
HAL Id: hal-00798028
https://hal.science/hal-00798028

Submitted on 7 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Duality and i/o-Types in the π-Calculus
Daniel Hirschkoff, Jean-Marie Madiot, Davide Sangiorgi

To cite this version:
Daniel Hirschkoff, Jean-Marie Madiot, Davide Sangiorgi. Duality and i/o-Types in the π-Calculus.
Lecture Notes in Computer Science, 2012, 7454, pp 302-316. �hal-00798028�

https://hal.science/hal-00798028
https://hal.archives-ouvertes.fr

Duality and i/o-types in the π-calculus

Daniel Hirschkoff1, Jean-Marie Madiot1, and Davide Sangiorgi2

1 ENS Lyon, Université de Lyon, CNRS, INRIA, France,
2 INRIA/Università di Bologna, Italy

Abstract. We study duality between input and output in the π-calculus.
In dualisable versions of π, including πI and fusions, duality breaks with
the addition of ordinary input/output types. We introduce π, intuitively
the minimal symmetrical conservative extension of π with input/output
types. We prove some duality properties for π and we study embeddings
between π and π in both directions. As an example of application of
the dualities, we exploit the dualities of π and its theory to relate two
encodings of call-by-name λ-calculus, by Milner and by van Bakel and
Vigliotti, syntactically quite different from each other.

1 Introduction

It is common in mathematics to look for dualities; dualities may reveal underly-
ing structure and lead to simpler theories. In turn, dualities can be used to relate
different mathematical entities. In this work, our goal is to study dualities in the
typed π-calculus, and to exploit them to understand the possible relationships
between encodings of functions as π-calculus processes.

Reasoning about processes usually involves proving behavioural equivalences.
In the case of the π-calculus, there is a well-established theory of equivalences
and proof techniques. In some cases, it is necessary to work in a typed setting.
Types allow one to express constraints about the observations available to the
context when comparing two processes. One of the simplest and widely used
such discipline is given by input/output-types [SW01] — i/o-types in the sequel.

In the π-calculus (simply called π below), the natural form of duality comes
from the symmetry between input and output. There are several variants of
π where processes can be ‘symmetrised’ by replacing inputs with outputs and
vice versa. The π-calculus with internal mobility, πI [San96], is a subcalculus of
π where only bound outputs are allowed (a bound output, that we shall note
a(x).P , is the emission of a private name x on some channel a). In πI, duality can
be expressed at an operational level, by exchanging (bound) inputs and bound
outputs: the dual of a(x).x(y).0 is a(x).x(y).0.

Other well-known variants of π with dualities are the calculi in the fusion
family [PV98,Fu97,GW00]. In fusions, a construct for free input acts as the dual
of the free output construct of π, and the calculus has only one binder, restriction.
Interaction on a given channel has the effect of fusing (that is, identifying) names.

The discipline of simple types can be adapted both to πI and to fusions,
while preserving dualities. The situation is less clear for i/o-types, which can

be very useful to establish equivalences between processes. Let us give some
intuitions about why it is so. In i/o-types, types are assigned to channels and
express capabilities : a name of type oT can be used only to emit values of type
T , and similarly for the input capability (iT). This is expressed by the following
typing rules for i/o-types in π:

Γ ⊢ a : iT Γ, x : T ⊢ P

Γ ⊢ a(x).P

Γ ⊢ a : oT Γ ⊢ b : T Γ ⊢ P

Γ ⊢ ab.P

The rule for input can be read as follows: process a(x).P is well-typed provided
(i) the typing environment, Γ , ensures that the input capability on a can be
derived, and (ii) the continuation of the input can be typed in an environment
where x is used according to T . The typing rule for output checks that (i) the
output capability on a is derivable, (ii) the emitted value, b, has the right type,
and (iii) the continuation P can be typed. As an example, a : i(iT) ⊢ a(x).xt.0
cannot be derived, because only the input capability is received on a, which
prevents xt.0 from being typable.

I/o-types come with a notion of subtyping, that makes it possible to relate
type ♯T (which stands for both input and output capabilities) with input and
output capabilities (in particular, we have ♯T ≤ iT and ♯T ≤ oT). We stress
an asymmetry between the constraints attached to the transmitted name in the
two rules above. Indeed, while in a reception we somehow enforce a “contract”
on the usage of the received name, in the rule for output this is not the case: we
can use subtyping in order to derive type, say, iU for b when typechecking the
output, while b’s type can be ♯U when typechecking the continuation P .

The starting point of this work is the conflict between the asymmetry inher-
ent to i/o-types and the symmetries we want to obtain via duality. For example
i/o-types can be adapted to πI, but duality cannot be applied to the resulting
typings. In fusion calculi, the conflict with the asymmetry of i/o-types is even
more dramatic. Indeed, subtyping in i/o-types is closely related to substitution,
since replacing a name with another makes sense only if the latter has a more
general type. Fusions are intuitively substitutions operating in both directions,
which leaves no room for subtyping. In work in preparation [HMS12], we investi-
gate this relationship between subtyping and substitution, and compare several
variants of existing calculi, including the one presented in this paper.

In this paper, in order to work in a setting that provides a form of duality and
where i/o-types can be used, we introduce a calculus named π (Section 2). π is an
extension of π with constructs for free input and bound output (note that bound
output is not seen as a derived construct in π). In π, we rely on substitutions
as the main mechanism at work along interactions. To achieve this, we forbid
interactions involving a free input and a free output: the type system rules out
processes that use both kinds of prefixes on the same channel.

Calculus π contains π, and any π process that can be typed using i/o-types
can be typed in exactly the same way in π. Moreover π contains a ‘dualised’
version of π: one can choose to use some channels in free input and bound output.

For such channels, the typing rules intuitively enforce a ‘contract’ on the usage
of the transmitted name on the side of the emitter (dually to the typing rules
presented above). We show how π can be related to π, by translating π into a
variant of the π-calculus with i/o-types in a fully abstract way. This result shows
that π and π are rather close in terms of expressiveness.

We also define a notion of typed barbed congruence in π, which allows us
to validate at a behavioural level the properties we have mentioned above: two
processes are equivalent if and only if their duals are. To our knowledge, no
existing calculus with i/o-types enjoys this form of duality for behaviours.

As an application of π, its dualities, and its behavioural theory, we use π
to relate two encodings of call-by-name λ-calculus. The first one is the ordinary
encoding by Milner [Mil92], the second one is by van Bakel and Vigliotti [vBV09].
The two encodings are syntactically quite different. Milner’s is input-based, in
that an abstraction interacts with its environment via an input. In contrast, van
Bakel and Vigliotti’s is output-based. Moreover, only the latter makes use of link
processes, that is, forwarders that under certain conditions act as substitutions.

Van Bakel and Vigliotti actually encode strong call-by-name — reductions
may also take place inside a λ-abstraction. We therefore compare van Bakel and
Vigliotti’s encoding with the strong variant of Milner’s encoding, obtained by
replacing an input with a delayed input, following [Mer00] (in a delayed input
a(x):P , the continuation P may perform transitions not involving the binder x
even when the head input at a has not been consumed).

We exploit π (in fact the extension of π with delayed input) to prove that the
two encodings are the dual of one another. This is achieved by first embedding
the π-terms of the λ-encodings into π, and then applying behavioural laws of π.
The correctness of these transformations is justified using i/o-types (essentially
to express the conditions under which a link can be erased in favour of a substi-
tution). Some of the transformations needed for the λ-encodings, however, are
proved in this paper only for barbed bisimilarity; see the concluding section for
a discussion.

Paper outline. Section 2 introduces π, and presents its main properties. To
analyse dualities in encodings of λ into π, in Section 3, we extend π, notably
with delayed prefixes. As the addition of these constructs is standard, they are
omitted from the original syntax so to simplify the presentation. Section 4 gives
concluding remarks.

2 π, a symmetric π-calculus

In this section, we present π, a π-calculus with i/o-types that enjoys duality
properties. We define the syntax and operational semantics for π processes in
Section 2.1, introduce types and barbed congruence in Section 2.2, establish
duality in Section 2.3, and present results relating π and π in Section 2.4.

2.1 Syntax and Operational Semantics

We consider an infinite set of names, ranged over using a, b, . . . , x, y, The
syntax of π is as follows:

P ::= 0 | P |P | !P | α.P | (νa)P α ::= ρb | ρ(x) ρ ::= a | a

π differs from the usual π-calculus by the presence of the free input ab and bound
output a(x) prefixes. Note that in π, the latter is not a notation for (νx)ax.P ,
but a primitive construct. These prefixes are the symmetric counterpart of ab
and a(x) respectively. Given a process P , fn(P) stands for the set of free names
of P — restriction, bound input and bound output are binding constructs. Given
ρ of the form a or a, n(ρ) is defined by n(a) = n(a) = a.

Structural congruence is standard, and defined as in π (in particular, there are
no axioms involving prefixes). The reduction laws allow communication involving
two prefixes only if at least one of them is bound :

ab.P | a(x).Q → P | Q[b/x] P → Q if P ≡→≡ Q
ab.P | a(x).Q → P | Q[b/x] (νa)P → (νa)Q if P → Q

a(x).P | a(x).Q → (νx)(P | Q) P | R → Q | R if P → Q

Note that ab | ac is a process of π that has no reduction; this process is ruled
out by the type system presented below.

2.2 Types and Behavioural Equivalence

Types are a refinement of standard i/o-types: in addition to capabilities (ranged
over using c), we annotate types with sorts (s), that specify whether a name can
be used in free input (sort e) or in free output (r) — note that a name cannot
be used to build both kinds of free prefixes.

T ::= csT | 1 c ::= i | o | ♯ s ::= e | r

If name a has type crT , we shall refer to a as an r-name, and similarly for e.
The subtyping relation is the smallest reflexive and transitive relation ≤

satisfying the rules of Figure 1. As in the π-calculus ir is covariant and or is
contravariant. Dually, ie is contravariant and oe is covariant. Note that sorts (e,
r) are not affected by subtyping.

The type system is defined as a refinement of input/output types, and is
given by the rules of Figure 2. There is a dedicated typing rule for every kind of
prefix (free, ρb, or bound, ρ(x)), according to the sort of the involved name. We
write Γ (a) for the type associated to a in Γ . T↔ stands for T where we switch
the top-level capability: (csT)↔ = csT where o = i, i = o, ♯ = ♯. The typing rules
for r-names impose a constraint on the receiving side: all inputs on an r-channel
should be bound. Note that a(x).P and (νx)ax.P are not equivalent from the
point of view of typing: typing a bound output on an r-channel (a) imposes
that the transmitted name (x) is used according to the “dual constraint” w.r.t.

♯
s

T ≤ i
s

T ♯
s

T ≤ o
s

T

T1 ≤ T2

i
r

T1 ≤ i
r

T2

T1 ≤ T2

o
r

T2 ≤ o
r

T1

T1 ≤ T2

i
e

T2 ≤ i
e

T1

T1 ≤ T2

o
e

T1 ≤ o
e

T2

Fig. 1. Subtyping

Γ ⊢ a : irT Γ, x : T ⊢ P

Γ ⊢ a(x).P

Γ ⊢ a : ieT Γ, x : T↔ ⊢ P

Γ ⊢ a(x).P

Γ ⊢ a : oeT Γ, x : T ⊢ P

Γ ⊢ a(x).P

Γ ⊢ a : orT Γ, x : T↔ ⊢ P

Γ ⊢ a(x).P

Γ ⊢ a : ieT Γ ⊢ b : T Γ ⊢ P

Γ ⊢ ab.P

Γ ⊢ a : orT Γ ⊢ b : T Γ ⊢ P

Γ ⊢ ab.P

Γ, a : T ⊢ P

Γ ⊢ (νa)P

Γ ⊢ P Γ ⊢ Q

Γ ⊢ P | Q

Γ ⊢ P

Γ ⊢ !P Γ ⊢ 0

Γ (a) ≤ T

Γ ⊢ a : T

Fig. 2. π: Typing rules

what a’s type specifies: this is enforced using T↔ (while names received on a
are used according to T). Symmetrical considerations can be made for e-names,
that impose constraints on the emitting side.

We write Γ ⊢ P,Q when both Γ ⊢ P and Γ ⊢ Q can be derived.

Remark 1 (“Double contract”). We could adopt a more liberal typing for bound
outputs on r names, and use the rule

Γ ⊢ a : orT Γ, x : T ′ ⊢ P T ′ ≤ T

Γ ⊢ a(x).P

(and its counterpart for inputs on e-names). This would have the effect of typ-
ing a(x).P like (νx)ax.P . We instead chose to enforce what we call a “double
contract”: the same way a receiving process uses the bound name according to
the type specified in the channel that is used for reception, the continuation of a
bound output uses the emitted name according to T↔, the symmetrised version
of T . This corresponds to a useful programming idiom in π, where it is common
to create a name, transmit one capability on this name and use locally the other,
dual capability. This idiom is used e.g. in [Vas09] and in [SW01, Sect. 5.7.3]. This
choice moreover makes the proofs in Section 3.2 easier.

Observe that when a typable process reduces according to

a(x).P | a(x).Q → (νx)(P | Q) ,

if a has type, say, ♯r(osT), then in the right hand side process, name x is given
type ♯sT , and the ♯ capability is “split” into isT (used by P) and osT (used by
Q) — it would be the other way around if a’s sort were e.

Lemma 1 (Properties of typing).

1. (Weakening) If Γ ⊢ P then Γ, a : T ⊢ P .
2. (Strengthening) If Γ, a : T ⊢ P and a 6∈ fn(P) then Γ ⊢ P .
3. (Narrowing) If ∆ ≤ Γ and Γ ⊢ P then ∆ ⊢ P .
4. (Substitution) If Γ, x : T ⊢ P and Γ ⊢ b : T then Γ ⊢ P [b/x].

Proposition 1 (Subject reduction). If Γ ⊢ P and P → Q then Γ ⊢ Q.

Proof. By transition induction. Lemma 1 (4) is used when a bound prefix com-
municates with a free prefix; Lemma 1 (3) is used for the interaction between
two bound prefixes, since T and T↔ have a common subtype. ⊓⊔

Definition 1 (Contexts). Contexts are processes with one occurrence of the
hole, written [−]. They are defined by the following grammar:

C ::= [−] | C|P | P |C | !C | α.C | (νa)C .

Definition 2. Let Γ,∆ be typing environments. We say that Γ extends ∆ if the
support of ∆ is included in the support of Γ , and if ∆ ⊢ x : T entails Γ ⊢ x : T
for all x. A context C is a (Γ/∆)-context, written Γ/∆ ⊢ C, if C can be typed
in the environment Γ , the hole being well-typed in any context that extends ∆.

As a consequence of the previous definition and of Lemma 1, it is easy to
show that if ∆ ⊢ P and Γ/∆ ⊢ C, then Γ ⊢ C[P].

We now move to the definition of behavioural equivalence.

Definition 3 (Barbs). Given ρ ∈ {a, a}, where a is a name, we say that P
exhibits barb ρ, written P↓ρ, if P ≡ (νc1 . . . cn)(α.Q | R) where α ∈ {ρ(x), ρb}
with a 6∈ {c1, . . . , cn}. We extend the definition to weak barbs: P ⇓ρ stands for
P ⇒↓ρ where ⇒ is the reflexive transitive closure of →.

Definition 4 (Typed barbed congruence). Barbed bisimilarity is the largest
symmetric relation ≈̇ such that whenever P ≈̇Q, P ↓ρ implies Q ⇓ρ and P → P ′

implies Q ⇒ ≈̇P ′. When ∆ ⊢ P,Q, we say that P and Q are barbed congruent
at ∆, written ∆⊲ P ∼=c Q, if for all (Γ/∆)-context C, C[P] ≈̇ C[Q].

2.3 Duality

Definition 5 (Dual of a process). The dual of a process P , written P , is
the process obtained by transforming prefixes as follows: ab = ab, ab = ab,
a(x) = a(x), a(x) = a(x), and applying dualisation homeomorphically to the
other constructs.

Lemma 2 (Duality for reduction). If P → Q then P → Q.

Dualising a type means swapping i/o capabilities and e/r sorts.

Definition 6 (Dual of a type). The dual of T , written T , is defined by setting
csT = cs T , with r = e, e = r, i = o, and o = i. We extend the definition to typing
environments, and write Γ for the dual of Γ .

Lemma 3 (Duality for typing).

1. If T1 ≤ T2 then T1 ≤ T2.
2. If Γ ⊢ P then Γ ⊢ P .
3. If Γ/∆ ⊢ C then Γ/∆ ⊢ C.

Proof. (1): the covariant type operators (ir and oe) are dual of each other, and
so are the contravariant operators (or and ie). (2) follows from the shape of the
typing rules, e.g., the dual of the rule for ir is an instance of the rule for ir = oe.
(3) holds because if Φ extends ∆ then Φ extends ∆ (item (1)). ⊓⊔

Most importantly, duality holds for typed barbed congruence. The result is
easy in the untyped case, since duality preserves reduction and dualises barbs.
On the other hand, we are not aware of the existence of another system having
this property in presence of i/o-types.

Theorem 1 (Duality for ∼=c). If ∆⊲ P ∼=c Q then ∆⊲ P ∼=c Q.

Proof. By Lemma 3, we only have to prove that if P ≈̇Q then P ≈̇Q, i.e., duality
preserves reduction and swaps barbs. ⊓⊔

2.4 Embeddings between π and π

From π to πio. As explained in Section 1, the π-calculus with i/o-types (that we
note πio) is an asymmetric calculus. In some sense, π can be seen as a ‘dualisation’
of πio. This can be formulated rigorously by projecting π into πio. To define this
projection, which we call a partial dualisation, we work in an extended version
of πio, where capabilities are duplicated: in addition to the i, o, ♯ capabilities, we
also have capabilities i, o and ♯, that intuitively correspond to the image of the
“e-part” of π through the encoding. The additional capabilities act exactly like
the corresponding usual capabilities, in particular w.r.t. subtyping and duality.
We write πio

2
for the resulting calculus. We discuss below (Remark 3) to what

extent the addition of these capabilities is necessary. We also rely on πio

2
to

prove that π is a conservative extension of the π-calculus in Theorem 2 — πio

2

is actually close, operationally, to both calculi.

Definition 7 (Partial dualisation). We define a translation from typed pro-
cesses in π to πio

2
. The translation acts on typing derivations: given a derivation

δ of Γ ⊢ P (written δ :: Γδ ⊢ P), we define a πio

2
process noted [P]δ as follows:

[ρb.P]δ = ρb.[P]δ
′

if Γδ(n(ρ)) = ceT

[ρb.P]δ = ρb.[P]δ
′

if Γδ(n(ρ)) = crT

[ρ(x).P]δ = ρ(x).[P]δ
′

if Γδ(n(ρ)) = ceT

[ρ(x).P]δ = ρ(x).[P]δ
′

if Γδ(n(ρ)) = crT

[(νa)P]δ = [P]δ
′

[0]δ = 0 [!P]δ = ![P]δ
′

[P | Q]δ = [P]δ
′

1 | [Q]δ
′

2

In the above definition, δ′ is the subderivation of δ, in case there is only one,
and δ′

1
and δ′

2
are the obvious subderivations in the case of parallel composition.

We extend the definition to types: T ∗ stands for T where all occurrences of cr

(resp. ce) are replaced with c (resp. c, the dual of c). We define accordingly Γ ∗.

Remark 2. The same translation could be defined for a simply typed version of
π. Indeed, [·] does not depend on capabilities (i/o/♯), but only on sorts (r/e).

Lemma 4. If δ :: Γ ⊢ P (in π), then Γ ∗ ⊢ [P]δ (in πio

2
).

Proof. In moving from Γ to Γ ∗, we replace ie (resp. oe, ir, or) with o (resp. i,
i, o). This transformation preserves the subtyping relation. Moreover, the rules
to type prefixes ir, or, ie, oe in π correspond to the rules for i, o, o, i in πio

2
. ⊓⊔

Lemma 5. Whenever δ1 :: Γ ⊢ P and δ2 :: Γ ⊢ P , we have Γ ∗⊲ [P]δ1 ≃c [P]δ2 .

Proof. The relationR
△

= {([P]δ1 , [P]δ2) | δ1, δ2 ::Γ ⊢P} is a strong bisimulation
in π and is substitution-closed; hence R is included in ≃c, since [P]δi is typable
in Γ ∗ (by Lemma 4). ⊓⊔

Lemma 6. If δP :: Γ ⊢ P and δQ :: Γ ⊢ Q then we have the following:

1. (P and Q have the same barbs) iff ([P]δP and [Q]δQ have the same barbs)
2. if P → P ′ then [P]δP → [P ′]δ for some δ :: Γ ⊢ P ′.
3. if [P]δP → P1 then P1 = [P ′]δ with P → P ′ for some δ :: Γ ⊢ P ′.
4. P ≈̇ Q iff [P]δP ≈̇ [Q]δQ .

Proof. (4) is a consequence of (1), (2), (3). For (1) remark that if Γ (a) = crT
then P and [P]δP have the same barbs on a; if Γ (a) = ceT , they have dual barbs
on a, but in this case so do Q and [Q]δQ . For (2) and (3), we remark that [·]δ

is compositional and preserves the fact that two prefixes can interact — even
when moving to a different δ. ⊓⊔

Proposition 2 (Full abstraction). If δP :: Γ ⊢ P and δQ :: Γ ⊢ Q then

Γ ⊲ P ∼=c Q (in π) iff Γ ∗ ⊲ [P]δP ∼=c [Q]δQ (in πio

2
) .

Proof. Soundness: given a derivation γ :: ∆/Γ ⊢ C, we build [C]γ which is a
(∆∗/Γ ∗)-context. Then [C]γ [[P]δP] = [C[P]]βP for some βP and we can rely on
barbed congruence in πio

2
to establish [C[P]]βP ≈̇ [C[Q]]βQ . By Lemma 6, we

deduce C[P] ≈̇ C[Q].
Completeness: we define the reverse translation {·} of [·] and reason as above to
prove its soundness. Thanks to the fact that δP :: Γ ⊢ P implies {[P]δP }δ

∗

P = P
where δ∗P :: Γ ∗ ⊢ [P]δ is the derivation obtained by Lemma 4, the soundness of
{·} implies the completeness of [·] , and vice versa. ⊓⊔

Remark 3 (πio

2
vs πio). We can make two remarks about the above result.

First, it would seem natural to project directly onto πio, by mapping capabil-
ities ir and oe into i, and or and ie into o. However, the result of Proposition 2

would not hold in this case. The intuitive reason is that in doing so, we would
allow two names having different sorts in π to be equated in the image of the
encoding, thus giving rise to additional observations (since we cannot equate
names having different sorts in π). Technically, this question is reminiscent of
the problem of closure of bisimilarity under substitutions in the π-calculus.

Second, the key ingredient in the definition of partial dualisation is to preserve
the distinction between names having originally different sorts in the π process.
It is possible to define an encoding of πio

2
into a dyadic version of πio (without

the extra capabilities), in order to do so.

Lemma 7. Suppose ∆ ⊢ P,Q holds in πio.
Then ∆⊲ P ∼=c Q (in πio) iff ∆⊲ P ∼=c Q (in πio

2
).

Proof. The right-to-left implication is immediate because any πio-context is a
πio

2
-context. To show the converse, we observe that a (Γ/∆)-context in πio

2
is a

(Γ ′/∆)-context in πio, where Γ ′ is Γ where every c capability is replaced with c.

From πio to π. π contains πio, the π-calculus with i/o-types: the rules for r-
channels are exactly those of πio, and typability of e-free processes coincides with
typability in πio. More precisely we can say that π is a conservative extension
of πio. In πio we rely on typed barbed congruence as defined in [SW01], which
is essentially the same as ∼=c in π. Before presenting the result, the following
remark introduces some notation.

Remark 4. Suppose δ :: Γ ⊢ P , in πio. Then δr :: Γ r ⊢ P in π, where Γ r stands
for Γ in which all types are decorated with r and δr stands for δ where all usages
of the typing rule for restriction introduce an r-type. Moreover [P]δ

r

= P .

Theorem 2 (Conservative extension). Suppose Γ ⊢ P,Q holds in πio.
Then Γ ⊲ P ∼=c Q (in πio) iff Γ r ⊲ P ∼=c Q (in π).

Proof. We use πio

2
as an intermediate calculus. By Remark 4, let δP , δQ be deriva-

tions of Γ r ⊢ P and Γ r ⊢ Q such that P = [P]δP and Q = [Q]δQ . By Proposi-
tion 2, the right hand side is equivalent to (Γ r)∗ ⊲ [P]δP ∼=c [Q]δQ (in πio

2
). By

hypothesis, and since (Γ r)∗ = Γ , the latter is equivalent to Γ ⊲P ∼=c Q (in πio

2
).

Lemma 7 allows us to finish the proof. ⊓⊔

The result above shows that π can be embedded rather naturally into π. This is
in contrast with fusion calculi, where the equivalence on π-calculus terms induced
by the embedding into fusions does not coincide with a barbed congruence or
equivalence in the π-calculus.

Remark 5 (π and existing symmetric calculi). π contains the π-calculus, and
hence contains (the typed version of) πI, the π-calculus with internal mobility
(see [SW01]). On the other hand, because free inputs and free outputs are not
allowed to interact in π, π fails to represent the fusion calculus. As mentioned
above, we have not succeeded in defining a ‘symmetrical version’ of i/o-types
that would be suitable for fusions.

3 Application: Relating Encodings of the λ-calculus

In this section, we use π to reason about encodings of the (call-by-name) λ-
calculus into the π-calculus. To do so, we need to extend π (Section 3.1). We
then justify the validity of a transformation that makes use of link processes
in Section 3.2. Finally, we show how duality, together with the latter transfor-
mation, allows us to relate Milner’s encoding with the one of van Bakel and
Vigliotti.

3.1 Extending π

Based on π, we develop an extension, called πa, with forms of asynchronous
communication and polyadicity. The extension to polyadic communication is
standard. Asynchronous communication is added via the inclusion of delayed
prefixes: a(x):P (resp. a(x):P) stands for a (bound) delayed input (resp. output)
prefix. The intuition behind delayed prefixes is that they allow the continua-
tion of the prefix to interact, as long as the performed action is not causally
dependent on the prefix itself — this is made more precise below. Intuitively
asynchrony is useful when reasoning about encodings of the λ-calculus because
in a β-reduction (λx.M)N → M [N/x] the “output” part N has no continuation.
It is also useful to have asynchrony in input because the considered λ-strategy
allows reduction under a λ-abstraction. Moreover asynchrony allows us to derive
some transformation laws involving link processes (Section 3.2). Note that syn-
chronous prefixes are still necessary, to encode the argument of an application.

Delayed prefixes are typed like bound input and output prefixes in Section 2.
Types are refined with two new sorts that enforce asynchrony: d to force inputs
to be bound and delayed, a to force outputs to be bound and delayed — we call
such outputs asynchronous. For instance, if we have a : ♯r

d
T for some T , then all

inputs at a are bound and delayed. We also include recursive types.

T ::= ct〈
s1T1, . . . ,

sn Tn〉 | 1 | µX.T | X s ::= e | r t ::= d | a

In the polyadic case, e/r sorts are given to each element of the transmitted
tuple. We present here only the typing rule for delayed input, in polyadic form,
to illustrate how we extend the type system of Section 2.

Γ ⊢ a : it〈
s1T1, . . .

snTn〉 Γ, x1 : T s1
1
, . . . , xn : T sn

n ⊢ P

Γ ⊢ a(x1, . . . , xn):P

(with T r = T and T e = T↔). The sort d (resp. a) is forbidden in the rules to
type non-delayed input (resp. output) prefixes.

The definition of operational semantics is extended as follows to handle de-
layed prefixes (below, ρ(y)P stands for either ρ(y).P or ρ(y):P):

P | ρ(x):Q ≡ ρ(x):(P | Q) if x /∈ fn(P)
ρ1(y):ρ2(x):P ≡ ρ2(x):ρ1(y):P if n(ρ1) 6= x, x 6= y, y 6= n(ρ2)

(νy)ρ(x):P ≡ ρ(x):(νy)P if x 6= y, y 6= n(ρ)

ρ(x):(ρ(y)P | Q) → (νy)(P | Q)[y/x]
ρ(x):(ρb.P | Q) → (P | Q)[b/x]

ρ(x):P → ρ(x):Q if P → Q

Barbs are defined as in Section 2, with an additional clause saying that if ρ
is a barb of P and n(ρ) 6= x, then ρ is a barb of ρ′(x):P .

The results of Section 2 hold for this extended calculus, with similar proofs:

Proposition 3 (Duality, extended calculus).

1. Duality of typing: Γ ⊢ P ⇒ Γ ⊢ P .
2. Duality of barbed congruence: Γ ⊲ P ∼=c Q ⇒ Γ ⊲ P ∼=c Q.

The counterpart of Theorem 2 also holds in πa, which stands for the extended
calculus of this section, where types also specify how names have to be used in de-
layed prefixes. It can be stated w.r.t. πio,a, which is defined as πio with additional
typing information to specify which names have to be used asynchronously.

Theorem 3 (Conservative extension, extended calculus). Suppose we
have Γ ⊢ P,Q in πio,a. Then Γ ⊲P ∼=c Q (in πio,a) iff Γ r⊲P ∼=c Q (in πa) .

The extensions πa and πio,a are asynchronous versions of π and πio in the sense
that interaction is no longer a synchronous handshaking between two processes:
for at least one of the processes, the occurrence of the interaction is not observ-
able because the consumed action is not blocking for a continuation.

3.2 Reasoning about Links, a transformation from o
e

a
to i

r

a

The main result of this section is a technical lemma about the validity of a trans-
formation which is used for the analysis of λ-calculus encodings in Section 3.3.
A reader not interested in this result may safely skip this section.

Differently from partial dualisation (Definition 7), the transformation, writ-
ten 〈〈·〉〉er, modifies prefixes, beyond simple dualisation, by introducing link pro-
cesses. It also acts on types, by mapping e-names onto r-names.

Definition 8. We set 〈〈ab.P 〉〉er = a(x).(x _ b | 〈〈P 〉〉er), where x _ b =
!x(z).bz is called a link process. We also define 〈〈ρ(x).P 〉〉er = ρ(x).〈〈P 〉〉er and
similarly for delayed prefixes. 〈〈·〉〉er leaves free outputs unchanged and acts home-
omorphically on the other constructors.

The transformation 〈〈·〉〉er removes all free inputs and inserts free outputs (in the
link process). We therefore expect it to return plain π processes. Moreover, the
process computed in the translation of free input behaves as expected provided
only the input capability is transmitted (the link process at the receiver’s side
exerts the input capability on x). Accordingly, we define Toe = µX.oeaX =
oe
a
oe
a
oe
a
· · · , and Tir = µX.ir

a
X = ir

a
ir
a
ir
a
· · · . We let Γir (resp. Γoe) range over

environments mapping all names to some cr
a
Tir (resp. ce

a
Toe), for c ∈ {i, o, ♯}.

Lemma 8 (Typing for 〈〈·〉〉er). If Γoe ⊢ P then Γir ⊢ 〈〈P 〉〉er for some Γir.

Proof. We prove by induction on P that if Γ ⊢ P then Γ ⊢ 〈〈P 〉〉er. In the case
for ν we always introduce the type ♯raTir. For bound prefixes we replace ceaToe

with craTir, and for free inputs we type links with Tir types. ⊓⊔

As this result shows, 〈〈·〉〉er yields processes that only transmit the input
capability. This is reminiscent of the localised π-calculus [SW01] where only the
output capability is passed.

It can be noted that Lemma 8 holds because we enforce a “double contract”
in the typing rules (cf. Remark 1), which allows us to typecheck bound prefixes
as e-names (before the transformation) and as r-names (after).

The relationship between P and 〈〈P 〉〉er is given in terms of barbed expan-
sion precongruence, which is a preorder in between strong and weak barbed
congruence.

Definition 9 (Barbed expansion precongruence). Barbed expansion is the

largest relation .̇ such that whenever P .̇ Q,

– if P → P ′ then Q →⇒ Q′ with P ′ .̇ Q′;
– if Q → Q′ then P → P ′ or P = P ′ with P ′ .̇ Q′;
– P ↓ ρ implies Q ⇓ ρ, and Q ↓ ρ implies P ↓ ρ.

We call (resp. typed) barbed expansion precongruence (.c) the induced (resp.
typed) precongruence.

Lemma 9 (Properties of links).

1. a : iraTir, b : o
r

aTir ⊲ a _ b .c (νx)(a _ x | x _ b).
2. If Γoe, a : Toe ⊢ P then Γir ⊲ 〈〈P 〉〉er[b/a] .c (νa)(a _ b | 〈〈P 〉〉er).

Proof. 1. The law is valid for the ordinary π-calculus (and is substitution-closed);
Lemma 3 transfers the result to π.

2. By typing, a free output involving a in 〈〈P 〉〉er is necessarily in a link; in
this case, we can use (1). The other kind of interaction is with some a(x):Q in
〈〈P 〉〉er, and b(x):Q[b/a] behaves like (νa)(a _ b | a(x):Q[b/a]). ⊓⊔

We use Lemma 9 to deduce operational correspondence.

Lemma 10 (Operational correspondence). Suppose that Γoe ⊢ P .

1. P ↓ ρ iff 〈〈P 〉〉er ↓ ρ.
2. If P → P ′ then 〈〈P 〉〉er →&c 〈〈P ′〉〉er.
3. If 〈〈P 〉〉er → P1 then P → P ′ and P1 &c 〈〈P ′〉〉er for some P ′.

A version of these results in the weak case can also be proved, for barbed ex-
pansion. Notably, P and 〈〈P 〉〉er exhibit the same weak barbs.

Lemma 11. If Γoe ⊢ P,Q then P ≈̇ Q iff 〈〈P 〉〉er ≈̇ 〈〈Q〉〉er.

Proof. We show that &̇{(〈〈P 〉〉er, 〈〈Q〉〉er) | P ≈̇ Q}.̇ and {(P,Q) | 〈〈P 〉〉er ≈̇
〈〈Q〉〉er} are weak barbed bisimulations. We then use the adaptation of Lemma 10
to the weak case, for barbed expansion. ⊓⊔

Lemma 12. If Γoe ⊢ P,Q and Γir ⊲ 〈〈P 〉〉er ∼=c 〈〈Q〉〉er then Γoe ⊲ P ∼=c Q.

Proof. We define a type system with marks on types, such that only Tir-types
are marked. The marking propagates onto the names of the typed processes.
We modify the encoding 〈〈·〉〉er to only operate on marked prefixes. For every
(∆/Γoe)-context C, its encoding 〈〈C〉〉er is a (∆′/Γir)-context. Thanks to the
compositionality of 〈〈·〉〉er, the hypothesis of the lemma implies the equivalence
〈〈C[P]〉〉er ≈̇ 〈〈C[Q]〉〉er. We then adapt the proof of Lemma 11 to this marked
encoding. ⊓⊔

3.3 An analysis of van Bakel and Vigliotti’s encoding

As announced in Section 1, we start from an adaptation of Milner’s call-by-name
(cbn) encoding of [Mil92] to strong cbn, which also allows reductions to occur
under λ. We obtain this by using a delayed prefix in the clause for λ-abstraction.
The encoding, noted J·KM, is defined as follows:

JxKMp = xp Jλx.MKMp = p(x, q):JMKMq

JMNKMp = (νq)
(

JMKMq | (νx)(q〈x, p〉 | !x(r).JNKMr)
)

The other encoding we analyse, taken from [vBV09], is written J·KB:

JxKBp = x(p′):p′ _ p Jλx.MKBp = p(x, q):JMKBq

JMNKBp = (νq)
(

JMKBq | q(x, p′).(p′ _ p | !x(r).JNKBr)
)

Note that J·KB is written in [vBV09] using asynchronous free output and restric-
tion instead of delayed bound output. We can adopt this more concise notation
since (νx)(ax | P) and a(x):P are strongly bisimilar processes, and similarly
for x(p′):p′ _ p and x(p′).p′ _ p. (Another difference is that the replication
in the encoding of the application is guarded, as in [vBV10], to force a tighter
operational correspondence between reductions in λ and in the encodings.)

As remarked above, J·KB and J·KM differ considerably because they engage
in quite different dialogues with their environments: in J·KM a function receives
its argument via an input, in J·KB it interacts via an output. Differences are also
visible in the encodings of variables and application (e.g. the use of links).

To compare the encodings J·KM and J·KB, we introduce an intermediate en-
coding, noted J·KI , which is defined as the dual of J·KM (in π):

JxKIp = xp Jλx.MKIp = p(x, q):JMKIq

JMNKIp = (νq)
(

JMKIq | (νx)(q〈x, p〉 | !x(r).JNKIr)
)

Note that while J·KM and J·KB can be expressed in π, J·KI uses free input, and
does thus not define π-calculus processes.

The three encodings given above are based on a similar usage of names. Two
kinds of names are used: we refer to names that represent continuations (p, p′, q, r
in the encodings) as handles, and to names that stand for λ-calculus parameters
(x, y, z) as λ-variables. Here is how these encodings can be typed in π:

Lemma 13 (Typing the encodings). J·KM, J·KB and J·KI yield processes
which are typable with the respective typing environments ΓM, ΓB, ΓI , where:

– ΓM types λ-variables with or
a
H and handles with H = µX.ir

d
〈or

a
X,X〉;

– ΓB uses respectively ir
d
G and or

a
〈or

d
G,G〉 where G = µY.ir

a
〈or

d
Y, Y 〉;

– ΓI is the dual of ΓM (that is, it uses ie
d
H and H = µZ.oea〈i

e

d
Z,Z〉).

Encoding J·KI can be obtained from J·KM by duality. The only difference be-
tween J·KI and J·KB is the presence of two links. We rely on a link transformation
similar to the one of Section 3.2 to move from J·KI to J·KB. Thus, by composing
the results on duality and on the transformation, we are able to go from J·KM

to J·KB.

Proposition 4. Given two λ-terms M and N , we have JMKMp ≈̇ JNKMp if and

only if JMKBp ≈̇ JNKBp (both equivalences are in πio,a).

Proof. By duality, JMKMp ≈̇ JNKMp iff JMKIp ≈̇ JNKIp . To establish that this is

equivalent to JMKBp ≈̇ JNKBp , we rely on an adaptation of Lemma 11. For this,
we define a transformation that exploits the ideas presented in Section 3.2. In
particular, handles (p, p′, q, r) are treated like in Definition 8. The handling of λ-
variables (x, y, z) is somehow orthogonal, and raises no major difficulty, because
such names are always transmitted as bound (fresh) names. ⊓⊔

Remark 6 (Call by name). To forbid reductions under λ-abstractions, we could
adopt Milner’s original encoding, and use an input prefix instead of delayed
input in the translation of abstractions. Accordingly, adapting Van Bakel and
Vigliotti’s encoding to this strategy would mean introducing a free input prefix
— which is rather natural in π, but is not in the π-calculus.

4 Concluding remarks

We have presented several properties of π, and established relationships with the
π-calculus with i/o-types (πio).

The calculus π enjoys properties of dualities while being “large”, in the sense
that it incorporates many of the forms of prefix found in dialects of the π-calculus
(free input, bound input, and, in the extension in Section 3.1, also delayed input,
plus the analogue for outputs), and a non-trivial type system based on i/o-types.
This syntactic abundance makes π a possibly interesting model in which to study
various forms of dualities. This is exemplified in our study of encodings of the
λ-calculus, where we have applied π and its theory to explain a recent encoding
of cbn λ-calculus by van Bakel and Vigliotti: it can be related, via dualities, to
Milner’s encoding.

It would be interesting to strengthen the full abstraction in Lemma 11 from
barbed bisimilarity to barbed congruence. This would allow us to replace barbed
bisimilarity with typed barbed congruence in Proposition 4 as well (using the
type environments of Lemma 13). While we believe the result to be true, the

proof appears difficult because the link transformation modifies both processes
and types, so that the types needed for barbed congruence in the two encodings
are different. Therefore also the sets of contexts to be taken into account are
different. The problem could be tackled by combining the theory on delayed
input and the link bisimilarity in [MS04], and adapting it to a typed setting.

We plan to further investigate the behavioural theory of π, and study in
particular other transformations along the lines of Section 3.2, where link pro-
cesses are used to implement substitutions. It would be interesting to provide
general results on process transformations in terms of links, when the direction
and the form of the links vary depending on the types of the names involved.
Currently we only know how to handle them when the calculus is asynchronous
and localised [MS04].

As already mentioned, another interesting issue is how to accommodate i/o-
types into πI and fusion calculi while maintaining the dualities of the untyped
calculi.

Acknowledgments. This work was supported by the french ANR projects Recre,
2009-BLAN-0169-02 Panda, and 2010-BLAN-0305-01 PiCoq.

References

[Fu97] Y. Fu. The χ-calculus. In Proc. of APDC’97, pages 74–81. IEEE Computer
Society Press, 1997.

[GW00] P. Gardner and L. Wischik. Explicit fusions. In Proc. of MFCS, volume 1893
of LNCS, pages 373–382. Springer-Verlag, 2000.

[HMS12] D. Hirschkoff, J.M. Madiot, and D. Sangiorgi. On subtyping in symmetric
versions of the π-calculus. In preparation, 2012.

[Mer00] M. Merro. Locality in the pi-calculus and applications to distributed objects.
PhD thesis, École des Mines, France, 2000.

[Mil92] R. Milner. Functions as processes. Mathematical Structures in Computer

Science, 2(2):119–141, 1992.
[MS04] M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. Mathe-

matical Structures in Computer Science, 14(5):715–767, 2004.
[PV98] J. Parrow and B. Victor. The fusion calculus: expressiveness and symmetry

in mobile processes. In Proc. of LICS, pages 176 –185. IEEE, 1998.
[San96] D. Sangiorgi. π-calculus, internal mobility, and agent-passing calculi. In

Selected papers from TAPSOFT ’95, pages 235–274. Elsevier, 1996.
[SW01] D. Sangiorgi and D. Walker. The Pi-Calculus: a theory of mobile processes.

Cambridge University Press, 2001.
[Vas09] V. T. Vasconcelos. Fundamentals of session types. In Proc. of SFM, volume

5569 of LNCS, pages 158–186. Springer, 2009.
[vBV09] S. van Bakel and M. G. Vigliotti. A logical interpretation of the λ-calculus into

the π-calculus, preserving spine reduction and types. In Proc. of CONCUR,
volume 5710 of LNCS, pages 84–98. Springer, 2009.

[vBV10] S. van Bakel and M. G. Vigliotti. Implicative logic based encoding of the
λ-calculus into the π-calculus, 2010. From http://www.doc.ic.ac.uk/ svb/.

