
CTL: A Platform-Independent Crypto Tools

Library Based on Dataflow Programming
Paradigm�

Junaid Jameel Ahmad1,��, Shujun Li1,2, Ahmad-Reza Sadeghi3,4,
and Thomas Schneider3

1 University of Konstanz, Germany
2 University of Surrey, UK
3 TU Darmstadt, Germany
4 Fraunhofer SIT, Germany

Abstract. The diversity of computing platforms is increasing rapidly.
In order to allow security applications to run on such diverse platforms,
implementing and optimizing the same cryptographic primitives for mul-
tiple target platforms and heterogeneous systems can result in high costs.
In this paper, we report our efforts in developing and benchmarking a
platform-independent Crypto Tools Library (CTL). CTL is based on
a dataflow programming framework called Reconfigurable Video Coding
(RVC), which was recently standardized by ISO/IEC for building compli-
cated reconfigurable video codecs. CTL benefits from various
properties of the RVC framework including tools to 1) simulate the
platform-independent designs, 2) automatically generate implementa-
tions in different target programming languages (e.g., C/C++, Java,
LLVM, and Verilog/VHDL) for deployment on different platforms as
software and/or hardware modules, and 3) design space exploitation
such as automatic parallelization for multi- and many-core systems. We
benchmarked the performance of the SHA-256 implementation in CTL
on single-core target platforms and demonstrated that implementations
automatically generated from platform-independent RVC applications
can achieve a run-time performance comparable to reference implemen-
tations manually written in C and Java. For a quad-core target platform,
we benchmarked a 4-adic hash tree application based on SHA-256 that
achieves a performance gain of up to 300% for hashing messages of size
8 MB.

Keywords: Crypto Tools Library (CTL), Reconfigurable Video Coding
(RVC), dataflow programming, reconfigurability, platform independence,
multi-core.

� Extended edition of this paper is available at http://eprint.iacr.org/2011/679.
�� Junaid Jameel Ahmad and Shujun Li were partially supported by the Zukunftskolleg

of the University of Konstanz, Germany, which is part of the “Excellence Initiative”
program of the DFG (German Research Foundation). The first author would like
to thank International Financial Cryptography Association (IFCA) and Google Re-
search for awarding him the “Google Student Award”, which covered his registration
fees to FC 2012 and associated workshops.

A.D. Keromytis (Ed.): FC 2012, LNCS 7397, pp. 299–313, 2012.
c© International Financial Cryptography Association 2012

http://eprint.iacr.org/2011/679


300 J.J. Ahmad et al.

1 Introduction

Nowadays we are living in a fully digitized and networked world. The ubiq-
uitous transmission of data over the open network has made security one of
the most important concerns in almost all modern digital systems, being pri-
vacy another. Both security and privacy concerns call for support from applied
cryptography. However, the great diversity of today’s computing hardware and
software platforms is creating a big challenge for applied cryptography since we
need building blocks that should ideally be reused at various platforms without
reprogramming. For instance, a large-scale video surveillance system (like those
we have already been seeing in many big cities) involves many different kinds
of hardware and software platforms: scalar sensors, video sensors, audio sensors,
mobile sensors (e.g. mobile phones), sensor motor controller, storage hub, data
sink, cloud storage servers, etc. [11]. Supporting so many different devices in
a single system or cross the boundary of multiple systems is a very challeng-
ing task. Many cryptographic libraries have been built over the years to partly
meet this challenge, but most of them are written in a particular programming
language (e.g. C, C++, Java and VHDL) thus their applications are limited in
nature. While it is always possible to port a library written in one language
to the other, the process requires significant human involvement on reprogram-
ming and/or re-optimization, which may not be less easier than designing a new
library from scratch.

In this paper, we propose to meet the above-mentioned technical challenges by
building a platform-independent1 library based on a recently-established ISO /
IEC standard called RVC (Reconfigurable Video Coding) [33, 34]. Unlike its
name suggests, the RVC standard offers a general development framework for
all data-driven systems including cryptosystems, which is not surprising because
video codecs are among the most complicated data-driven systems we can have.
The RVC framework follows the dataflow paradigm, and enjoys the following
nice features at the level of programming language: modularity, reusability, re-
configuration, code analyzability and parallelism exploitability. Modularity and
reusability help to simplify the design of complicated programs by having func-
tionally separated and reusable computational blocks; reconfigurability makes
reconfiguration of complicated programs easier by offering an interface to con-
figure and replace computational blocks; code analyzability allows automatic
analysis of both the source code and the functional behavior of each compu-
tational block so that code conversion and program optimization can be done
in a more systematic manner. The automated code analysis enables to conduct
a fully-/semi-automated design-space exploitation to find critical paths and/or
parallel data-flows, which suggests different optimization refactorings (merging
or splitting) of different computational blocks [43], and/or to achieve concurrency

1 In the context of MPEG RVC framework, the word “platform” has a broader mean-
ing. Basically, it denotes any computing environment that can execute/interpret code
or compile code to produce executable programs, which includes both hardware and
software platforms and also hybrid hardware-software systems.



CTL: A Platform-Independent Crypto Tools Library 301

by mapping different computational blocks to different computing resources [20].
In contrast to the traditional sequential programming paradigm, the dataflow
programming paradigm is ideally suited for such optimizations thanks to its
data-driven nature as described next.

The dataflow programming paradigm, invented in the 1960s [61], allows pro-
grams to be defined as a directed graph in which the nodes correspond to com-
putational units and edges represent the direction of the data flowing among
nodes [25,40]. The modularity, reusability and reconfigurability are achieved by
making each computational unit’s functional behavior independent of other com-
putational units. In other words, the only interface between two computational
units is the data exchanged. The separation of functionality and interface allows
different computational units to run in parallel, thus easing parallelism exploita-
tion. The dataflow programming paradigm is suited ideally for applications with
a data-driven nature like signal processing systems, multimedia applications, and
as we show in this paper also for cryptosystems.

Our Contributions: In this paper, we present the Crypto Tools Library (CTL)
as the first (to the best of our knowledge) open and platform-independent cryp-
tographic library based on a dataflow programming framework (in our case the
RVC framework). In particular, the CTL achieves the following goals:

– Fast development/prototyping: By adapting the dataflow programming
paradigm the CTL components are inherently modular, reusable, and easily
reconfigurable. These properties do not only help to quickly develop/prototype
security algorithms but also make their maintenance easier.

– Multiple target languages: The CTL cryptosystems are programmed
only once, but can be used to automatically generate source code for multi-
ple programming languages (C, C++, Java, LLVM, Verilog, VHDL, XLIM,
and PROMELA at the time for this writing2).

– Automatic code analyzability and optimization:An automated design-
space exploitation process can be performed at the algorithmic level, which
can help to optimize the algorithmic structure by refactoring (merging or
splitting) selected computational blocks, and by exploiting multi-/many-core
computing resources to run different computational blocks in parallel.

– Hardware/Software co-design:Heterogenous systems involving software,
hardware, and various I/O devices/channels can be developed in the RVC
framework [62].

– Adequate run-time performance: AlthoughCTLcryptosystemsarehigh-
ly abstract programs, the run-time performance of automatically synthesized
implementations is still adequate compared to non-RVC reference implemen-
tations.

In this paper, along with the development of the CTL itself, we report some
performance benchmarking results of CTL that confirm that the highly abstract

2 More code generation backends are to be developed in the future, especially OpenCL
for GPUs.



302 J.J. Ahmad et al.

nature of the RVC code does not compromise the run-time performance. In
addition, we also briefly discuss how different key attributes of the RVC frame-
work can be used to develop different cryptographic algorithms and security
applications.

Outline: The rest of the paper is organized as follows. In Sec. 2 we will give
a brief overview of related work, focusing on a comparison between RVC and
other existing dataflow solutions. Sec. 3 gives an overview of the building blocks
of the RVC framework and Sec. 4 describes the design principles of CTL and
the cryptosystems that are already implemented. In Sec. 5, we benchmark the
performance of SHA-256 implemented in CTL on a single-core machine and a
quad-core one. In Sec. 6, we conclude the paper by giving directions for future
works.

2 Related Work

Many cryptographic libraries have been developed over the years (e.g., [16,24,30,
41,46,56,57,63,64]), but very few can support multiple programming languages.
Some libraries do support more than one programming language, but often in the
form of separate sets of source code and separate programming interfaces/APIs
[63], or available as commercial software only [8, 41]. There is also a large body
of optimized implementations of cryptosystems in the literature [17,18,21,44,45,
55, 67], which normally depend even more on the platforms (e.g., the processor
architecture and/or special instruction sets [28, 45, 66, 67]).

Despite being a rather new standard, the RVC framework has been success-
fully used to develop different kinds of data-driven systems especially multimedia
(video, audio, image and graphics) codecs [12–14,19,35] and multimedia security
applications [10]. In [10], we highlighted some challenges being faced by develop-
ers while building multimedia security applications in imperative languages and
discussed how those challenges can be addressed by developing multimedia secu-
rity applications in the RVC framework. In addition, we presented three multi-
media security applications (joint H.264/MPEG-4 video encoding and decoding,
joint JPEG image encoding and decoding and compressed domain JPEG image
watermark embedding and detecting) developed using the CTL cryptosystems
and the RVC implementations of H.264/MPEG-4 and JPEG codecs. Consider-
ing the focus of that paper, we only used and briefly summarized CTL. In this
paper, we give a detailed discussion on CTL, its design principles, features and
benefits, and performance benchmarking results.

The wide usage of RVC for developing multimedia applications is not the only
reason why we chose it for developing CTL. A summary of advantages of RVC
over other solutions is given in Table 1 (this is an extension of the table in [10]).
We emphasize that this comparison focuses on the features relevant to achieve
the goals of CTL, so it should not be considered as an exhaustive overview of
all pros and cons of the solutions compared.



CTL: A Platform-Independent Crypto Tools Library 303

Table 1. Comparison of RVC framework with other candidate solutions. Candidates
with similar characteristics are grouped together. These categories include 1) high-level
specification languages for hardware programming languages, 2) frameworks for hard-
ware/software co-design, 3) commercial products, and 4) other cryptographic libraries.
The columns in the table represent the following features: A) high-level (abstract)
modeling and simulation; B) platform independence; C) code analyzability (i.e., semi-
automated design-space exploitation); D) hardware code generation; E) software code
generation; F) hardware/software co-design; G) supported target languages; H) open-
source or free implementations; I) international standard.

Cat. Candidate A B C D E F G H I

RVC ✓ ✓ ✓ ✓ ✓ ✓

C, C++, Java, LLVM,
Verilog, VHDL, XLIM,

PROMELA
✓ ✓

1 Handel-C [39] ✗ ✗ ✗ ✓ ✗ ✗ VHDL ✗ ✗

ImpulseC [15] ✗ ✗ ✗ ✓ ✗ ✓ VHDL ✗ ✗

Spark [29] ✗ ✗ ✗ ✓ ✗ ✓ VHDL ✗ ✗

2 BlueSpec [49] ✓ ✗ ✓ ✓ ✓ ✗ C, Verilog ✗ ✗

Daedalus [65] ✓ ✓ ✓ ✓ ✓ ✓ C, C++, VHDL ✓ ✗

Koski [38] ✓ ✓ ✓ ✓ ✓ ✓ C, XML, VHDL ✗ ✗

PeaCE [31] ✓ ✓ ✓ ✓ ✓ ✓ C, C++, VHDL ✓ ✗

3 CoWare [58] ✓ ✓ ✗ ✓ ✓ ✓ C, VHDL ✗ ✗

Esterel [1] ✗ ✓ ✗ ✓ ✓ ✗ C, VHDL ✓ ✗

LabVIEW [3] ✓ ✓ ✓ ✗ ✗ ✗ - ✗ ✗

Simulink [4] ✓ ✓ ✓ ✓ ✓ ✗ C, C++, Verilog, VHDL ✗ ✗

Synopsys System
Studio [7]

✓ ✓ ✓ ✓ ✓ ✓
C++, SystemC,
SystemVerilog

✗ ✗

4 CAO [9,47] ✓ ✓ ✗ ✗ ✓ ✗ C, x86-64 assembly, ARM ✗ ✗

Cryptol [8,41] ✓ ✓ ✓ ✓ ✓ ✗
C, C++, Haskell, VHDL,

Verilog
✗ ✗

3 Reconfigurable Video Coding (RVC)

The RVC framework was standardized by the ISO/IEC (via its working group
JTC1 / SG29 / WG11, better known as MPEG – Motion Picture Experts Group
[48]) to meet the technical challenges of developing more and more complicated
video codecs [33,34]. One main concern of the MPEG is how to make video codecs
more reconfigurable, meaning that codecs with different configurations (e.g.,
different video coding standards, different profiles and/or levels, different system
requirements) can be built on the basis of a single set of platform-independent
building blocks. To achieve this goal, the RVC standard defines a framework
that covers different steps of the whole life cycle of video codec development.
The RVC community has developed supporting tools [2, 5, 6] to make the RVC
framework not only a standard, but also a real development environment.



304 J.J. Ahmad et al.

While the RVC framework is developed in the context of video coding, it
is actually a general-purpose framework that can model any data-driven ap-
plications such as cryptosystems. It allows developers to work with a single
platform-independent design at a higher level of abstraction while still being
able to generate multiple editions of the same design that target different plat-
forms like embedded systems, general-purpose PCs, and FPGAs. In principle,
the RVC framework also supports hardware-software co-design by converting
parts of a design into software and other parts into hardware. Additionally, the
RVC framework is based on two languages that allow automatic code analysis
to facilitate large-scale design-space exploitation like enhancing parallelism of
implementations running on multi-core and many-core systems [14, 20, 43].

The RVC standard is composed of two parts: MPEG-B Part 4 [34] and MPEG-
C Part 4 [33]. MPEG-B Part 4 specifies the dataflow framework for design-
ing and/or reconfiguring video codecs, and MPEG-C Part 4 defines a video
tool library that contains a number of Functional Units (FUs) as platform-
independent building blocks of MPEG standard compliant video codecs [33].
To support the RVC dataflow framework, MPEG-B Part 4 specifies three differ-
ent languages: a dataflow programming language called RVC-CAL for describing
platform-independent FUs, an XML dialect called FNL (FU Network Language)
for describing connections between FUs, and another XML dialect called RVC-
BSDL for describing the syntax format of video bitstreams. RVC-BSDL is not
involved in this work, so we will not discuss it further.

The real core of the RVC framework is RVC-CAL, a general-purpose dataflow
programming language for specifying platform-independent FUs. RVC-CAL is a
subset of an existing dataflow programming language CAL (Caltrop Actor Lan-
guage) [26]. In RVC-CAL, FUs are implemented as actors containing a number of
fireable actions and internal states. In the RVC-CAL’s term, the data exchanged
among actors are called tokens. Each actor can contain both input and output
port(s) that receive input token(s) and produce output token(s), respectively. Each
action may fire depending on four different conditions: 1) input token availability;
2) guard conditions; 3) finite-state machine based action scheduling; 4) action pri-
orities. In RVC-CAL, actors are the basic functional entities that can run in par-
allel, but actions in an actor are atomic, meaning that only one action can fire at
one time. This structure gives a balance between modularity and parallelism, and
makes automatic analysis of actor merging/splitting possible.

Figure 1 illustrates how an application can be modeled and how target im-
plementations can be generated with the RVC framework. At the design stage,
different FUs (if not implemented in any standard library) are first written in
RVC-CAL to describe their I/O behavior, and then an FU network is built to
represent the functionality of a whole application. The FU network can be built
by simply connecting all FUs involved graphically via a supporting tool called
Graphiti Editor [2], which translates the graphical FU network description into
a textual description written in FU Network Language (FNL). The FUs and the
FU network are instantiated to form an abstract model. This abstract model
can be simulated to test its functionality without going to any specific platform.



CTL: A Platform-Independent Crypto Tools Library 305

Design Stage

Model Instantiation: 
Selection of FUs and 

Parameter Assignment Tool Library
(RVC-CAL

F i l U i

Application Description
(FU Network Description)

Abstract Model
(FNL + RVC-CAL)

Functional Units
(FUs))

Implementation Stage

Application Implementation
Automatic code generation to 

C/C++, Java, LLVM, 
VHDL/Verilog etc.

Tool Library 
Implementation

Input Data Application Solution Output Data

Fig. 1. Process of application implementation generation in the RVC framework

Two available supporting tools allowing the simulation are OpenDF [5] and
ORCC [6]. At the implementation stage, the source code written in other target
programming languages can be generated from the abstract application descrip-
tion automatically. OpenDF includes a Verilog HDL code generation backend,
and ORCC contains a number of code generation backends for C, C++, Java,
LLVM, VHDL, XLIM, and PROMELA. ORCC is currently more widely used in
the RVC community and it is also the choice of our work reported in this paper.

4 Crypto Tools Library (CTL)

Crypto Tools Library (CTL) is a collection of RVC-CAL actors and XDF net-
works for cryptographic primitives such as block ciphers, stream ciphers, cryp-
tographic hash functions and PRNGs (see Sec. 4.2 for a list of currently imple-
mented algorithms). Being an open project, the source code and documentation
of CTL is available at http://www.hooklee.com/default.asp?t=CTL.

As mentioned in Sec. 1, most existing cryptographic libraries are developed
based on a single programming language (mostly C/C++ or Java) that can hardly
be converted to other languages. In contrast, CTL is a platform-independent solu-
tion whose source code is written in RVC-CAL and FNL that can be automatically
translated into multiple programming languages (C, C++, Java, LLVM, Verilog,
VHDL, XLIM, PROMELA). More programming languages can be supported by
developing new code generation tools for RVC applications.

4.1 Design Principles

The CTL is developed by strictly following the specifications/standards
defining the implemented cryptosystems. For block ciphers, both enciphers and

http://www.hooklee.com/default.asp?t=CTL


306 J.J. Ahmad et al.

deciphers are implemented so that a complete security solution can be built.
When it is possible, the CTL FUs are designed to exploit inherent parallelism in
the implemented cryptosystems. For instance, for block ciphers based on multi-
ple rounds, the round number is also transmitted among different FUs so that
encryption/decryption of different blocks can be parallelized.

The CTL is designed so that different cryptosystems can share common FUs.
We believe that this can help enhance code reusability and ease reconfigurability
of the CTL cryptosystems. In addition, CTL includes complete solutions (e.g.,
both encipher and decipher) of the implemented cryptosystems, normally a set
of CAL and XDF files.

4.2 Cryptosystems Covered

CTL contains some standard and frequently used cryptosystems. In the follow-
ing, we list the cryptosystems currently implemented in CTL. The correctness of
all cryptosystems has been validated using the test vectors given in the respective
standards.

– Block Ciphers:
• AES-128/192/256 [51],
• DES [50] and Triple DES [50, 52],
• Blowfish [59],
• Modes of operations: CBC, CFB, OFB, CTR.

– Stream Ciphers: ARC4 [60] and Rabbit [23].
– Cryptographic hash functions: SHA-1, SHA-2 (SHA-224, SHA-256) [53].
– PSNRs: 32-bit and 64-bit LCG [60] and LFSR-based PRNG [60].

CTL also includes some common utility FUs (e.g., multiplexing/demultiplex-
ing of dataflows, conversion of bytes to bits and vice versa etc.) that are shared
among different cryptosystems and can also find applications in non-cryptography
systems. Due to the space limitation, we refer the reader to the extended edition
of this paper for a list of the utility FUs and more discussions of the cryptosys-
tems implemented in CTL.

5 Performance Benchmarking of CTL

Previous work has demonstrated that the RVC framework can outperform other
sequential programming languages in terms of implementing highly complex
and highly parallelizable systems like video codecs [19]. However, there are still
doubts about if the high-level abstraction of RVC-CAL and the automated code
generation process may compromise the overall performance to some extent at
the platform level. In this section, we clarify those doubts by showing that the
automatically generated implementations from a typical RVC-based application
can usually achieve a performance comparable to manually-written implemen-
tations in the target programming language. This was verified on AES and
SHA-256 applications in CTL. In this section, we take SHA-256 as an example



CTL: A Platform-Independent Crypto Tools Library 307

Table 2. Configuration of the test machine

Machine Hardware and Operating System Details

Desktop PC: – Model: HP Centurion

– CPU: Intel(R) Core(TM)2 Quad CPU Q9550 2.83GHz

– Memory: 8GB RAM

– OS1: Windows Vista Business with Service Pack 2 (64-bit Edition)

– OS2: Ubuntu Linux (Kernel version: 2.6.27.11)

to show how we did the benchmarking on a single-core machine and a quad-core
one. The main purpose of getting the quad-core machine involved is to show
how easy one can divide an FU network and map different parts to different
cores to make a better use of the computing resources. In the given example, the
partitioning and mapping were both done manually, but they can be automated
for large applications thanks to the code analyzability of RVC-CAL.

Run-Time Performance Metric. We ran our experiments on both Microsoft
Windows and Linux OSs (see Table 2 for details). Both operating systems sup-
port high-resolution timers to measure time in nanoseconds. More specifically,
we used the QueryPerformanceCounter() and QueryPerformanceFrequency()

functions (available from Windows API) on Windows, and the clock gettime()

and clock getres() functions with CLOCK MONOTONIC clock (available from the
Higher Resolution Timer [22] package) on Linux. In addition, to circumvent the
caching problem, we conducted 100 independent runs (with random input data)
of each configuration and used the average value as the final performance metric.

The concrete specifications of our test machine can be found in Table 2. Due
to the multi-tasking nature of Windows and Linux operating systems, the bench-
marking result can be influenced by other tasks running in parallel. In order to
minimize this effect, we conducted all our experiments under the safe mode of
both OSs. We used Microsoft Visual Studio 2008 and GCC 4.3.2 as C compilers
for the Windows and the Linux operating systems, respectively. Both compil-
ers were configured to maximize the speed of generated executables. For Java
programs, we used Eclipse SDK 3.6.1 and Java(TM) SE Runtime Environment
(build 1.6.0 12-b04).

Benchmarking of SHA-256 on Single-Core Platform. In this subsection,
we present the results of benchmarking a single SHA-256 FU against some non-
RVC reference implementations in C (OpenSSL [64], OGay [27], and sphlib [56])
and Java (Java Cryptography Architecture (JCA) [54]). Figure 2 shows the re-
sults of our benchmarking under Windows operating system while our test ma-
chine was configured to run only one CPU core. One can see that the run-time
performance of CTL implementation is better than OpenSSL but inferior to
carefully optimized implementations (OGay and sphlib). In addition, the CTL’s
Java implementation of SHA-256 does not outperform the JCA implementation.



308 J.J. Ahmad et al.

1 2 3 4 5 6 7 8
7.5

8

8.5

9

9.5

10

Size of input data (MB)

P
er

fo
rm

an
ce

 (
T

im
e/

M
B

) 
m

s

sphlib
OpenSSL
OGay
CTL

(a) C Implementations

1 2 3 4 5 6 7 8
10

15

20

25

30

35

40

45

50

55

Size of input data (MB)

P
er

fo
rm

an
ce

 (
T

im
e/

M
B

) 
m

s

JCA

CTL

(b) Java Implementations

Fig. 2. Benchmarking of CTL’s SHA-256 implementation

This can probably be explained by the fact that the current edition of the ORCC
Java backend does not generate very efficient code. These results indicate that
the CTL’s SHA-256 implementation can achieve a performance similar to ref-
erence implementations. We also did similar benchmarking experiments on the
AES block cipher in CTL (included in the extended edition of the paper) and
came to a similar conclusion.

Benchmarking of SHA-256 on Multi-core Platform. On a platform with
multiple CPU cores, one can map different parts of an FU network to differ-
ent CPU cores so that the overall run-time performance of the application can
be improved. The C backend of the RVC supporting tool ORCC [6] supports
multi-core mapping, so one can easily allocate different FUs or FU sub-networks
to different CPU cores. To see how much benefit we can get from a multi-core
platform, we devised a very simple RVC application called HashTree that imple-
ments the following functionality using five hash H operations: given an input
signal x = x1 ‖ x2 ‖ x3 ‖ x4 consisting of four blocks xi, hash each block
hi = H(xi) and then output H(h1 ‖ h2 ‖ h3 ‖ h4). In our implementation of
HashTree, we instantiated H with SHA-256. By comparing this application with
the simple single-core SHA-256 application computing H on the same input (i.e.,
H(x1 ‖ x2 ‖ x3 ‖ x4)), we can roughly estimate the performance gain.

In the benchmarking process, we considered three different configurations:

– Single SHA-256: This configuration represents a single SHA-256 FU run-
ning on a single-core, which processes an input x and produces the hash. We
used this configuration as the reference point to evaluate the performance
gain of the following two configurations, which implement HashTree using
five SHA-256 instances.

– 5-thread with manual mapping: In this configuration, each SHA-256 in-
stance is programmatically mapped to run as a separate thread on a specific
CPU core of our quad core machine. At the start of the hashing process,
we manually mapped the four threads (processing hi = H(xi)) to four CPU
cores. The fifth thread performing the final hashing operation is created and
mapped after the preceding four threads are finished with their execution.



CTL: A Platform-Independent Crypto Tools Library 309

1 2 3 4 5 6 7 8
80

100

120

140

160

180

200

220

Size of input data (MB)

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

One thread, manual mapping
Five threads, manual mapping

(a) Windows

1 2 3 4 5 6 7 8
50

100

150

200

250

300

350

400

Size of input data (MB)

P
er

fo
rm

an
ce

 G
ai

n 
(%

)

One thread, manual mapping
Five threads, manual mapping

(b) Linux

Fig. 3. The performance gain we got from the benchmarked configurations

– 1-thread with manual mapping: Similar to the above configuration, this
configuration also implements HashTree. However, all five SHA-256 instances
are bounded to run in a single thread on a specific CPU core of our quad
core machine.

It should be noted that thread creation and mapping also consume some CPU
time, which is the cost one has to pay to achieve concurrency. Therefore, in order
to make the study judicial, we also count the times spent on thread creation and
thread mapping. The benchmarking results are shown in Fig. 3. One can see
that the performance gain is between 200% to 300% when five threads are used.

6 Future Work

In order to allow researchers from different fields to extend CTL and use it
for more applications, we have published CTL as an open-source project at
http://www.hooklee.com/default.asp?t=CTL. In our future work, we plan to
continue our research on the following possible directions.

Cryptographic Primitives. The CTL can be enriched by including more cryp-
tographic primitives (especially public-key cryptography), which will allow cre-
ation of more multimedia security applications and security protocols. Another
direction is to develop optimized versions of CTL cryptosystems. For instance,
bit slicing can be used to optimize parallelism in many block ciphers [28, 45].

Security Protocols. Another direction is to use the RVC framework for the de-
sign and development of security protocols and systems with heterogenous com-
ponents and interfaces.While RVC itself is platform independent, “wrappers” [62]
can be developed to bridge the platform-independent FUs with physical I/O de-
vices/channels (e.g., a device attached to USB port, a host connected via LAN/
WLAN, a website URL, etc.). Although there are many candidate protocols that
can be considered, as a first step we plan to implement the hPIN/hTAN e-banking
security protocol [42], which is a typical (but small-scale) heterogeneous system in-
volving a hardware token, a web browser plugin on the user’s computer, and a web
service running on the remote e-banking server. We have already implemented an

http://www.hooklee.com/default.asp?t=CTL


310 J.J. Ahmad et al.

hPIN/hTAN prototype system without using RVC, so the new RVC-based imple-
mentation can be benchmarked against the existing system.

Cryptographic Protocols. Many cryptographic protocols require a high amount of
computations. One example are garbled circuit protocols [68] that allow secure
evaluation of an arbitrary function on sensitive data. These protocols can be
used as basis for various privacy-preserving applications. At a high level, the
protocol works by one party first generating an encrypted form of the function
to be evaluated (called garbled circuit) which is then sent to the other party who
finally decrypts the function using the encrypted input data of both parties and
finally obtains the correct result. Recent implementation results show that such
garbled circuit based protocols can be implemented in a highly efficient way
in software [32]. However, until now, there exist no software implementations
that exploit multi-core architectures. It was shown that such protocols can be
optimized when using both software and hardware together: For generation of
the garbled circuit, a trusted hardware token can generate the garbled circuit
locally and hence remove the need to transfer it over the Internet [36]. Here, the
encrypted versions of the gates which require four invocations of a cryptographic
hash function can be computed in parallel similar to the 4-adic hash tree we have
shown in Sec. 5. Furthermore, the evaluation of garbled circuits can be improved
when using hardware accelerations as shown in [37]. We believe that the RVC
framework can serve as an ideal basis for hardware-software co-designed systems
with parallelized and/or hardware-assisted garbled circuit-based protocols.

References

1. Esterel Synchronous Language, http://www-sop.inria.fr/esterel.org/files/
2. Graphiti, http://graphiti-editor.sf.net
3. LabVIEW, http://www.ni.com/labview/whatis/
4. Mathworks Simulink: Simulation and Model-Based Design,

http://www.mathworks.com/products/simulink/

5. Open Data Flow (OpenDF), http://sourceforge.net/projects/opendf
6. Open RVC-CAL Compiler (ORCC), http://sourceforge.net/projects/orcc
7. Synopsys Studio, http://www.synopsys.com/SYSTEMS/BLOCKDESIGN/

DIGITALSIGNALPROCESSING/Pages/SystemStudio.aspx

8. Cryptol: The Language of Cryptography. Case Study (2008),
http://corp.galois.com/downloads/cryptography/Cryptol_Casestudy.pdf

9. CAO and qhasm compiler tools. EU Project CACE deliverable D1.3, Re-
vision 1.1 (2011), http://www.cace-project.eu/downloads/deliverables-y3/

32 CACE D1.3 CAO and qhasm compiler tools Jan11.pdf

10. Ahmad, J.J., Li, S., Amer, I., Mattavelli, M.: Building multimedia security appli-
cations in the MPEG Reconfigurable Video Coding (RVC) framework. In: Proc.
2011 ACM SIGMM Multimedia and Security Workshop, MM&Sec 2011 (2011)

11. Akyildiz, I.F., Melodia, T., Chowdhury, K.R.: Wireless multimedia sensor net-
works: Applications and testbeds. Proc. IEEE 96(10), 1588–1605 (2008)

12. Ali, H.I.A.A., Patoary, M.N.I.: Design and Implementation of an Audio Codec
(AMR-WB) using Dataflow Programming Language CAL in the OpenDF Envi-
ronment. TR: IDE1009, Halmstad University, Sweden (2010)

http://www-sop.inria.fr/esterel.org/files/
http://graphiti-editor.sf.net
http://www.ni.com/labview/whatis/
http://www.mathworks.com/products/simulink/
http://sourceforge.net/projects/opendf
http://sourceforge.net/projects/orcc
http://www.synopsys.com/SYSTEMS/BLOCKDESIGN/DIGITALSIGNALPROCESSING/Pages/SystemStudio.aspx
http://www.synopsys.com/SYSTEMS/BLOCKDESIGN/DIGITALSIGNALPROCESSING/Pages/SystemStudio.aspx
http://corp.galois.com/downloads/cryptography/Cryptol_Casestudy.pdf
http://www.cace-project.eu/downloads/deliverables-y3/32_CACE_D1.3_CAO_and_qhasm_compiler_tools_Jan11.pdf
http://www.cace-project.eu/downloads/deliverables-y3/32_CACE_D1.3_CAO_and_qhasm_compiler_tools_Jan11.pdf


CTL: A Platform-Independent Crypto Tools Library 311

13. Aman-Allah, H., Maarouf, K., Hanna, E., Amer, I., Mattavelli, M.: CAL dataflow
components for an MPEG RVC AVC baseline encoder. J. Signal Processing Sys-
tems 63(2), 227–239 (2011)

14. Amer, I., Lucarz, C., Roquier, G., Mattavelli, M., Raulet, M., Nezan, J., Déforges,
O.: Reconfigurable Video Coding on multicore: An overview of its main objectives.
IEEE Signal Processing Magazine 26(6), 113–123 (2009)

15. Antola, A., Fracassi, M., Gotti, P., Sandionigi, C., Santambrogio, M.: A novel
hardware/software codesign methodology based on dynamic reconfiguration with
Impulse C and CoDeveloper. In: Proc. 2007 3rd Southern Conference on Pro-
grammable Logic, SPL 2007, pp. 221–224 (2007)

16. Barbosa, M., Noad, R., Page, D., Smart, N.P.: First steps toward a cryptography-
aware language and compiler. Cryptology ePrint Archive: Report 2005/160 (2005),
http://eprint.iacr.org/2005/160.pdf

17. Bernstein, D.J., Schwabe, P.: New AES Software Speed Records. In: Chowdhury,
D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 322–336.
Springer, Heidelberg (2008)

18. Bertoni, G., Breveglieri, L., Fragneto, P.,Macchetti,M.,Marchesin, S.: Efficient Soft-
ware Implementation of AES on 32-Bit Platforms. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 159–171. Springer, Heidelberg
(2003)

19. Bhattacharyya, S., Eker, J., Janneck, J.W., Lucarz, C., Mattavelli, M., Raulet,
M.: Overview of the MPEG Reconfigurable Video Coding framework. J. Signal
Processing Systems 63(2), 251–263 (2011)

20. Boutellier, J., Gomez, V.M., Silvén, O., Lucarz, C., Mattavelli, M.: Multiprocessor
scheduling of dataflow models within the Reconfigurable Video Coding framework.
In: Proc. 2009 Conference on Design and Architectures for Signal and Image Pro-
cessing, DASIP 2009 (2009)

21. Canright, D., Osvik, D.A.: A More Compact AES. In: Jacobson Jr., M.J., Rijmen,
V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 157–169. Springer,
Heidelberg (2009)

22. Corbet, J.: The high-resolution timer (API) (2006), http://lwn.net/Articles/
167897

23. Cryptico A/S: Rabbit stream cipher, performance evaluation. White Pa-
per, Version 1.4 (2005), http://www.cryptico.com/DWSDownload.asp?File=Files
%2FFiler%2FWP%5FRabbit%5FPerformance%2Epdf

24. Dai, W.: Crypto++ library, http://www.cryptopp.com
25. Dennis, J.: First Version of a Data Flow Procedure Language. In: Robinet, B.

(ed.) Programming Symposium. LNCS, vol. 19, pp. 362–376. Springer, Heidelberg
(1974)

26. Eker, J., Janneck, J.W.: CAL language report: Specification of the CAL actor
language. Technical Memo UCB/ERL M03/48, Electronics Research Laboratory,
UC Berkeley (2003)

27. Gay, O.: SHA-2: Fast Software Implementation, http://www.ouah.org/ogay/sha2
28. Grabher, P., Großschädl, J., Page, D.: Light-Weight Instruction Set Extensions for

Bit-Sliced Cryptography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS,
vol. 5154, pp. 331–345. Springer, Heidelberg (2008)

29. Gupta, S., Dutt, N., Gupta, R., Nicolau, A.: SPARK: A high-level synthesis frame-
work for applying parallelizing compiler transformations. In: Proc. 2003 16th In-
ternational Conference on VLSI Design, VLSI Design 2003 (2003)

30. Gutmann, P.: Cryptlib, http://www.cs.auckland.ac.nz/~pgut001/cryptlib

http://eprint.iacr.org/2005/160.pdf
http://lwn.net/Articles/167897
http://lwn.net/Articles/167897
http://www.cryptico.com/DWSDownload.asp?File=Files%2FFiler%2FWP%5FRabbit%5FPerformance%2Epdf
http://www.cryptico.com/DWSDownload.asp?File=Files%2FFiler%2FWP%5FRabbit%5FPerformance%2Epdf
http://www.cryptopp.com
http://www.ouah.org/ogay/sha2
http://www.cs.auckland.ac.nz/~pgut001/cryptlib


312 J.J. Ahmad et al.

31. Ha, S., Kim, S., Lee, C., Yi, Y., Kwon, S., Joo, Y.P.: PeaCE: A hardware-software
codesign environment for multimedia embedded systems. ACM Trans. on Design
Automation of Electronic Syststems 12(3), Article 24 (2007)

32. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: Proc. 20th USENIX Security Symposium (2011)

33. ISO/IEC: Information technology – MPEG video technologies – Part 4: Video tool
library. ISO/IEC 23002-4 (2009)

34. ISO/IEC: Information technology - MPEG systems technologies - Part 4: Codec
configuration representation. ISO/IEC 23001-4 (2009)

35. Janneck, J., Miller, I., Parlour, D., Roquier, G., Wipliez, M., Raulet, M.: Synthe-
sizing hardware from dataflow programs: An MPEG-4 Simple Profile decoder case
study. J. Signal Processing Systems 63(2), 241–249 (2011)

36. Järvinen, K., Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Embedded SFE: Of-
floading Server and Network Using Hardware Tokens. In: Sion, R. (ed.) FC 2010.
LNCS, vol. 6052, pp. 207–221. Springer, Heidelberg (2010)

37. Järvinen, K., Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Garbled Circuits for
Leakage-Resilience: Hardware Implementation and Evaluation of One-Time Pro-
grams. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
383–397. Springer, Heidelberg (2010)

38. Kangas, T., Kukkala, P., Orsila, H., Salminen, E., Hännikäinen, M., Hämäläinen,
T.D., Riihimäki, J., Kuusilinna, K.: UML-based multiprocessor SoC design frame-
work. ACM Trans. on Embedded Compututer Systems 5, 281–320 (2006)

39. Khan, E., El-Kharashi, M.W., Gebali, F., Abd-El-Barr, M.: Applying the Handel-
C design flow in designing an HMAC-hash unit on FPGAs. Computers and Digital
Techniques 153(5), 323–334 (2006)

40. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9),
1235–1245 (1987)

41. Lewis, J.R., Martin, B.: Cryptol: High assurance, retargetable crypto development
and validation. In: Proc. 2003 IEEE Military Communication Conference, MIL-
COM 2003, pp. 820–825 (2003)

42. Li, S., Sadeghi, A.-R., Heisrath, S., Schmitz, R., Ahmad, J.J.: hPIN/hTAN: A
Lightweight and Low-Cost E-Banking Solution against Untrusted Computers. In:
Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 235–249. Springer, Heidelberg
(2012)

43. Lucarz, C., Mattavelli, M., Dubois, J.: A co-design platform for algo-
rithm/architecture design exploration. In: Proc. 2008 IEEE International Confer-
ence on Multimedia and Expo., ICME 2008, pp. 1069–1072 (2008)

44. Manley, R., Gregg, D.: A Program Generator for Intel AES-NI Instructions. In:
Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 311–327.
Springer, Heidelberg (2010)

45. Matsui, M., Nakajima, J.: On the Power of Bitslice Implementation on Intel Core2
Processor. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 121–134. Springer, Heidelberg (2007)

46. Moran, T.: The Qilin Crypto SDK: An open-source Java SDK for rapid prototyping
of cryptographic protocols, http://qilin.seas.harvard.edu/

47. Moss, A., Page, D.: Bridging the gap between symbolic and efficient AES imple-
mentations. In: Proc. 2010 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, PEPM 2010, pp. 101–110 (2010)

48. Moving Picture Experts Group (MPEG): Who we are,
http://mpeg.chiariglione.org/who_we_are.htm

http://qilin.seas.harvard.edu/
http://mpeg.chiariglione.org/who_we_are.htm


CTL: A Platform-Independent Crypto Tools Library 313

49. Nikhil, R.: Tutorial – BlueSpec SystemVerilog: Efficient, correct RTL from high-
level specifications. In: Proc. 2nd ACM/IEEE International Conference on Formal
Methods and Models for Co-Design, MEMOCODE 2004, pp. 69–70 (2004)

50. NIST: Data Encryption Standard (DES). FIPS PUB 46-3 (1999)
51. NIST: Specification for the Advanced Encryption Standard (AES). FIPS PUB 197

(2001)
52. NIST: Recommendation for the Triple Data Encryption Algorithm (TDEA) block

cipher. Special Publication 800-67, Version 1.1 (2008)
53. NIST: Secure Hash Standard (SHS). FIPS PUB 180-3 (2008)

54. OracleR©: Java
TM

Cryptography Architecture (JCA) Reference Guide.
http://download.oracle.com/javase/6/docs/technotes/guides/security/

crypto/CryptoSpec.html

55. Osvik, D.A., Bos, J.W., Stefan, D., Canright, D.: Fast Software AES Encryption.
In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 75–93. Springer,
Heidelberg (2010)

56. Pornin, T.: sphlib 3.0, http://www.saphir2.com/sphlib
57. PureNoise Ltd Vaduz: PureNoise CryptoLib, http://cryptolib.com/crypto
58. Rompaey, K.V., Verkest, D., Bolsens, I., Man, H.D.: CoWare – a design environ-

ment for heterogeneous hardware/software systems. Design Automation for Em-
bedded Systems 1(4), 357–386 (1996)

59. Schneier, B.: Description of a New Variable-Length Key, 64-bit Block Cipher (Blow-
fish). In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 191–204. Springer,
Heidelberg (1994)

60. Schneier, B.: Applied Cryptography: Protocols, algorithms, and source code in C,
2nd edn. John Wiley & Sons, Inc., New York (1996)

61. Sutherland, W.R.: The On-Line Graphical Specification of Computer Procedures.
Ph.D. thesis. MIT (1966)

62. Thavot, R., Mosqueron, R., Dubois, J., Mattavelli, M.: Hardware synthesis of com-
plex standard interfaces using CAL dataflow descriptions. In: Proc. 2009 Confer-
ence on Design and Architectures for Signal and Image Processing, DASIP 2009
(2009)

63. The Legion of the Bouncy Castle: Bouncy Castle Crypto APIs,
http://www.bouncycastle.org

64. The OpenSSL Project: OpenSSL cryptographic library, http://www.openssl.org/
docs/crypto/crypto.html

65. Thompson, M., Nikolov, H., Stefanov, T., Pimentel, A.D., Erbas, C., Polstra, S.,
Deprettere, E.F.: A framework for rapid system-level exploration, synthesis, and
programming of multimedia MP-SoCs. In: Proc. 5th IEEE/ACM International
Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS
2007, pp. 9–14 (2007)

66. Tillich, S., Großschädl, J.: Instruction Set Extensions for Efficient AES Implemen-
tation on 32-bit Processors. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 270–284. Springer, Heidelberg (2006)

67. Tillich, S., Herbst, C.: Boosting AES Performance on a Tiny Processor Core. In:
Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 170–186. Springer, Heidelberg
(2008)

68. Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th Annual Sympo-
sium on Foundations of Computer Science, FOCS 1986, pp. 162–167 (1986)

http://download.oracle.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
http://www.saphir2.com/sphlib
http://cryptolib.com/crypto
http://www.bouncycastle.org
http://www.openssl.org/docs/crypto/crypto.html
http://www.openssl.org/docs/crypto/crypto.html

	CTL: A Platform-Independent Crypto Tools
Library Based on Dataflow Programming Paradigm
	Introduction
	Related Work
	Reconfigurable Video Coding (RVC)
	Crypto Tools Library (CTL)
	Design Principles
	Cryptosystems Covered

	Performance Benchmarking of CTL
	Future Work
	References





