whole hierarchy,
have been mostly overlooked. We answer these questions in

the present paper: in terms of expressiveness, we prove that
QCTL and QCTL∗ are equally expressive, and coincide with
Monadic Second-Order Logic1. Regarding model-checking,
we consider both prenex-normal-form formulas (EQCTL) and
general formulas (QCTL), and our results are summarized
in the table below (where k in EQkCTL and QkCTL refers
to some measure of quantification height of formulas, see
Section II-D).

structure semantics tree semantics

EQkCTL ΣP
k -c.

k-EXPTIME-c.
QkCTL ∆P

k+1[O(log n)]-c.
EQkCTL∗,
QkCTL∗

PSPACE-c.
k+1-EXPTIME-c.

EQCTL, QCTL,
EQCTL∗,QCTL∗

non-elementary

Applications to alternating-time temporal logics. ATL also
has several flaws in terms of expressiveness: namely, it can only
focus on (some) zero-sum properties, i.e., on purely antagonist
games, in which two coalitions fight with opposite objectives.
In many situations (especially for the verification of multi-
agent systems), games are not purely antagonist, but involve
several independent systems, each having its own objective.
This has given rise for instance to different notions of equilibria,
such as Nash equilibria [11]. Recently, several extensions of
ATL have been defined to cope with this. Among those, our
logic ATLsc [12] extends ATL with strategy contexts, which
provides a way of expressing interactions between strategies.
Other similar approaches include Strategy Logics [13], [14] or
(B)SIL [15].

Interestingly, the model-checking problem for these exten-
sions of ATL for non-zero-sum objectives (also for Strategy
Logics) can be seen as a QCTL model-checking problem2:
strategy quantification in ATL is naturally encoded using
propositional quantification of QCTL; since this labelling
is persistent, it can encode interactions between strategies.
We give the full encoding in Section V. Notice that while the

1This claim assumes a special notion of equivalence between formulas,
since MSO is evaluated globally on a structure while QCTL formulas are
evaluated at the initial state. This will be made clear in the paper.

2Notice that the link between games and propositional quantification already
emerges in QDµ [16], which extends the decision µ-calculus with some
flavour of propositional quantification. Also, the main motivation of [9] for
studying the two-alternation fragment of QCTL is a hardness result for the
control and synthesis of open systems.



tree semantics of QCTL encodes plain strategies, the structure
semantics also finds a meaning in that translation, as it may
correspond to memoryless strategies.
Related works. Propositional quantification was also defined
and studied on LTL [6], [17], [18], where the model-checking
problem for the k-alternation fragment was settled complete
for k-EXPSPACE. In the branching-time setting, CTL and
CTL∗ with existential quantification was studied in [8], where
model-checking is shown NP- and PSPACE-complete resp.
(for the structure semantics) and EXPTIME- and 2-EXPTIME-
complete resp. (for the tree semantics). The two-alternation
fragment was then studied in [9] (only for the tree semantics):
model-checking is 2-EXPTIME- and 3-EXPTIME-complete,
respectively for CTL or CTL∗. Finally, the full extension (with
arbitrary quantification) was studied in [10] for satisfiability.

Several other semantics have also been defined in the
literature: the amorphous semantics is somewhat intermediary
between structure- and tree semantics, and considers bisimilar
structures before labelling with extra atomic propositions [10].
Yet another semantics is considered in [19], where quantifica-
tion is handled by taking a product with another structure. There
is no obvious link (in terms of expressiveness) between all these
semantics. Finally, model checking for a slightly different (and
less expressive) version of QCTL in the structure semantics is
studied in [20].

Besides the above-mentioned applications of QCTL to open
systems, let us mention that QCTL has also been used in the
setting of three-valued model checking, where partial Kripke
structures are considered (i.e., Kripke structures where the truth
value of some atomic propositions may be unknown) [21], [22].

II. PRELIMINARIES

A. Kripke structures and trees

We fix once and for all a set AP of atomic propositions.
Definition 1: A Kripke structure S is a 3-tuple 〈Q,R, `〉 where
Q is a (possibly infinite) set of states, R ⊆ Q×Q is a total3

binary relation and ` : Q→ 2AP is a labelling function.
An execution (or a path) in S is an infinite sequence

ρ = (qi)i∈N such that (qi, qi+1) ∈ R for all i. We use Exec(q)
to denote the set of executions issued from q and Execf(q)
for the set of all finite prefixes of executions of Exec(q).
Given ρ ∈ Exec(q) and i ∈ N, we write ρi for the
path (qi+k)k∈N of Exec(qi) (the i-th suffix of ρ), ρi for the
finite prefix (qk)k≤i (the i-th prefix), and ρ(i) the for i-th
state qi.
Definition 2: Let Σ and S be two finite sets. A Σ-labelled
S-tree is a pair T = 〈T, l〉, where

• T ⊆ S∗ is a non-empty set of finite words on S satisfying
the following constraints: for any non-empty word n =
m · s in T with m ∈ S∗ and s ∈ S, the word m is also
in T ;

• l : T → Σ is a labeling function.

3I.e., for all q ∈ Q, there exists q′ ∈ Q s.t. (q, q′) ∈ R.

The unwinding of a finite-state Kripke structure S =
〈Q,R, `〉 from a state q ∈ Q is the (finitely-branching) 2AP-
labelled Q-tree TS(q) = 〈Execf(q), `T 〉 with `T (q0 · · · qi) =
`(qi). Note that TS(q) = 〈Execf(q), `T 〉 can be seen an
(infinite-state) Kripke structure where the set of states is
Execf(q), labelled according to `T , and with transitions
(m,m ·s) for all m ∈ Execf(q) and s ∈ Q s.t. m ·s ∈ Execf(q).

For a (labelling) function ` : Q → AP and P ⊆ AP, we
write `∩P for the (labelling) function defined as (`∩P )(q) =
`(q) ∩ P for all q ∈ Q.
Definition 3: For P ⊆ AP, two (possibly infinite-state) Kripke
structures S = 〈Q,R, `〉 and S ′ = 〈Q′, R′, `′〉 are P -equivalent
(denoted by S ≡P S ′) if the Kripke structures 〈Q,R, ` ∩ P 〉
and 〈Q′, R′, `′ ∩ P 〉 are equal.

B. CTL and quantified extensions

Definition 4: The syntax of QCTL∗ is defined by the following
grammar:

ϕstate, ψstate ::= p | ¬ϕstate | ϕstate ∨ψstate | Eϕpath | Aϕpath | ∃p. ϕstate

ϕpath, ψpath ::=ϕstate | ¬ϕpath | ϕpath ∨ψpath | Xϕpath | ϕpath Uψpath

where p ranges over AP. Formulas defined as ϕstate are called
state-formulas, while ϕpath defines path-formulas. Only state
formulas are QCTL∗ formulas.

We use standard abbreviations as: > def
= p∨¬ p, ⊥ def

= ¬>,
Fϕ def

= >Uϕ, Gϕ
def
= ¬F ¬ϕ, and ∀p · ϕ def

= ¬∃p · ¬ϕ.

The logic QCTL is a fragment of QCTL∗ where temporal
modalities are under the immediate scope of path quantifiers:
Definition 5: The syntax of QCTL is defined by the following
grammar:

ϕstate, ψstate ::= p | ¬ϕstate | ϕstate ∨ψstate | ∃p. ϕstate |
Eϕstate Uψstate | Aϕstate Uψstate | EXϕstate | AXϕstate.

Standard definition of CTL∗ and CTL are obtained by
removing the use of quantification over atomic proposition
(∃p.ϕ) in the formulas. In the following, ∃ and ∀ are called
(proposition) quantifiers, while E and A are path quantifiers.

Given QCTL∗ (state) formulas ϕ and (ψi)i and atomic
propositions (pi)i appearing free in ϕ (i.e., not appearing as
quantified propositions), we write ϕ[(pi → ψi)i] (or ϕ[(ψi)i]
when (pi)i are understood from the context) for the for-
mula obtained from ϕ by replacing each occurrence of pi
with ψi. Given two sublogics L1 and L2 of QCTL∗, we write
L1[L2] = {ϕ[(ψi)i] | ϕ ∈ L1, (ψi)i ∈ L2}.

C. Structure- and tree semantics

Formulas of the form ∃p.ϕ can be interpreted in different
manners (see [8], [10], [19]). Here we consider two semantics:
the structure semantics and the tree semantics.
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1) Structure semantics. Given a QCTL∗ (or QCTL) state
formula ϕ, a (possibly infinite-state) Kripke structure S =
〈Q,R, `〉 and a state q ∈ Q, we write S, q |=s ϕ to denote
that formula ϕ holds at q under the structure semantics. This
is defined as for CTL∗, with the following addition (see
Appendix A for full definition):

S, q |=s ∃p.ϕstate iff ∃S ′ ≡AP\{p} S s.t. S ′, q |=s ϕstate

Example 6: As an example, consider the formula

selfloop
def
= ∀z.(z⇒ EX z). (1)

If a state q in S satisfies this formula, then the particular
labelling in which only q is labelled with z implies that q
has to carry a self-loop. Conversely, any state that carries a
self-loop satisfies this formula (for the structure semantics).

Let ϕ be a QCTL∗ formula, and consider now the formula

uniq(ϕ)
def
= EF (ϕ)∧∀z.

(
EF (ϕ∧ z)⇒ AG (ϕ⇒ z)

)
.

(2)
In order to satisfy such a formula, at least one ϕ-state must be
reachable. Assume now that two different such states q and q′

are reachable: then for the particular labelling where only q is
labelled with z, the second part of the formula fails to hold.
Hence uniq(ϕ) holds in a state (under the structure semantics)
if, and only if, exactly one reachable state satisfies ϕ.
2) Tree semantics. The tree-semantics is obtained from the
structure semantics by seeing the execution tree as an infinite-
state Kripke structure. We write S, q |=t ϕ to denote that
formula ϕ holds at q under the tree semantics. Formally,
seeing TS(q) as an infinite-state Kripke structure, we define:

S, q |=t ϕ iff TS(q), q |=s ϕ

Clearly enough, selfloop is always false under the tree seman-
tics, while uniq(ϕ) holds if, and only if, ϕ holds at only one
node of the execution tree.
Example 7: Formula acyclic

def
= AG

(
∃z. (z ∧ uniq(z)∧

AX AG ¬ z)
)

expresses that all infinite paths (starting from
the current state) are acyclic, which for finite Kripke structures
is always false under the structure semantics and always true
under the tree semantics.
3) Equivalences between QCTL∗ formulas. We consider two
kinds of equivalences depending the semantics we use. Two
state formulas ϕ and ψ are said s-equivalent (resp. t-equivalent),
written ϕ ≡s ψ (resp. written ϕ ≡t ψ) if for any finite-state
Kripke structure S and any state q of S , it holds S, q |=s ϕ iff
S, q |=s ψ (resp. S, q |=t ϕ iff S, q |=t ψ). We write ϕ ≡s,t ψ
when the equivalence holds for both ≡s and ≡t.

Note that both equivalences ≡s and ≡t are substitutive,
i.e., a subformula ψ can be replaced with any equivalent
formula ψ′ without changing the truth value of the global
formula. Formally, if ψ ≡s ψ′ (resp. ψ ≡t ψ′), we have
Φ[ψ] ≡s Φ[ψ′] (resp. Φ[ψ] ≡t Φ[ψ′]) for any QCTL∗

formula Φ. Note also that for any state formula ψ, we have
Φ[ψ] ≡s,t ∃pψ.

(
Φ[pψ]∧ AG (pψ ⇔ ψ)

)
where pψ is a fresh

atomic proposition (i.e., a proposition not already appearing in
the model).

D. Fragments of QCTL∗.
In the sequel, besides QCTL and QCTL∗, we study several

interesting fragments. The first one is the fragment of QCTL in
prenex normal form, i.e., in which propositional quantification
must be external to the CTL formula. We write EQCTL and
EQCTL∗ for the corresponding logics4

We also study the fragments of these logics with limited
quantification. For prenex-normal-form formulas, the fragments
are defined as follows:
• for any ϕ ∈ CTL and any p ∈ AP, ∃p.ϕ is an EQ1CTL

formula, and ∀p.ϕ is in AQ1CTL;
• for any ϕ ∈ EQkCTL and any p ∈ AP, ∃p.ϕ is in

EQkCTL and ∀p.ϕ is in AQk+1CTL. Symmetrically, if
ϕ ∈ AQkCTL, then ∃p.ϕ is in EQk+1CTL while ∀p.ϕ
remains in AQkCTL.

Using similar ideas, we define fragments of QCTL and
QCTL∗. Again, the definition is inductive: Q1CTL is the logic
CTL[EQ1CTL], and Qk+1CTL = Q1CTL[QkCTL].

The corresponding extensions of CTL∗, which we respec-
tively denote with EQkCTL∗, AQkCTL∗ and QkCTL∗, are
defined in a similar way.
Remark 8: Notice that EQkCTL and AQkCTL are (syntacti-
cally) included in QkCTL, and EQkCTL∗ and AQkCTL∗ are
fragments of QkCTL∗.

III. EXPRESSIVENESS

In this section we present several results about the ex-
pressiveness of our logics for both semantics. We show that
QCTL, QCTL∗ and Monadic Second-Order Logic are equally
expressive. First we show that any QCTL formula is equivalent
to a formula in prenex normal form (which extends to QCTL∗

thanks to Proposition 12).

A. Prenex normal form
Proposition 9: Every QCTL formula is equivalent (for both
semantics) to a formula in prenex normal form.
Sketch of proof: In [23], the existence of a prenex normal form
for a branching-time modal logic with some quantification over
propositions is proven for the tree semantics. This proof can
be adapted to QCTL for both semantics (see Appendix B).
Here we simply sketch the technique we use to extract a bloc
of quantifiers Q = Q1p1.Q2p2 . . . Qkpk out of a temporal
modality (the case of Boolean operators is straightforward).
First, considering modality EX , we have:

EX (Q.ϕ) ≡s ∃z.Q.
(

uniq(z)∧ EX (z ∧ϕ)
)

Here variable z (which we assume does not appear in Q) is
used to mark the immediate successor that witnesses Q.ϕ.

4Notice that the logics named EQCTL and EQCTL∗ defined in [8]
are restrictions of our prenex-normal-form logics where only existential
quantification is allowed. They correspond to our fragments EQ1CTL and
EQ1CTL∗.
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It then remains to extract the universal quantifier occurring in
uniq(z) from the conjunction.

We use a similar approach for E U and EG . Here, instead
of labeling a single successor state, we have to label a finite
path, which we do as follows:

E(Q1.ϕ1) U (Q2.ϕ2) ≡s ∃z0.z2.Q2.∀z1.Q1.(
dpath(z0, z2)∧ EF (z2 ∧ϕ2)∧(

uniq(z1)⇒ AG ((z1 ∧ z0)⇒ϕ1)
))

where dpath(z0, z2) ensures that z0 labels a path ending in
a state labeled with z2. Note that there is no QCTL formula
(under the structure semantics) to constrain a variable to label
a general path, but here we can restrict ourselves to direct
paths (with no loop, and ending in z2 as soon as possible).

B. QCTL and Monadic Second-Order Logic
We briefly review Monadic Second-Order Logic (MSO) over

trees and over finite Kripke structures (i.e., labeled finite graphs).
In both case, we use constant monadic predicates Pa for a ∈ AP
and a relation Edge either for the immediate successor relation
in an S-tree 〈T, l〉 or for the relation R in a finite KS 〈Q,R, `〉.

MSO is built with first-order (or individual) variables
for nodes or vertices (which we denote with lowercase
letters x, y, . . .), monadic second-order variables for sets of
nodes (denoted with uppercase letters X,Y, . . .). Atomic
formulas are of the form x = y, Edge(x, y), x ∈ X ,
Pa(x). Formulas are constructed from atomic formulas using
the Boolean connectives and the first- and second-order
quantifier ∃. We write ϕ(x1, . . . , xn, X1, . . . , Xk) to state
that x1, . . . , xn and X1, . . . , Xk may appear free (i.e. not
within the scope of a quantifier) in ϕ. A sentence (or closed
formula) contains no free variable. We use the standard
semantics for MSO and write M, s1, . . . , sn, S1, . . . , Sk |=
ϕ(x1, . . . , xn, X1, . . . , Xk) when ϕ holds on M when si
(resp. Sj) is assigned to the variable xi (resp. Xj) for
i = 1, . . . , n (resp. j = 1, . . . , k).

In the following, we compare the expressiveness of our
logics with MSO over the finite Kripke structures (the structure
semantics) and the execution trees corresponding to a finite
Kripke structure (tree semantics). First note that MSO formulas
may express properties directly over trees or graphs, while our
logics are interpreted over states of these structures. Therefore
we use MSO formulas with one free variable x, which will
represent the state where the formula is evaluated. Moreover,
we restrict the evaluation of MSO formulas to the reachable
part of the model from the given state. This last requirement
makes an important difference for the structure semantics, since
MSO can express that a graph is connected.

Formally, for the tree semantics, we will say that ϕ(x) ∈
MSO is t-equivalent to some QCTL∗ formula ψ (written
ϕ(x) ≡t ψ) when for any finite Kripke structure S and any
state q ∈ TS , it holds TS(q), q |= ϕ(x) iff TS(q), q |= ψ.
Similarly, for the structure semantics: ϕ(x) is s-equivalent
to ψ (written ϕ(x) ≡s ψ) iff for any finite Kripke structure S

and any state q ∈ S, it holds Sq, q |= ϕ(x) iff Sq, q |= ψ,
where Sq is the reachable part of S from q.

Proposition 10: Under both semantics, MSO and QCTL have
the same expressive power.
Sketch of proof: One inclusion is straightforward: CTL is easily
translated into MSO, and propositional quantification (for both
semantics) can be encoded using second-order quantification.
Conversely, every MSO formula Φ(x) can be translated into
an equivalent QCTL formula Φ̂. The complete definition of
Φ̂ is given in Appendix C, the main idea is to use QCTL
propositional quantifications to encode both first-order and
second-order quantification in Φ (but in the first-order case,
we require that only one state is labeled by the dedicated
proposition). Then an MSO subformula of the form xi ∈ Xj

will be rewritten in QCTL by EF (pxi ∧ pXj ) where pxi (resp.
pXj

) is the proposition associated with xi (resp. Xj). For
formula of the form Edge(xi, xj), we use EF (pxi

∧ EX pxj
).

And a formula xi = xj will be replaced by EF (pxi
∧ pxj

).
Other cases use the same ideas.
Remark 11: One can also notice that it is easy to express
fixpoint operators with QCTL in both semantics, thus µ-
calculus can be translated into QCTL. This provides another
proof of the previous result for the tree semantics, since the
µ-calculus extended with counting capabilities has the same
expressiveness as MSO on trees [24].

C. QCTL and QCTL∗

Finally, we show that QCTL∗ and QCTL are equally
expressive for both semantics:
Proposition 12: In the tree and structure semantics, every
QCTL∗ formula is equivalent to some QCTL formula.
Proof: The result for the tree semantic has been shown in [10].
Here we give a translation that is correct for both semantics.
Consider a QCTL∗ formula Φ. The proof is done by induction
over the number k of subformulas of Φ that are not in QCTL.
If k = 0, Φ already belongs to QCTL. Otherwise let ψ be
one of the smallest Φ-subformulas in QCTL∗ \QCTL. Let αis
with i = 1, . . . ,m be the largest ψ-subformulas belonging to
QCTL. These are state formulas, so that ψ is equivalent (w.r.t.
both semantics) to:

∃p1 . . . ∃pm.
(
ψ[(αi ← pi)i=1,...,m]∧

∧
i=1,...,m

AG (pi ⇔ αi)
)

Let Ω be ψ[(αi ← pi)i=1,...,m]. Then Ω is a CTL∗ formula:
every subformula of the form ∃p.ξ in ψ belongs to some QCTL
formula αi, since ψ is one of the smallest QCTL∗ \ QCTL
subformula. And every CTL∗ formula is equivalent to some
µ-calculus formula, so that Ω is equivalent to some QCTL
formula Ω̃ (see Remark. 11). Hence

ψ ≡s,t ∃p1 . . . ∃pm.
(

Ω̃∧
∧

i=1,...,m

AG (pi ⇔ αi)
)

Now, consider the formula obtained from Φ by replacing ψ with
the right-hand-side formula above. This formula is equivalent
to Φ and has at most k − 1 subformulas in QCTL∗ \ QCTL,
so that the induction hypothesis applies.

4



From Propositions 9 to 12, we get:
Corollary 13: In both semantics, EQCTL, QCTL and QCTL∗

and MSO are equally expressive.
Remark 14: In [10], Tim French considers a variant of QCTL∗

(which we call FQCTL∗), with propositional quantification
within path formulas: ∃p. ϕpath is added in the definition of
path formulas. The semantics is defined as follows:

S, ρ |=s ∃p.ϕpath iff ∃S ′ ≡AP\{p} S s.t. S ′, ρ |=s ϕpath.

It appears that this logic is not very different from QCTL∗ under
the tree semantics: French showed that QCTL is as expressive
as FQCTL∗. Things are different in the structure-semantics
setting, where we now show that FQCTL∗ is strictly more
expressive than MSO. To begin with, consider the following
formula:

EG
(
∃z.∀z′.[uniq(z)∧ uniq(z′)∧ z ∧¬ z′]⇒X (¬ zU z′)

)
.

This formula expresses the existence of an (infinite) path along
which, between any two occurrences of the same state, all the
other reachable states will be visited. This precisely corresponds
to the existence of a Hamilton cycle, which is known not to be
expressible in MSO [25, Cor. 6.3.5]. However, note that the
existence of a Hamilton cycle can be expressed in Guarded
Second Order Logic GSO5, in which quantification over sets
of edges is allowed (in addition to quantification over sets of
states). But still, FQCTL∗ is strictly more expressive than GSO,
as it is easy to modify the above formula in order to express
the existence of Euler cycles:

EG
(
∃x.∃y.∀x′.∀y′.

[
trans(x, y)∧ trans(x′, y′)∧

next trans(x, y)∧¬ next trans(x′, y′)
]

⇒X (¬ next trans(x, y) U next trans(x′, y′))
)

where trans(x, y)
def
= uniq(x)∧ uniq(y)∧ EF (x∧X y) states

that x and y mark the source and target of a reachable edge,
and next trans(x, y)

def
= x∧X y states that the next transition

along the current path jumps from x to y. This can be seen
to express the existence of an Euler cycle, which cannot be
expressed in GSO (otherwise evenness could also be expressed).
Theorem 15: Under the structure semantics, FQCTL∗ is more
expressive than QCTL∗ and MSO.

Nevertheless FQCTL∗ model checking (see next section)
is decidable: for the tree semantics, it suffices to translate
FQCTL∗ to QCTL, as proposed by French [10]. The problem
in the structure semantics can then be encoded in the tree
semantics: for this we need to first extend the labelling of the
Kripke structure S with fresh propositions, one per state. Let S ′
be such an extension (notice that the existence of an Euler path
in such a Kripke structure can be expressed in CTL). Then
any quantification ∃p.ϕ in some FQCTL∗ formula Φ (for the
structure semantics) is considered in the tree semantics, with
the requirement that any two copies of the same state receive
the same labelling. We then have: S, q |=s Φ iff S ′, q |=t Φ̂S

′
.

5This logic is called MS2 in [26].

IV. QCTL MODEL CHECKING

We now consider the model-checking problem for QCTL∗

and its fragments under both semantics: given a finite Kripke
structure S , a state q and a formula 6 ϕ, is ϕ satisfied in state q
in S under the structure (resp. tree) semantics? Some results
already exist, e.g. for EQ1CTL and EQ1CTL∗ under both
semantics[8]. Hardness results for EQ2CTL and EQ2CTL∗

under the tree semantics can be found in [9]. Here we extend
these results to all the fragments of QCTL∗ we have defined.

A. Structure semantics

1) Formulas in prenex normal form. We first consider the
simpler case of prenex-normal-form formulas.
Theorem 16: Under the structure semantics, EQkCTL model
checking is ΣP

k -complete, and AQkCTL model checking is
ΠP

k -complete.
Proof: We begin with noticing that an AQkCTL formula is
nothing but the negation of an EQkCTL formula. It thus suffices
to prove the result for EQkCTL.

The case where k = 0 corresponds to CTL model-checking,
which is PTIME-complete. For k > 0, hardness is easy, as
EQkCTL model checking subsumes the following problem,
which is known to be ΣP

k -complete [27]:

Problem: ΣP
k SAT

Input: k families of variables Ui = {ui1, . . . , uin}, and
a propositional formula Φ(U1, . . . , Uk) over⋃
i Ui;

Question: what is the truth value of the quantified Boolean
formula Q1U1Q2U2 . . .QkUk.Φ(U1, . . . , Uk)
where Qi is ∃ (resp. ∀) when i is odd
(resp. even)?

Membership in ΣP
k is proved inductively: an EQ1CTL

instance ∃u11 . . . ∃u1k. ϕ can be solved in NP =ΣP
1 by non-

deterministically picking a labelling of the Kripke structure
under study with atomic propositions u11 to u1k, and then
checking (in polynomial time) whether the CTL formula ϕ
holds true in the resulting Kripke structure. Similarly, an
EQkCTL formula ∃u11 . . . ∃u1k. ϕ, where ϕ is in AQk−1CTL,
can be checked by first non-deterministically labelling the
Kripke structure with atomic propositions u11 to u1k, and
checking the remaining AQk−1CTL formula ϕ in the resulting
Kripke structure. The latter is in ΠP

k−1 according to the
induction hypothesis, so that the whole procedure is in ΣP

k .
Theorem 17: Model checking EQkCTL∗ under the structure
semantics is PSPACE-complete.
Proof: The algorithm is the same as for EQkCTL, with
the CTL model-checking algorithm replaced with a CTL∗

model-checking algorithm running in polynomial space. Since
NPPSPACE = PSPACE, the resulting algorithms are in PSPACE.
Hardness is straightforward (CTL∗ model checking is already
PSPACE-hard).

6We use the classical notions of size for S and ϕ.
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Theorem 18: Model checking EQCTL and EQCTL∗ under
the structure semantics is PSPACE-complete.
Proof: Any formula in EQCTL (resp. EQCTL∗) is in EQkCTL
(resp. EQkCTL∗) for some k. The algorithms above can be
applied, and use polynomial space. Hardness is straightforward
after noticing that any instance of QBF is a special case of a
model-checking problem for EQCTL.
2) General case. We now handle the general case, not
assuming that formulas are in prenex normal form.
Theorem 19: Model checking QkCTL under the structure
semantics is ∆P

k+1[O(log n)]-complete.
Proof: We define the algorithm inductively: when k = 0,
we just have a CTL model-checking problem, which is
complete for PTIME = ∆P

1 [O(log n)]. Assume that we have
a ∆P

k+1[O(log n)] algorithm for the QkCTL model-checking
problem, and consider a formula ϕ ∈ Qk+1CTL: it can be
written under the form

ϕ
def
= Φ[(qi → ∃Pi. ψi)i]

with Φ being a CTL formula involving fresh atomic proposi-
tions qi, and ∃Pi. ψi are subformulas 7 of ϕ. The existential
quantifiers in these subformulas are the outermost propositional
quantifiers in ϕ, and ψi belongs to QkCTL, as we assume
that Φ is a CTL formula. As a consequence, ∃Pi. ψi is a
state-formula, whose truth value only depends on the state
in which it is evaluated. For such a formula, we can non-
deterministically label the Kripke structure with propositions
in Pi, and check whether ψi holds in the resulting Kripke
structure. Computing the set of states satisfying ∃Pi. ψi is
then achieved in NP∆P

k+1[O(logn)] = ΣP
k+1. Moreover, the

queries for all the selected subformulas are independent and
can be made in parallel. It just remains to check whether
the CTL formula Φ holds, which can be achieved in poly-
nomial time. This algorithm is thus in ∆P

k+1[O(log n)], since
∆P

k+1[O(log n)] = ∆P
k+1 || [28].

In order to prove hardness, we use the family of problems
PARITY (ΣP

k ), defined as follows:

Problem: PARITY (ΣP
k )

Input: m instances of ΣP
k SAT Qi1U

i
1 . . . Q

i
kU

i
k.

Φi(U i1, . . . , U
i
k), where Qij = ∃ when j is odd

and Qij = ∀ otherwise;
Question: is the number of positive instances even?

This problem is ∆P
k+1[O(log n)]-complete [29]. We encode it

into a QkCTL model-checking problem as follows: for each 1 ≤
i ≤ m, the instance Qi1U

i
1 . . . Q

i
kU

i
k.Φ

i(U i1, . . . , U
i
k) of ΣP

k SAT
is encoded as in the previous reduction, using a one-state Kripke
structure that will be labelled with atomic propositions uij,k; the
formula to be checked is then exactly Φi. We label the unique
state of that Kripke structure with a fresh atomic proposition xi,
that will be used in the sequel of the reduction.

Now, consider the Kripke structure B obtained as the “union”
of the one-state Kripke strcutres above, with an extra state xm+1

7∃Pi denotes a sequence of existential quantifications.

and transitions (xi, xi+1), for each 1 ≤ i ≤ m. We define

ϕ
def
=

∨
1≤i≤m

(xi ∧Φi).

This formula holds true in those states xi of B whose
corresponding ΣP

k SAT instance is positive. It remains to build
a formula for “counting” these sets: we let

ψ0
def
= E(¬ϕUxm+1) and ψi+1

def
= E(¬ϕU (ϕ∧ EXψi)).

It is easily seen that ψs holds true in state x1 of B iff exactly s
of the m instances of ΣP

k SAT are positive. Moreover, each ψi
has quantifier height at most k. Concluding the reduction is
then obvious.
Theorem 20: Model checking QCTL, QkCTL∗ and QCTL∗

under the structure semantics is PSPACE-complete.
Proof: The arguments are the same as for the proof of
Theorems 17 and 18.

B. QCTL model checking under the tree semantics

Theorem 21: Model checking EQkCTL, AQkCTL and
QkCTL under the tree semantics is k-EXPTIME-complete (for
positive k).
Sketch of proof: Since EQkCTL and AQkCTL are dual and
contained in QkCTL, it suffices to prove hardness for EQkCTL
and membership for QkCTL. We briefly sketch the proof here,
and refer to Appendix E for a detailed proof.
I Hardness in k-EXPTIME. The reduction uses the ideas
of [9], [17]: we encode an alternating Turing machine M
whose tape is has size k-exponential. An execution of M on
an input word y of length n is then a tree. Our reduction
consists in building a Kripke structure K and an EQkCTL
formula ϕ such that ϕ holds true in K (for the tree semantics)
iff M accepts y. The encoding is depicted on Fig. 1.

The main tool in this proof is a set of (polynomial-size)
formulas of EQkCTL that are able to relate two states that are
at distance k-exponential. This will be used in our reduction
to ensure that the content of one cell of the Turing machine is
preserved from one configuration to the next one, unless the
tape head is around.

1
1
0
0

F (k, n)

0
1
0
0

1
1
0
0

0
1
0
0

0
0
0
0

1
0
0
0

Fig. 1. A run of M

s

t

F (k, n)
s

t

F (k, n)

Fig. 2. Chunks of height F (k, n)

Our set of formulas will ensure the following (see Fig. 2):
given a tree labeled with propositions s and t (among others),
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both s and t appear exactly once along each branch, and the
distance between them is F (k, n), defined as

F (0, n) = n F (k + 1, n) = F (k, n) · 2F (k,n).

The formulas for k = 0 are easy to write. Then, given a
formula for level k, we build the formula for level k + 1 as
follows: we add a new proposition r, which is required to
holds at s and t and at various positions inbetween, at distance
F (k, n) from each other. We then implement a counter, using
existential quantification over another proposition, in order
to enforce that there are exactly 2F (k,n) occurrences of r
between s and t.
I Membership in k-EXPTIME. Our algorithm for QkCTL
model checking uses alternating parity tree automata[30], [31].
The construction is inductive: we begin with building an
automaton for the innermost CTL formula [32], and then use
projection to encode existential quantification. This requires
turning the alternating automata into non-deterministic ones,
which comes with an exponential blowup [33]. We apply this
procedure recursively, until the last propositional quantifier.
We end up with a non-deterministic parity tree automaton
with size k-exponential and index (k − 1)-exponential, for
which emptiness is then solved in k-exponential [34]. It then
remains to apply a CTL model-checking algorithm to handle
the possible outermost CTL operators. In the end, the algorithm
runs in k-EXPTIME.
Theorem 22: Model checking EQkCTL∗, AQkCTL∗ and
QkCTL∗ under the tree semantics are (k+1)-EXPTIME-
complete (for positive k).
Proof: The proof techniques are the same as in the previous
proof. Membership requires that we build an automaton for a
CTL∗ formula, which entails an additional exponential blowup.
Regarding hardness, we can take advantage of using CTL∗ in
order to have yardstickn0 (s, t) enforce that the distance between
s and t is 2n.

V. USING QCTL FOR SPECIFYING MULTI-AGENT
SYSTEMS

Extending CTL with propositional quantification has already
found several applications for reasoning about complex systems.
In this section, we show how it can be used to express
important properties of multi-agent systems. More precisely,
we show how a model-checking problem involving a multi-
agent system (typically a concurrent game) C and a property Φ
written in ATLsc (an extension of ATL [35] geared towards the
expression of non-zero-sum objectives [36], [12], see below)
or Strategy Logic (a different extension of ATL with similar
ideas [13], [14]) can be reduced to a model-checking problem
SC |= Φ̂, where SC is the Kripke structure underlying C, and
Φ̂ is a QCTL formula.

The reduction is rather natural: we use propositional quan-
tification to label the execution tree with the moves chosen
by agents, which thus provides a simple way to describe their
strategies. Considering QCTL under the tree semantics allows
us to represent general strategies (depending on the whole

history of the computation), while considering the structure
semantics restricts quantification to memoryless strategies.

Moreover we show that the converse reduction is also
possible: a model-checking problem for QCTL can be reduced
to a model-checking problem for ATLsc. Finally, we notice
that both translations also apply for Strategy Logic.

In the following section, we introduce basic definitions of
this setting, namely concurrent game structures and classical
notions such as strategies and outcomes, and the syntax and
semantics of ATLsc. The reductions are given in Sections V-B
and V-C.

A. Basic definitions
1) Concurrent game structures. Concurrent game struc-
tures [35] are a multi-player extension of classical Kripke
structures. Their definition is as follows:
Definition 23: A Concurrent Game Structure (CGS for short)
C is a 7-tuple 〈Q,R, `,Agt,M,Mov,Edge〉 where:
• 〈Q,R, `〉 is a finite-state Kripke structure,
• Agt = {A1, ..., Ap} is a finite set of agents (or players);
• M is a finite, non-empty set of moves;
• Mov : Q×Agt→ P(M)r{∅} defines the set of available

moves of each agent in each state.
• Edge : Q ×MAgt → R is a transition table; with each

state q and each set of moves of the agents, it associates
the resulting transition, which is required to depart from q.

The size of a CGS C is |Q| + |Edge|. The intended
behaviour of a CGS is as follows: in a location q, each
player Ai in Agt chooses one among her possible moves mi

in Mov(`, Ai); the next transition to be fired is given by
Edge(q, (m1, ...,mp)). We write Next(q) for the set of all
transitions corresponding to possible moves from q, and
Next(q, Aj ,mj), with mj ∈ Mov(q, Aj), for the restriction
of Next(q) to possible transitions from q when player Aj
plays the move mj . We extend Mov and Next to coalitions
(i.e., sets of agents) in the natural way.

A (finite or infinite) path of C is a sequence ρ = q0q1 . . .
of states such that for any i, qi+1 ∈ Next(qi). Finite paths
are also called histories. Let ρ = q0q1 . . . qn be a history.
The length of ρ (denoted with |ρ|) is n, and we write first(ρ)
for q0 and last(ρ) for qn. Given a path ρ′ s.t. last(ρ) = first(ρ′),
the concatenation of ρ and ρ′ is the path τ = ρ·ρ′ = r0r1 . . . rm
s.t. ρ = r0r1 . . . rn and ρ′ = rnrn+1 . . . rm.

A strategy for some player Ai ∈ Agt is a function fi that
maps any history to a possible move for Ai, i.e., satisfying
fi(q0 . . . qm) ∈ Mov(qm, Ai). A strategy for a coalition A
of agents is a mapping assigning a strategy to each agent in
the coalition. The set of strategies for A is denoted Strat(A).
The domain of FA ∈ Strat(A) (denoted dom(FA)) is A. Given
a coalition B, the strategy (FA)|B (resp. (FA)rB) denotes the
restriction of FA to the coalition A ∩B (resp. ArB).

Let ρ be a history. A strategy FA = (fj)Aj∈A for some
coalition A induces a set of paths from ρ, called the outcomes
of FA after (or from) ρ, and denoted Out(ρ, FA): an infinite
path π = ρ · q1q2 . . . is in Out(ρ, FA) iff, writing q0 = last(ρ),
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for all i ≥ 0 there exists a set of moves (mi
k)Ak∈Agt such

that mi
k ∈ Mov(qi, Ak) for all Ak ∈ Agt, mi

k = fAk
(π|ρ|+i)

if Ak ∈ A, and qi+1 ∈ Next(qi,Agt, (mi
k)Ak∈Agt). It is

also possible to combine two strategies F ∈ Strat(A) and
F ′ ∈ Strat(B), resulting in a strategy F ◦F ′ ∈ Strat(A

⋃
B)

defined as follows: (F ◦F ′)|Aj
(ρ) is F|Aj

(ρ) (resp. F ′|Aj
(ρ))

if Aj ∈ A (resp. Aj ∈ BrA). Finally, given a strategy F and
a history ρ, we define the strategy F ρ corresponding to the
behaviour of F after prefix ρ: it is defined, for any history π
with last(ρ) = first(π), as F ρ(π) = F (ρ · π).
2) Alternating-time temporal logics. We now introduce the
extension of ATL with strategy contexts [36], [12]:
Definition 24: The syntax of ATLsc is defined by the follow-
ing grammar:

ϕstate, ψstate ::=p | ¬ϕstate | ϕstate ∨ψstate | ·〉A〈·ϕstate | 〈·A·〉ϕpath

ϕpath, ψpath ::=Xϕstate | ϕstate Uψstate | ϕstate Wψstate.

where p ranges over AP and A over 2Agt.
That a formula ϕ in ATLsc is satisfied by a state q of a

CGS C under a strategy context F (i.e., a preselected strategy
for some of the players, hence belonging to some Strat(A) for
a coalition A), denoted C, q |=F ϕ, is defined as follows 8:

C, q |=F ·〉A〈·ϕstate iff C, q |=FrA
ϕstate

C, q |=F 〈·A·〉ϕpath iff ∃FA ∈ Strat(A).
∀ρ′ ∈ Out(q, FA ◦F ). C, ρ′ |=FA ◦F ϕpath

In the following we will use 〈·A·〉ϕstate as a shorthand for
〈·A·〉 ⊥Uϕstate.
Example 25: Consider a system made of several clients (Ci)i
trying to get access to some shared resource. A server S is in
charge of ensuring mutual exclusion, and granting access to
the resource. The correct functioning of the whole system (in
which each client will eventually be able to access the resource
if it decides to) can be expressed as

〈·S·〉G
[∧
i 6=j

¬(granti ∧ grantj)∧
∧
i

〈·Ai·〉F granti

]
(3)

B. From ATLsc to QCTL∗ and QCTL model checking

Let C = 〈Q,R, `,Agt,M,Mov,Edge〉 be a CGS, andM be
{m1, . . . ,mk}. We consider the following sets of fresh atomic
propositions: PQ

def
= {pq | q ∈ Q}, PaM

def
= {ma

1 , . . . ,m
a
k} for

every a ∈ Agt, and PM
def
=
⋃
a PaM.

Let SC be the Kripke structure 〈Q,R, `+〉 where for any
state q, we have: `+(q)

def
= `(q) ∪ {pq}. SC is the Kripke

structure underlying C, in which every state q is labelled with
its own atomic proposition pq . In the following, every labelling
function we consider coincides with `+ on AP\PM.

A strategy for an agent a can be seen as a function
labelling the execution tree of SC with PaM. More precisely,
a strategy for a is a labelling function fa : Execf(`) → PaM.
A memoryless strategy for a corresponds to a labelling function
fa : Q→ PaM, i.e., a labelling of the Kripke structure SC .

8We omit the cases of Boolean operators and path modalities.

Let F be a strategy context for some coalition C ⊆ Agt.
Let Φ be an ATLsc formula. We reduce the question whether
C, q |=F Φ to a model-checking instance for QCTL∗ over SC .
For this, we define a QCTL∗ formula Φ̂C inductively as follows.
For non-temporal constructs, we let

·̂〉·〈·Aϕ
C def

= ϕ̂CrA ϕ̂∧ψ
C def

= ϕ̂C ∧ ψ̂C

¬̂ψ
C def

= ¬ ϕ̂C P̂C
def
= P

For a formula of the form 〈·A·〉Xϕ with A = {a1, . . . , al},
we let:

̂〈·A·〉Xϕ
C def

= ∃ma1
1 ...m

a1
k ...m

al
1 ...m

al
k .∧

a∈A
AG (Φstrat(a))∧ A

(
Φ

[A∪C]
out ⇒X ϕ̂C∪A

)
where:
• Φstrat(a) ensures that, the labeling of propositions ma

i s
describes a feasible trategy for a (i.e. exactly one possible
move for a in any reachable state):

Φstrat(a)
def
=
∨
q∈Q

(
pq ∧

∨
mi∈Mov(q,a)

(ma
i ∧
∧
j 6=i

¬ma
j )
)

• Given a coalition A, formula Φ
[A]
out characterizes the

outcomes of the strategy for A that is described by the
atomic propositions in the model (see Lemma 26). It is
defined as follows:

Φ
[A]
out

def
= G

∧
q∈Q

m∈Mov(q,A)

(
(pq ∧Pm)⇒X

( ∨
q′∈Next(q,A,m)

pq′
))

where m is a move (ma)a∈AMov(q, A) for A and Pm is
the propositional formula

∧
a∈Am

a which describes m.
Note that Φ

[A]
out is based on the transition table Edge of C.

Formula ̂〈·A·〉X Φ
C

states that there exists a way of fixing a
strategy for A (by an appropriate labelling of the execution
tree with moves of A) such that any execution corresponding
to this strategy and the (previously selected) strategy for C
satisfies X ϕ̂C∪A

For 〈·A·〉ϕUψ, we use the same idea:

̂〈·A·〉 (ϕUψ)
C def

= ∃ma1
1 ...m

a1
k ...m

al
1 ...m

al
k .∧

a∈A
AG (Φstrat(a))∧ A

(
Φ

[A∪C]
out ⇒(ϕ̂C∪A U ψ̂C∪A)

)
Other temporal modalities can be handled similarly.

The correctness of the reduction is based on the following
lemma where we identify an execution in a structure with its
corresponding path in the execution tree in order to simplify
the notation:
Lemma 26: Let A ⊆ Agt be a coalition and q be a state
in Q. Let T ′ be the execution tree TSC (q) with a labelling
function `′ s.t. for every π ∈ Execf(q) and a ∈ A, `′(π)∩PaM
is a singleton. Let ρ be an execution in T ′. Then

T ′, ρ |= Φ
[A]
out ⇔ ρ ∈ Out(q, FA)
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where FA is the strategy labelled in T ′, obtained as follows:
for every a ∈ A and i ≥ 0, if `′(ρi) 3 ma

j , then Fa(ρi) is mj .
In the end, we have the following result (a proof sketch is

given in Appendix D):
Theorem 27: Let q be a state in C. Let Φ be an ATLsc formula
and F be a strategy context for some coalition C. Let T ′ be the
execution tree TSC (q) with a labelling function `′ s.t. for every
π ∈ Execf(q) and a ∈ C, `′(π) ∩ PaM = ma

j iff F (π)|a = mj .
Then C, q |=F Φ iff T ′, q |= Φ̂C .

Example 28: Consider the client-server example and the
ATLsc formula of Equation (3). The corresponding QCTL∗

formula is:

∃mS
1 ...m

S
k .AG (Φstrat(S)) ∧ A

(
Φ

[S]
out⇒

G
[∧
i6=j

¬(granti ∧ grantj)∧
∧
i

∃mAi
1 ...mAi

k .

AG (Φstrat(Ai))∧ A(Φ
[S∪Ai]
out ⇒F granti)

)])
and every Φ

[S∪Ai]
out is defined as above.

Thus a model checking problem C, q |= Φ can be reduced
to the problem SC , q |=t Φ′ with Φ ∈ QCTL∗. This reduction,
together with the algorithm developed earlier in this paper, pro-
vides a non-elementary model-checking algorithm for ATLsc.
(which is similar to the algorithm we proposed in [12]).
Remark 29: We have two remarks about our reduction:
a) Memoryless strategies. The translation above assumes
the tree semantics. However, it also makes sense in the
structure semantics, where quantification then corresponds to
the selection of a memoryless strategy. A theorem similar to
Theorem 27 can be stated by considering the structure semantics
for QCTL and memoryless strategies for ATLsc.
b) Translation into QCTL. Our reduction above is into
QCTL∗ but we can use Proposition 12 to get an equivalent
QCTL formula. This may increase the quantifier height of
the formula. For the tree semantics, a direct translation into
QCTL exists: instead of using Φ

[A]
out , we can use an extra atomic

proposition pout for labelling outcomes. This yields a QCTL
formula with the same quantifier height.

C. From QCTL to ATLsc model checking
Let Φ be a QCTL formula and S = 〈Q,R, `〉 be a Kripke

structure. W.l.o.g., we assume that every proposition quantifier
in Φ deals with a fresh proposition. We use APf (Φ) (resp.
APQ(Φ)) to denote the set of free (resp. quantified) proposition
in Φ. Assume APQ(Φ) = {P1, . . . , Pk}. Now we define a turn-
based CGS CS and an ATLsc formula Φ̃ such that S, q |=t Φ
iff CS , q |= Φ̃.

The CGS CS = 〈Q′, R′, `′,Agt,M,Mov,Edge〉 is defined
as follows. The set of agents is Agt = {A0, . . . , Ak}: A0 is
in charge of selecting the transitions in S, and each Ai with
i ≥ 1 has to decide the truth value of Pi. The set of states
is Q′ = Q ∪ {cq,i | i = 1, . . . , k} ∪ {pi | i = 0, . . . , k}: every
state q ∈ Q is controlled by A0 while every state cq,i is

controlled by Ai. States pi only carry a self-loop, and then are
not explicitly controlled. The transition set R′ contains every
transition (q, q′) ∈ R, and we also add (q, cq,i), (cq,i, pi) and
(cq,i, p0) for i = 1, . . . , k and q ∈ Q. The labelling `′ is the
following one: `′(q) = `(q) ∪ {PQ} if q ∈ Q (PQ is assumed
to be a fresh atomic proposition), `′(cq,i) = `′(p0) = ∅, and
`′(pi) = Pi if i ≥ 1. In a state q ∈ Q, A0 can choose either a
successor state q′ (i.e. an S transition (q, q′)) or some cq,i, the
latter choice being used to check whether Pi holds true in q.
Indeed in cq,i, Ai has two available moves: move m1 goes to
Pi, and while mode m0 goes to P0. Thus as soon as Ai has
fixed his strategy, cq,i has a unique successor and this will
encode the labelling for Pi. Note also that for any path in CS
of the form ρ · cq,i, ρ is a path in S ending in q. Finally note
that as CS is a turn-based CGS, its size is in O(|Q| · |Φ|+ |R|),
i.e. in O(|S| · |Φ|). Now we define Φ̃ as follows:

∃̃Pi.ϕ
def
= 〈·Ai·〉 ϕ̃ ϕ̃∧ψ def

= ϕ̃∧ ψ̃

P̃i
def
= 〈·A0·〉X 〈·A0·〉XPi ¬̃ψ def

= ¬ ϕ̃

ẼϕUψ
def
= 〈·A0·〉 (PQ ∧ ϕ̃) U (PQ ∧ ψ̃) P̃

def
= P

ẼGϕ
def
= 〈·A0·〉G (PQ ∧ ϕ̃)

where we assume P 6∈ APQ(Φ). The size of Φ̃ is in O(|Φ|).
We state the correctness of the reduction as follows:
Proposition 30: Let Φ be a QCTL formula with APQ(Φ) =
{P1, . . . , Pk} and ψ be a Φ-subformula. Let I be the indexes
of propositions in APf (ψ) ∩ APQ(Φ). Let S = 〈Q,R, `〉 be
a KS and q0 ∈ Q. Let T be an unwinding TS(q0) with a
labelling function `T that extends ` for {Pi | i ∈ I}. Let F be
the strategy context (fAi

)i∈I such that: FAi
(ρ · cq,i) = m1 iff

`T (ρ) 3 Pi for every S-path ρ. Then we have:

T , q |=s ψ iff CS , q |=F ψ̃

Proof: The proof is based on the fact that any strategy for
agent Ai from a given state q in CS corresponds to a (unique)
Pi labelling of TS(q). Indeed such a strategy is a mapping
from paths of the form ρ · cq,i with ρ ∈ Q+ (remember C is
a turn-based game where Ai only plays in cq,i states) and as
noticed above, we have: for any such a CS path ρ · cq,i, ρ is a
path in S ending in q which implies that ρ is a state of TS(q).
Given this observation, the proof is direct.

The above reduction involves k+1 players, but quantification
on strategies of A0 can be changed to 〈·∅·〉 . In the end, we get:
Theorem 31: Model-checking the fragment of ATLsc with at
most k non-trivial nested strategy quantifiers is k-EXPTIME-
complete.

D. Extension to Strategy Logics.
The reduction from ATLsc model-checking to QCTL∗ model-

checking can be adapted for other formalisms. Especially it
can be done for Strategy Logics, introduced in [13]9, [14]. In
this framework we can assign strategies to some variables and

9Notice that Strategy Logic in [13] requires formulas with a temporal
modality to be closed (they are not allowed to involve strategies quantified
earlier). Under that restriction, our reduction does not apply.
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then associate them with agents.This can be done in FQCTL∗

by quantifying over propositions mx
i (such a labelling will

define the strategy x) and then use a slightly modified version
of Φ

[]
out to ensure that agent a plays accordingly to strategy x.

The use of FQCTL∗ is due to SL’s ability to quantify over
strategies within path formulas. As explained in Remark 14,
FQCTL∗ can be translated into QCTL when considering the
tree semantics.

The converse reduction from QCTL (under the tree seman-
tics) to SL model checking also holds. This entails the following
result, correcting a wrong claim in [14, Theorem 4.2]:
Theorem 32: The model-checking problems for QCTL, ATLsc
and SL are inter-reducible (in logarithmic space). They all are
non-elementary.

VI. CONCLUSIONS AND FUTURE WORKS

We have characterized the complexity of model-checking
QCTL, completing earlier results from [8], [10]. We have
applied these results to model checking for recent extensions
of ATL geared towards non-zero-sum properties. Our plans for
future works include a finer study of the complexity of model
checking, for a fixed model or a fixed formula, and the study
of satisfiability.

Acknowledgement. We thank Thomas Colcombet and Olivier
Serre for helpful comments during the redaction of this paper.
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APPENDIX

A. Semantics of QCTL

S, q |=s p iff p ∈ `(q)
S, q |=s ¬ϕstate iff S, q 6|=s ϕstate

S, q |=s ϕstate ∨ψstate iff S, q |=s ϕstate or S, q |=s ψstate

S, q |=s Eϕpath iff ∃ρ ∈ Exec(q) s.t. S, ρ |=s ϕpath

S, q |=s Aϕpath iff ∀ρ ∈ Exec(q) it holds S, ρ |=s ϕpath

S, q |=s ∃p.ϕstate iff ∃S ′ ≡AP\{p} S s.t. S ′, q |=s ϕstate

S, ρ |=s ϕstate iff S, ρ(0) |=s ϕstate

S, ρ |=s ¬ϕpath iff S, ρ 6|=s ϕpath

S, ρ |=s ϕpath ∨ψpath iff S, ρ |=s ϕpath or S, ρ |=s ψpath

S, ρ |=s Xϕpath iff S, ρ1 |=s ϕpath

S, ρ |=s ϕpath Uψpath iff ∃i ≥ 0. S, ρi |=s ψpath and

∀0 ≤ j < i. S, ρj |=s ϕpath

B. Prenex normal form for QCTL

Proposition 9: Every QCTL formula is equivalent (for both
semantics) to a formula in prenex normal form.
Proof: We prove the result for structure equivalence first,
turning a given a QCTL formula ϕ into prenex normal form.
The transformation is actually correct also for infinite-state
Kripke structures, which entails the result for tree-equivalence.

In the following, we assume w.l.o.g. that every propositional
quantification deals with fresh Boolean variables. We use Q to
denote a sequence of quantifications, and write Q̄ for the dual
sequence. Our translation is defined as a sequence of rewriting
rules that are to be applied in a bottom-up manner, replacing
innermost subformulas with s-equivalent ones first.

For propositional and Boolean subformulas, we have:

Q.p ≡s p ¬Q.ϕ ≡s Q̄ ¬ϕ
Q1.ϕ1 ∨Q2ϕ2 ≡s Q1.Q2.(ϕ1 ∨ϕ2)

Extracting a bloc of quantifiers out of an EX operator can
be done as follows:

EXQ.ϕ ≡s ∃z.Q.
(

uniq(z)∧ EX (z ∧ϕ)
)

Here variable z (which is assumed to not appear inQ) is used to
mark the immediate successor that has to satisfy Q.ϕ, we also
require z to be unique (allowing more than one successor would
make the equivalence to be wrong). Note that the right-hand-
side formula is not yet in prenex form, because uniq(z) involves
a universal quantifier under a Boolean operator; applying the
above rules for Boolean subformulas concludes the translation
for this case.

For E(Q1.ϕ1) U (Q2.ϕ2), we take the quantifiers out by
labelling with z0 a short witnessing path (up to the position
witnessing Q2.ϕ2, which we label with z2). Quantifications
in Q2 then only depend on z2. Similarly, intermediate positions

can be checked against Q1.ϕ1 using a (universally quantified)
variable z1. In the end:

E(Q1.ϕ1) U (Q2.ϕ2) ≡s ∃z0.z2.Q2.∀z1.Q1.(
dpath(z0, z2)∧ EF (z2 ∧ϕ2)∧(

uniq(z1)⇒ AG ((z1 ∧ z0)⇒ϕ1)
))

where dpath(z0, z2) ensures that z0 labels a direct path leading
to z2, meaning that it contains no loop and there is at most
one state labeled with z0 having z2 as immediate successor.
Formally:

dpath(x, y) ≡s uniq(y)∧ ExU y ∧

AG
((

(x∧ selfloop)⇒( EX 2(x∨ y)
)
∧(

(x∧¬ selfloop)⇒( EX 1(x∨ y))
))

where EX iϕ specifies that exactly i of the immediate succes-
sors satisfy ϕ:

EX 1(ϕ)
def
= EXϕ∧∀z.

(
EX (ϕ∧ z) ⇒ AX (ϕ⇒ z)

)
EX 2(ϕ)

def
= ∃z.EX (ϕ∧ z)∧ EX (ϕ∧¬ z)∧∀z′.(

( EX (ϕ∧ z ∧ z′)∧ EX (ϕ∧¬ z ∧ z′))⇒ AX (ϕ⇒ z′)
)

Again, notice that dpath(x, y) can easily be written in prenex
form as AG (Q.ϕ) ≡s ∀z.Q.(uniq(z)⇒ AG (z⇒ϕ)).

Finally, we give the translation for EG (Q.ϕ); the idea again
is to label a witnessing (lasso-shaped) path with z, ensuring
that Q.ϕ always holds along that path:

EG (Q.ϕ) ≡s ∃z.∀z′.Q.
(
z ∧ AG (z⇒ EX 1z)∧

(uniq(z′)⇒ AG ((z ∧ z′)⇒ϕ))
)
.

Before we prove correctness of the above equivalences,
we introduce a useful characterization: consider a Kripke
structure S = 〈Q,R, `〉, a state q and a QCTL formula Q.ϕ
with Q = Q1z1 · · · Qkzk. We have S, q |=s Q.ϕ iff there is a
non-empty family ξ of Kripke structures such that

1) each S ′ ∈ ξ is of the form 〈Q,R, `′〉 where `′ and `
coincide over AP\{z1, . . . , zk}, and:

2) for any S ′ = 〈Q,R, `′〉 in ξ, and for any i with Qi =
∀, we have: for every labzi : Q → 2{zi}, there exists
〈Q,R, `′′〉 ∈ ξ such that `′′ ∩ {zi} = labzi , and `′′

and `′ coincide over AP\{zi · · · zk};
3) for all S ′ ∈ ξ, it holds S ′, q |=s ϕ.

A non-empty set ξ satisfying the first two properties is said to
be (Q,S)-compatible.

We now proceed to the proof of the previous equivalences.
We omit the cases of propositional and Boolean formulas, and
focus on EX , EG and E U :



• EX (Q.ϕ): Assume S, q |=s EX (Q.ϕ) with S =
〈Q,R, `〉. Then there exists (q, q′) ∈ R such that S, q′ |=s

Q.ϕ. Therefore there exists a set ξ of Kripke structures
that is (Q,S)-compatible and such that S ′, q |=s ϕ for
every S ′ ∈ ξ. Now consider the set ξ′ defined as follows:

ξ′
def
=
{
S ′ = 〈Q,R, `′〉

∣∣∣ ∃〈Q,R, `′′〉 ∈ ξ and

`′
def
= `′′ ⊕ {q′ 7→ z}

}
with:

(`⊕ {q 7→ x})(r) def
=

{
`(q) ∪ {x} if r = q

`(r)\{x} otherwise

Then ξ′ is clearly (∃z.Q,S)-compatible, and for ev-
ery Kripke structure S ′ ∈ ξ′, we have: S ′, q |=s

uniq(z)∧ EX (z ∧ϕ). And thus we obtain S, q |=s

∃z.Q.(uniq(z)∧ EX (z ∧ϕ)).

Now assume S, q |=s ∃z.Q.
(
uniq(z)∧ EX (z ∧ϕ)

)
.

Then there exists a Kripke structure S ′ ≡AP\{z} S such
that S ′, q |=s Q.

(
uniq(z)∧ EX (z ∧ϕ)

)
. In particular,

only one state q′ of S ′ is labelled with z, and q′

is a successor of q. Moreover, there exists a (Q,S ′)-
compatible set ξ such that for any S ′′ ∈ ξ, it holds
S ′′, q |=s EX (z ∧ϕ). Since only q′ is labelled with z,
we have S ′′, q′ |=s ϕ, for all S ′′ ∈ ξ. Hence S ′, q′ |=s

Q.ϕ, and S ′, q |=s EX (Q.ϕ). Finally, the formula is
independent of z, so that also S, q |= EX (Q.ϕ).

• EG (Q.ϕ): Assume S, q |=s EG (Q.ϕ). There exists a
path ρ = q0q1q2 . . . ql with q + 0 = q and ql = qj for
some j < l. We assume that ρ is a direct path: ql is the only
repeated state and S does not contain a transition (ql, qm)
unless m = l+1. Thus labeling ρ-states by z will make the
formula (z ∧ AG (z⇒ EX 1z) hold at q. Now we know
that for every i < l, S, qi |=s Q.ϕ, so that there exists
a set ξi of Kripke structures that are (Q,S)-compatible
and such that S ′, qi |=s ϕ for every S ′ ∈ ξi. Now, let ξ
be the following set of Kripke structures:

ξ
def
=
{
S ′ = 〈Q,R, `′〉

∣∣∣ ∃i < l, ∃〈Q,R, `′′〉 ∈ ξi, and

`′
def
= `′′ ⊕ {qj 7→ z}j=0,...,l ⊕ {qi 7→ z′}

}
For every S ′ ∈ ξ, we have S ′, q |=s

z ∧ AG (z⇒ EX 1z)∧(uniq(z′)⇒ AG ((z ∧ z′⇒ϕ))).
But the set ξ is not (∃z∀z′Q,S)-compatible because
it contains only Kripke structures with a z′-labeling
for a single state along ρ (the universal quantification
requires that we consider all labelings). But ξ can easily
be completed with arbitrary Kripke structures with
other form of z′-labeling to obtain a compatible set ξ̂.
Note that the additional Kripke structures still satisfy
(uniq(z′)⇒ AG ((z ∧ z′⇒ϕ))). Thus S, q satisfies the
right-hand-side formula of the equivalence.

Now assume that

S, q |=s ∃z∀z′Q(z ∧ AG (z⇒ EX 1z)∧
(uniq(z′)⇒ AG ((z ∧ z′)⇒ϕ))).

Let S ′ be the structure labeled with z such that
1) S ′, q |=s z ∧ AG (z⇒ EX 1z)
2) S ′, q |=s ∀z′.Q(uniq(z′)⇒ AG ((z ∧ z′)⇒ϕ)).

The first property ensures that the z-labeling de-
scribes an infinite path starting from q. The second
one entails that there exists a (∀z′Q,S ′)-compatible
set ξ s.t. for every S ′′ ∈ ξ, we have S ′′, q |=s

uniq(z′)⇒ AG ((z ∧ z′)⇒ϕ). Clearly it entails that for
any position i along the z-path, there exists a (Q,S ′′)-
compatible set in which qi |=s ϕ. This proves the result.

• E(Q1ϕ1) U (Q2ϕ2): Assume S, q |=s

E(Q1ϕ1) U (Q2ϕ2). Then there exists a path
ρ = q0q1x . . . qi such that q0 = q and S, qi |=s Q2ϕ2 and
S, qj |=s Q1ϕ1 for j < i. We can assume that ρ is direct:
it is never necessary to loop or postpone the arrival in a
state satisfying Q2.ϕ2. Thus labeling the final state qi
with z2 and every qj (with j < i) with z0 makes ρ satisfy
dpath(z0, z2). Now as S, qi |=s Q2ϕ2, there exists a
set ξ2 of Kripke structures that is (Q2,S)-compatible
and such that S ′, qi |=s ϕ2 for every S ′ ∈ ξ2. Now we
define ξ′2 as follows:

ξ′2
def
=
{
S ′ = 〈Q,R, `′〉

∣∣∣ ∃〈Q,R, `′′〉 ∈ ξ2 and

`′
def
= `′′ ⊕ {qi 7→ z2, qj 7→ z0(j = 0, . . . , i− 1)}

}
Clearly ξ′2 is (∃z0.∃z2.Q2,S)-compatible and for any
S ′ ∈ ξ′2, we have S ′, q |=s dpath(z0, z2)∧ EF (z2 ∧ϕ2).
Moreover for any j = 0, . . . , i − 1, we have S, qj |=s

Q1.ϕ1. As Q1.ϕ1 does not depend on z0, z2 and variables
in Q2, it holds: for every S ′ ∈ ξ′2, S ′, qj |=s Q1.ϕ1.
Therefore there exists ξS

′

1 that is (Q1,S ′)-compatible s.t.
for every S ′′ ∈ ξS′

1 , we have S ′′, qj |=s ϕ1. Now consider:

ξ
def
=
{
S ′′ = 〈Q,R, `′′〉

∣∣∣ ∃S ′ ∈ ξ′2. ∃j < i.

∃〈Q,R, `′′′〉 ∈ ξS
′

1 and `′′ def
= `′′′ ⊕ {qj 7→ z1}

}
As in the previous case, ξ is not (∃z0∃z2Q2∀z1Q1,S)-
compatible because it only contains structures with a
unique state labeled with z1. But it can be completed by
arbitrary structures to get a compatible set ξ̂. This entails
the result.
Now assume

S, q |=s ∃z0.z2.Q2.∀z1.Q1.(dpath(z0, z2)∧
EF (z2 ∧ϕ2)∧(uniq(z1)⇒ AG ((z1 ∧ z0)⇒ϕ1))).

Then it entails that there is a path labeled with z0 U z2,
that Q2ϕ2 holds true in the final state (by using the same
arguments as for the EX case), and that for any z1-
labeling of a unique state q′ along the path, that state q′

has to satisfy Q1.ϕ1. We clearly have the property.



Finally note that we didn’t pay attention to the complexity
of the translation but it is easy to see that the DAG-size of the
resulting formula is linear in the size of the original formula.
The translation increases also the number of quantifications.
Note that in the case of E U , quantifications Q1 and Q2 are
independent and the quantification Q1.Q2 can be reordered so
as to minimize the number of quantifier alternations (of course
the orders inside the blocs have to be preserved).
a) Tree semantics. The algorithm above to transform any
QCTL formula into an equivalent formula in prenex normal
form has been defined for the structure semantics. It is still
correct when considering the tree semantics but in this frame-
work, we could define a simpler transformation (in particular,
we can get rid of the dpath(z0, z2) formula).

C. From MSO to QCTL

We present the translation from MSO to QCTL mentionned
in the proof of Proposition 10. Given ϕ(x) ∈ MSO, we define
ϕ̂ ∈ QCTL as follows:

∃̂xi.ϕ
def
= ∃pxi

.uniq(pxi
)∧ ϕ̂ ∃̂Xi.ϕ

def
= ∃pXi

.ϕ̂

̂xi ∈ Xj
def
= EF (pxi

∧ pXj
) x̂ ∈ Xi

def
= pXi

P̂a(xi)
def
= EF (pxi ∧ a) ϕ̂∧ψ def

= ϕ̂∧ ψ̂
̂Edge(x, xi)

def
= EX pxi

¬̂ϕ def
= ¬ ϕ̂

̂Edge(xi, x)
def
= ⊥ P̂a(x)

def
= a

x̂i = xj
def
= EF (pxi ∧ pxj ) x̂ = xi

def
= pxi

̂Edge(xi, xj)
def
= EF (pxi

∧ EX pxj
)

This translation is correct for both semantics, as for any S and
q, we have that T ′S(q), q |=s ϕ̂ iff

TS(q), q, s1, ..., sn, S1, ..., Sk |= ϕ(x, x1, ..., xn, X1, ..., Xk)

and that S ′q, q |=s ϕ̂ iff

Sq, q, s1, ..., sn, S1, ..., Sk |= ϕ(x, x1, ..., xn, X1, ..., Xk)

where TS and T ′S (resp. Sq and S ′q) only differ in the labeling
of propositions pxi

and pXi
: in TS (resp. Sq), no state is

labeled with these propositions, while in T ′S (resp. S ′q) we have
(1) pxi

∈ `(s) iff s = si and (2) pXi
∈ `(s) iff s ∈ Si. From

this we deduce ϕ(x) ≡t ϕ̂ and ϕ(x) ≡s ϕ̂.

D. From ATLsc to QCTL∗

Sketch of proof of Theorem 27: The proof is done by structural
induction over Φ. Boolean cases are trivial.

Consider Φ
def
= 〈·A·〉Xϕ. Assume C, q |=F 〈·A·〉Xϕ.

Therefore there exists FA ∈ Strat(A) s.t. for any ρ ∈
Out(q, FA ◦F ), we have C, ρ(1) |=FA ◦F (q) ϕ.

Let T ′′ be the execution tree TS(q) with a new labeling `′′

that extends `′ in the following way: for every π ∈ Execf
SCT (q),

we have `′′(π)
def
= `′(π)∪ {ma

j } if FA(π)|a = mj
10. Now let

ρ′ be an execution in T ′′. Assume we have T ′′, ρ′ |= Φ
[A∪C]
out .

10Remember we identify the execution in a structure and in its execution
tree

From Lemma 26, we deduce ρ′ ∈ Out(q, FA ◦F ), and then
C, ρ′(1) |=FA ◦F (q) ϕ (see above). It remains to apply the
induction hypothesis to obtain T ′′, ρ′≤1 |= ϕ̂A∪C (interpreting
a formula in the subtree with root ρ′(1) or in T ′′ from ρ′≤1
does not matter here). And clearly it gives that T ′, q |= Φ̂C .

For the other direction, we build a strategy from the
labeling and it works in the same way: the first part of
formula Φ̂C ensures that the labeling for ma

i s describes a
correct strategy and the second part ensures that every outcome
has to verify Xϕ. We use the same method to prove the result
for Φ

def
= 〈·A·〉 (ϕUψ).

Finally assume Φ
def
= ·〉A〈·ϕ. Then Φ̂C is ϕ̂CrA. Indeed

in ϕ̂CrA, we do not take into account the value of atomic
propositions encoding the moves for agents in A to characterize
the outcomes of the current strategy context: this is precisely
the meaning of [A] operator.

E. Proof of Theorem 21
Theorem 21: Model checking EQkCTL, AQkCTL and
QkCTL under the tree semantics is k-EXPTIME-complete (for
positive k).
Proof: Since EQkCTL and AQkCTL are dual and contained
in QkCTL, it suffices to prove hardness for EQkCTL and
membership for QkCTL.
b) I Hardness in k-EXPTIME. The reduction uses the ideas
of [KMTV00], [SVW87]: we encode an alternating Turing
machineM whose tape is bounded by the following recursively-
defined function:

E(0, n) = n E(k + 1, n) = 2E(k,n).

An execution of M on an input word y of length n is then a
tree. Our reduction consists in building a Kripke structure K
and a QkCTL formula ϕ such that ϕ holds true in K (for the
tree semantics) iff M accepts y.

As a first step, we design a set of (polynomial-size) formulas
of EQkCTL that are able to relate two states that are at distance
E(k, n) (actually, a slightly different value). This will be used
in our reduction to ensure that the content of one cell of the
Turing machine is preserved from one configuration to the next
one, unless the tape head is around. Define

F (0, n) = n F (k + 1, n) = F (k, n) · 2F (k,n),

and assume we are given a tree labelled with atomic proposi-
tions s and t (among others). We first require that s and t appear
exactly once along any branch, by means of the following
formula

once(ϕ) = AFϕ∧ AG (ϕ⇒ AX AG ¬ϕ).

Our formula for requiring one occurrence of s and t (in that
order) along each branch then reads

delimiters(s, t) = once(s)∧ once(t)∧ AG (s⇒ AF t). (4)

We now inductively build our “yardstick” formulas enforcing
that, along any branch, the distance between the occurrence
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of s and that of t is precisely F (k, n) (see Fig. 3). When
k = 0, this is easy11:

yardstickn0 (s, t) = AG
(
s⇒

(
( AX )nt∧

∧
0≤k<n

( AX )k ¬ t
))
.

(5)
For the subsequent cases, we use propositional quantification
to insert a number of intermediary points (labelled with r),
at distance F (k − 1, n) apart. We then associate with each
occurrence of r a counter, encoded in binary (with least
significant bit on the right) using a fresh proposition c on
the F (k − 1, n) cells between the present occurrence of r and
the next one. Our global formula then looks as follows:

yardsticknk = ∃r.∃c. (graduationk(r, s, t)∧
counterk(c, r, s, t)). (6)

When k = 1, graduation1(r, s, t) is rather easy (notice that
we allow graduations outside the [s, t]-interval):

graduation1(r, s, t) = AG ((s∨ t)⇒ r)∧ yardstickn0 (r, r).

As regards the counter, we have to enforce that, between s
and t, it has value zero exactly at s and value 2n − 1 exactly
at t, and that it increases between two consecutive r-delimited
intervals:

counter1(c, r, s, t) = zeros1(c, r, s, t)∧ ones1(c, r, s, t)

∧ increment1(c, r, s, t)

zeros1(c, r, s, t) = AG (s⇔(r∧¬ c∧ AX A(¬ cU r)))

ones1(c, r, s, t) = AG ((r∧ AX A(¬ rU t))⇒ A(cU t))

increment1(c, r, s, t) = AG (s⇒( AG ((c⇔( AX )nc)⇔
AX A(¬ rU (¬ c∧¬ r))))).

The first two formulas are easy: zeros1 requires that s be the
only position that can be followed by only zeros until the next
occurrence of r; ones1 expresses that in the last r-delimited
interval before t, c always equals 1. Finally, increment1 requires
that, starting from s, the value of c is changed from one interval
to the next one if, and only if, c equals one in all subsequent
positions of the first interval. One can check that this correctly

11There is a bit of redundancy with delimiter, but this will be needed as
this formula will sometimes be used alone.

encodes the incrementation of the counter. In the end, yardstick1
is an EQ1CTL formula.

For any k ≥ 2, yardstickk is obtained using similar ideas,
with slightly more involved formulas.

graduationk(r, s, t) = AG ((s∨ t)⇒ r)∧
∀u.∀v. [(delimiters(u, v)∧ yardsticknk−1(u, v))⇒

( AG (u⇒ AF (r∧ AF v))∧
AG ((r∧ AF v ∧¬ AFu)⇒ AX A(¬ rU v)))].

Roughly, this states that the labelling with r has to satisfy
the constraint that, between any two points u and v at
distance F (k−1, n) apart, there must be exactly one r. Notice
that formula yardsticknk−1 appears negated in graduationk.
Regarding the counter, formulas zerosk and onesk are the same
as zeros1 and ones1, respectively. Incrementation is handled
using the same trick as for graduationk:

incrementk(c, r, s, t) = ∀u.∀v.
[(delimiters(u, v)∧ yardsticknk−1(u, v))⇒

( AG ((s∧ AFu)⇒( AG (((u∧ c)⇔ AG (v⇒ c))⇔
( AX A¬ rU (¬ c∧¬ r))))))]

This formula is a mix between increment1, in that it uses the
same trick of requiring that the value of c is preserved if there
is a zero at a lower position, and the labelling with u and v to
consider all positions that are at distance F (k − 1, n) apart.

Now, since yardsticknk−1 is, by induction hypothesis, in
EQk−1CTL, formula yardsticknk is in EQkCTL (notice that
yardsticknk−1 appears negated after the universal quantifiers
on u and v).

We now explain how we encode the acceptance problem
for a k-1-EXPSPACE alternating Turing machine into an
EQkCTL model-checking problem. Assume we are given
such a Turing machine M = 〈Q, q0, δ, F 〉 on a two-letter
alphabet Σ = {α, β}, and an input word y ∈ Σn. An execution
of M on y is encoded as (abstractly) depicted on Fig. 4,
with one configuration being encoded as a sequence of
cells, and branching occurring only between two consecutive
configurations.

WithM and y, we associate a Kripke structure K = 〈S, s0,
R, `〉 where S = (Q ∪ {ε}) × Σ ∪ {#}, R = S × S is the
complete transition relation, s0 = #, and ` labels each state
with its name (hence the set of “original” atomic propositions
is S).

The execution tree of K contains as branches any word
in s0 ·Sω , not all of which are needed in order to represent an
accepting execution of M. Hence we will label this execution
tree with an (existentially-quantified) proposition a, having in
mind that a will label exactly the branches that participate in
the encoding of an accepting execution of M.

We can easily enforce that a labels exactly branches of
execution tree of K, by requiring that

AG (¬ a⇒ AG ¬ a).



Then along those branches, we will require that # appears as
a delimiter, exactly at any levels multiple of F (k− 1, n). This
can be expressed as

#∧∀u.∀v. [(delimiters(u, v)∧ yardsticknk−1(u, v))⇒
AG ((u∧#∧ a)⇒ AX A(¬#∨¬ a) U ((v ∧#)∨¬ a))]

Notice that the latter formula is in AQk−1CTL, since the
yardsticknk−1 formula is in EQk−1CTL. Using the same idea,
one easily comes up with formulas expressing that
• each configuration contains exactly one occurrence of the

tape head,
• the content of the tape is preserved from one configu-

ration to the next one, except that one transition of the
Turing machine has been applied (with sufficiently many
executions being forked),

• each a-branch is reaches an accepting state.
We have thus reduced the acceptance problem for an alternating
Turing machine running in k−1-exponential space to a model-
checking problem for EQkCTL, which entails that the latter is
k-EXPTIME-hard.
c) I Membership in k-EXPTIME. Our algorithm uses alter-
nating parity tree automata: with each QkCTL formula ϕ,
Kripke structure K and state q0, we associate such an
automaton which has non-empty language if, and only if
K, q0 |= ϕ. We won’t recall the definitions of this classical
setting, and better refer to [MS87], [Tho97] for more details.
Our construction uses classical techniques, already present e.g.
in [Tho97], [CHP07], [Pin07], [DLM10], [MMV10]. We as-
sume we are given a Kripke structure K = 〈Q,R, `〉 on a
set AP of atomic propositions. Our proof uses the following
lemmas as building blocks. In those lemmas, the size of an
automaton is its number of states, and the index is the number
of priorities in the parity condition.
Lemma 33: [KVW00] Given a CTL formula ϕ over AP and
a set Q of directions, we can construct a 〈Q, 2AP〉-APT Aϕ
accepting exactly the 2AP-labelled Q-trees satisfying ϕ. Aϕ
has size linear in the size of ϕ, and uses a constant number of
priorities.
Lemma 34: [MS87], [MS95] Let A and B be two 〈Q, 2AP〉-
APTs12 that respectively accept languages A and B. We can
build two 〈Q, 2AP〉-APTs C and D that respectively accept the
languages A ∩ B and A (the complement of A in the set of
2AP-labelled Q-trees). The size and index of C are at most
(|A| + |B|) and max(idx(A), idx(B)) + 1, while those of D
are |A| and idx(A).
Lemma 35: [MS95] Let A be a 〈Q, 2AP〉-APT. We can build
an 〈Q, 2AP〉-NPT N accepting the same language as A, and
such that |N | ∈ 2O(|A|idx(A)·log(|A|idx(A))) and idx(N ) ∈
O(|A| · idx(A)).
Lemma 36: [MS85] Let A be a 〈Q, 2AP〉-NPT, with AP =
AP1∪AP2. For all i ∈ {1, 2}, we can build a 〈Q, 2AP〉-NPT Bi
such that, for any 2AP-labelled Q-tree T , it holds: T ∈ L(Bi)

12An 〈Q, 2AP〉-APT is an alternating parity tree automaton running on 2AP-
labelled Q-trees. Similarly, 〈Q, 2AP〉-NPT denotes non-deterministic parity
tree automata.

iff ∃T ′ ∈ L(A). T ≡APi
T ′. The size and index of Bi are

those of A.
Lemma 37: [DLM10] Let A be a 〈Q, 2AP∪{p}〉-APT s.t. for
any two 2AP∪{p}-labelled Q-trees T and T ′ with T ≡p T ′,
we have T ∈ L(A) iff T ′ ∈ L(A). Then we can build a
〈Q, 2AP∪{p}〉-APT B s.t. for all 2AP∪{p}-labelled Q-tree T =
〈T, l〉, it holds: T ∈ L(B) iff ∀n ∈ T. (p ∈ l(n) iff Tn ∈
L(A)). Then B has size O(|A|) and index idx(A) + 1.
Lemma 38: [KV98] Given an 〈Q, 2AP〉-NPT A, whether
L(A) = ∅ can be checked in time linear in |A|O(idx(A)).

We now sketch our transformation: first, given ϕ ∈ QkCTL,
we extract its maximal subformulas (ψi)i beginning with a
propositional quantifier. Then ϕ = Φ[(ψi)i] with Φ ∈ CTL.
Our model-checking procedure will first compute the sets of
states satisfying ψi, for each i, and then apply a CTL mode-
checking algorithm. Hence we have reduced our problem to
formulas of the form ∃p.ψ of QkCTL. We solve this simplified
problem inductively.

When k = 1, we then consider a formula ϕ in EQ1CTL: from
Lemma 33, we obtain a polynomial-size alternating automaton
for the inner CTL formula. Applying Lemma 35 and Lemma 36,
we get an NPT Aϕ for ϕ, with size exponential and index
linear in |ϕ|. by checking emptiness of the product of this
automaton with the automaton generating the execution tree
of K, we can decide in exponential time whether a given state
satisfies ϕ. Our global algorithm thus also runs in exponential
time.

For k > 1, formula ϕ has the form ∃P. Φ[(ψi)i], where
formulas ψi belong to EQk−1CTL and start with an (existential)
propositional quantifier, and Φ is in CTL. Applying the
induction hypothesis, we get NPTs Aψi

for these formulas,
having size at most k − 1-exponential and index at most
k − 2-exponential in |ψ|. Using Lemma 37, and Lemma 33
for formula Φ, we can build an APT of size at most k − 1-
exponential and index at most k − 2-exponential in |ψ| for
Φ[(ψi)i]. Then Lemmas 35 and 36 can be used to obtain an APT
for ϕ, having size k-exponential and index k − 1-exponential
in |ϕ|, which can be used to decide whether a given state
satisfies ϕ.

F. Results about Strategy Logic
In this section we present the reduction from QCTL model

checking to SL model checking. It uses the same approach
we use for ATLsc: given a problem S |= Φ with Φ ∈ QCTL,
we reuse the same CGS CS with k + 1 agents where k is the
number of quantified propositions in Φ.

We use the version the logic SL introduced in [MMV10].
This logics contains Boolean operators, temporal modalities
(X and U ) and new constructs to deal with strategies:
existential and universal quantifiers over strategies ( 〈〈x〉〉ϕ
means “there exists a strategy x s.t. ϕ”, and JxK is the universal
quantification) and an agent binding operator to associate an
agent with an existing strategy ((A, x).ϕ means “when A plays
according to the strategy x, ϕ holds true”). This formalism is
very powerful because it allows us to deal explicitly with the
strategies and for example, one can ensure some property ϕ



when two agents play according to the same given strategy
(i.e. (A, x).(B, x).ϕ).

Let S |= Φ be a model checking problem for QCTL. We
assume that every proposition quantifier in Φ introduces a fresh
variable. Let {P1, . . . , Pk} be the set APQ(Φ). Now we define
Φ̃ ∈ SL in order to have: S |= Φ iff CS |= Φ̃. A syntatic
constraint in SL is that an SL specification (called a sentence)
has to be closed: every agent has to associated with a strategy
when temporal modalities are interpreted, and every strategy
variable has to be in the scope of some quantifier. For this, we
define Φ̃ as 〈〈x0〉〉 .(A0, x0) . . . 〈〈xk〉〉 .(Ak, xk).Φ̂ with:

∃̂Pi.ϕ
def
= 〈〈xi〉〉 .(Ai, xi).ϕ̂

P̂i
def
= 〈〈x0〉〉 (A0, x0).X XPi

ÊϕUψ
def
= 〈〈x0〉〉 .(A0, x0).(PQ ∧ ϕ̂) U (PQ ∧ ψ̂)

ÊGϕ
def
= 〈〈x0〉〉 .(A0, x0).G (PQ ∧ ϕ̂)

And ϕ̂∧ψ def
= ϕ̂∧ ψ̂, ¬̂ψ def

= ¬ ϕ̂, and P̂
def
= P when P 6∈

APQ(Φ).
Note that the first choice for the strategies xis does not matter

for the truth value of Φ̂ because every agent will be associated
with another strategy when he will have to actually choose a
move. In SL, a formula ϕ is interpreted over a state or a path
in a CGS and over an assignment χ which provides a strategy
to every free agent or variable in ϕ: we write C, χ, q |= ϕ or
C, χ, ρ |= ϕ.

We state the correctness of the reduction as follows:
Proposition 39: Let Φ be a QCTL formula with APQ(Φ) =
{P1, . . . , Pk} and ψ be a Φ-subformula. Let I be the indexes
of propositions in APf (ψ) ∩ APQ(Φ). Let S = 〈Q,R, `〉 be
a KS and q0 ∈ Q. Let T be an unwinding TS(q0) with a
labelling function `T that extends ` for {Pi | i ∈ I}. For any
i ∈ I , let FAi be the strategy such that: FAi(ρ · cq,i) = m1 iff
`T (ρ) 3 Pi for every finite S-path ρ.
Let χ be an assignment such that (1) for any i ∈ I , χ maps the
variable xi and the agent Ai to the strategy FAi

, and (2) for
j ∈ {0, . . . , k}r I , χ maps xj and Aj to an arbitrary feasible
strategy for Aj . Then we have:

T , q |=s ψ iff CS , χ, q |=F ψ̃
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