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Abstract. We design an algorithm for finding solutions with nonzero
coordinates of systems of polynomial equations which has a better com-
plexity bound than for known algorithms when a system contains a few
linearly independent monomials. For parametric binomial systems we
construct an algorithm of polynomial complexity. We discuss the appli-
cations of these algorithms in the context of chemical reaction systems.
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1 Introduction

We study systems of polynomial equations with a few linearly independent mono-
mials. To find solutions with nonzero coordinates of such systems we design in
Sect. 2 an algorithm which makes use of a combination of the multiplicative
structure on the monomials with the additive structure emerging from the lin-
ear equations on monomials called Gale duality and which was used in [1] for
improving Khovanskii’s bound on the number of real solutions of systems of
fewnomials. This combination allows one to diminish the number of variables,
being crucial since the latter brings the greatest contribution into the complex-
ity of solving systems of polynomial equations. Moreover, the designed algorithm
allows one to look for positive real solutions that is important in the applications
to mass-action kinetics [2–7].

Note that the designed algorithm has a better complexity bound than the
one just employing the known general methods for solving systems of polynomial
equations [8, 9] or inequalities [10]. So more, it has better complexity bounds than
the methods relying on Gröbner bases [11] or involutive divisions [12] which have
double-exponential complexity upper and lower bound [13].



In Sect. 3 we expose an algorithm finding solutions of parametrical binomial
systems with nonzero coordinates and parameters within polynomial complexity
which invokes computing the Smith canonical form of an integer matrix. Such
systems also emerge in mass-action kinetics. Similar to Sect. 2 the algorithm
allows one to look for positive real solutions. The polynomial complexity cannot
be achieved using the general methods for solving systems of polynomial equa-
tions or, respectively, inequalities (as well as the Gröbner or involutive bases
because the example of generators of an ideal from [13] with double-exponential
complexity consists just of binomials).

In [14] a polynomial complexity algorithm is designed to test whether a bi-
nomial system has a finite number of affine solutions (including ones with zero
coordinates). On the other hand, it is proved in [14] that the problem of counting
the number of affine solutions of a binomial system is #P -complete. We observe
also that the problem of testing whether a system of binomial equations ex-
tended by linear equations (being customary in biochemical reactions networks)
has a positive solution, is NP-hard. Indeed, adding to a system of binomials
xi · yi = 1, 1 ≤ i ≤ n in 2 · n variables linear equations xi + yi = 5/2, 1 ≤ i ≤ n
and a single linear equation in the variables x1, . . . , xn, we arrive to the knapsack
problem.

Potential applications of these algorithms in the context of chemical reaction
networks are discussed in Sect. 4. We also expose a computational example there.

As a related work we mention also [15] where an algorithm for solving systems
of quadratic inequalities is designed with the complexity bound being good when
the number of inequalities is rather small.

2 Polynomial Systems with a Few Linearly Independent
Monomials

Any system of polynomial equations can be represented in a form

A · Y = 0 (1)

where A = (ak,j), 1 ≤ k ≤ l, 1 ≤ j ≤ m is a matrix, and Y = (Yj), 1 ≤ j ≤ m
is a vector of monomials Yj = X

yj,1
1 · · ·Xyj,n

n in the variables X1, . . . , Xn. An al-
gorithm designed in this Section searches for solutions of (1) with non-vanishing
coordinates x1, . . . , xn ∈ (Q)∗ := Q \ {0}. The condition of non-vanishing co-
ordinates is not too restrictive for the purposes of mass-action kinetics since in
the latter one looks usually for solutions with positive real coordinates. Assume
that yj,i ≤ d, 1 ≤ j ≤ m, 1 ≤ i ≤ n, and that the entries ak,j ∈ Z are integers,
therein |ak,j | ≤ M . The assumption on ak,j to be integers is adopted just for
the sake of simplifying complexity bounds, one could consider by the same token
algebraic entries ak,j ∈ Q.

The considered form of systems of polynomial equations appears, in par-
ticular, in the study of stationary solutions of the dynamical equations of the
mass-action kinetics [2–4, 6, 7].



In general, the algorithm solving systems (1) (with or without imposing the
condition of non-vanishing coordinates of solutions) has complexity bound poly-

nomial in l, dn
2

, logM [8, 9]. In this paper we suggest an algorithm for solving
systems with the complexity being better than in general when the difference
r := m− rk(A) is small enough.

The solutions of system (1) depend on r parameters Z1, . . . , Zr. One can thus
express monomials Yj =

∑
1≤k≤r uj,k · Zk, 1 ≤ j ≤ m with suitable rationals

uj,k ∈ Q.
One can bring the matrix y := (yj,i) to the Smith canonical form. Namely,

one can find integer square matrices B = (bα,β) of size m ×m and C = (cγ,δ)
of the size n × n such that det(B) = det(C) = 1, and the matrix V = (vj,i) :=
ByC, 1 ≤ j ≤ m, 1 ≤ i ≤ n has the following form. The only non-vanishing
entries vj,i are on the diagonal vj,j 6= 0, 1 ≤ j ≤ p where p := rk(y). More-
over, v1,1|v2,2| · · · |vp,p, although we will not make use of this extra property
on divisibility. The complexity of constructing matrices B, C is polynomial in
n, m, log d [16]; moreover, one can make its parallel complexity poly-logarithmic
[17]. In particular, |bα,β |, |cγ,δ| ≤ (d ·min{n,m})O(min{n,m}).

Consider polynomials fs =
∏

1≤j≤m Y
bs,j
j ∈ Q[Z1, . . . , Zr], 1 ≤ s ≤ m. Then

deg(fs) ≤ m·(d·min{n,m})O(min{n,m}). The input system (1) has a solution over
(Q)∗ iff system of equations fp+1 = · · · = fm = 1 and inequality f1 · · · fp 6= 0 has
a solution in Z1, . . . , Zr over Q. In particular, among fp+1, . . . , fm the polynomial
fq = Yq, p < q ≤ m occurs when the monomial Yq equals 1 identically (provided
that the monomial 1 is among the monomials Y1, . . . , Ym). The latter yields an
equation (fq =)

∑
1≤k≤r uq,k · Zk = 1. One can find the irreducible components

of the constructible set of solutions of the latter system using [8, 9]. Any solution
(z1, . . . , zr) of the latter system provides a solution of the input system as follows.

Denote the monomials Wt :=
∏

1≤i≤nX
ct,i
i , 1 ≤ t ≤ n. Then equalities

W
vt,t
t = ft, 1 ≤ t ≤ p impose the conditions on Wt, 1 ≤ t ≤ p, while

Wp+1, . . . ,Wn can be chosen as arbitrary non-zeros. Finally, having W1, . . . ,Wn,
one can come back to X1, . . . , Xn by means of the matrix C−1.

Sometimes, in the applications to chemistry one looks for positive real solu-
tions X1 > 0, . . . , Xn > 0 of the input system (1) [3, 4, 6, 7]. The latter is equiv-
alent to W1 > 0, . . . ,Wn > 0. This imposes the condition ft > 0, 1 ≤ t ≤ p and
one can solve the system of inequalities ft > 0, 1 ≤ t ≤ p, fp+1 = · · · = fm = 1
over the reals with the help of [10]. After that Wt, 1 ≤ t ≤ p are obtained
uniquely from the equations W

vt,t
t = ft, 1 ≤ t ≤ p, while Wp+1 > 0, . . . ,Wn > 0

can be chosen in an arbitrary way. Finally, we can summarize the results.

Proposition 1. One can design an algorithm which finds the irreducible com-
ponents of the constructible set of solutions with non-vanishing coordinates
x1, . . . , xn of a system of polynomial equations (1) within complexity polyno-

mial in l, n, m, (d · min{n,m})O(min{n,m})·r2 , logM . Moreover, the algorithm
can find positive real solutions of (1) also within the same complexity bound.

Note that this complexity bound is better than the bound polynomial in
l, dn

2

, logM from [8–10] when r is significantly smaller than n. As usually, the



practical complexity bounds are apparently better than the established a priori
bounds, especially when the complexity of bringing to the Smith form being
small.

Remark 1. Using indeterminates Z1, . . . , Zr in a similar way to our proposal has
been done by several authors, see e.g. [2, 3] and references therein. Also using
the Smith normal form has been proposed in [2] as well as [3] (in addition to
using logarithms or the Hermite normal form), but for computations the Hermite
normal form or Gröbner basis methods have been used in these papers. Hence
although several parts of our proposed algorithms have been around for the
special case of chemical reaction networks for several years, but nevertheless in
addition to the complexity analysis also our proposed algorithm seems to be new
in its full form.

3 Parametric Binomial Systems

Now suppose that a matrix A at each of its rows contains at most two non-
vanishing entries, and moreover every entry is a monomial of the form β ·KE :=
β ·Ke1

1 · · ·K
eq
q . Herein β ∈ Q and K1, . . . ,Kq play the role of parameters. Such

parametric systems appear in the applications to mass-action kinetics [18, 3,
4, 6, 7]. In other words, each equation of (1) can be viewed as a binomial in
the variables X1, . . . , Xn, K1, . . . ,Kq. We pose a question, for which non-zero
values of K1, . . . ,Kq the system (1) has a solution in non-vanishing x1, . . . , xn?
Alternatively, for which positive real values of K1, . . . ,Kq the system (1) has a
positive real solution?

Rewrite now the system (1) of l binomials in the form

XGj = βj ·KHj , 1 ≤ j ≤ l (2)

where XGj := X
gj,1
1 · · ·Xgj,n

n , KHj := K
hj,1
1 · · ·Khj,q

q . The algorithm brings the
matrix G := (gj,i), 1 ≤ j ≤ l, 1 ≤ i ≤ n to the Smith canonical form. Thus, the
algorithm yields integer unimodular matrices B′, C ′ such that B′ · G · C ′ is in
the Smith canonical form. Let s := rk(G) and the only non-vanishing entries of
B′ · G · C ′ be its first s diagonal entries g′1,1, . . . , g

′
s,s. Denote B′ =: (b′j,α), 1 ≤

j, α ≤ l and γj ·KH′
j :=

∏
1≤α≤l(βα ·KHα)b

′
j,α .

The system (2) for given non-zero K1, . . . ,Kq has a solution in non-zero
X1, . . . , Xn iff

γj ·KH′
j = 1, s+ 1 ≤ j ≤ l (3)

In its turn, solvability of (2) in positive real solutions X1, . . . , Xn for positive
real K1, . . . ,Kq imposes extra conditions β1 > 0, . . . , βl > 0.

For non-zero values of parameters K1, . . . ,Kq satisfying (3) one can find

monomials
∏

1≤i≤nX
c′µ,i
i , 1 ≤ µ ≤ s, where the matrix C ′ =: (c′µ,i), 1 ≤ µ, i ≤ n,

from the equations (
∏

1≤i≤nX
c′µ,i
i )g

′
µ,µ = γµ · KH′

µ , 1 ≤ µ ≤ s, while the non-

zero values of the monomials
∏

1≤i≤nX
c′µ,i
i , s + 1 ≤ µ ≤ n are chosen in an



arbitrary way. Then the algorithm uniquely findsX1, . . . , Xn from the monomials∏
1≤i≤nX

c′µ,i
i , 1 ≤ µ ≤ n with the help of the matrix (C ′)−1. Respectively, for

positive real K1, . . . ,Kq to get positive real X1, . . . , Xn one chooses the positive

values of the monomials
∏

1≤i≤nX
c′µ,i
i , s+ 1 ≤ µ ≤ n in an arbitrary way.

To describe the conditions on non-zero K1, . . . ,Kq satisfying (3), the algo-
rithm brings (l − s) × q matrix H ′ := (h′j,α), s + 1 ≤ j ≤ l, 1 ≤ α ≤ q, where
the vector H ′j =: (h′j,α), 1 ≤ α ≤ q, to the Smith canonical form. Thus, the
algorithm yields integer unimodular matrices B′′ = (b′′j,δ), s+ 1 ≤ j, δ ≤ l, C ′′ =
(c′′µ,α), 1 ≤ µ, α ≤ q such that the only non-vanishing entries of the matrix
B′′ ·H ′ · C ′′ are its first t diagonal entries h′′1,1, . . . , h

′′
t,t, where t = rk(H ′).

Denote εj :=
∏
s+1≤δ≤l γ

−b′′j,δ
δ , s + 1 ≤ j ≤ l. Then (3) has a solution in

non-zero k1, . . . , kq iff

εj = 1, s+ t+ 1 ≤ j ≤ l. (4)

If (4) holds one can find the values of the monomials
∏

1≤α≤qK
c′′µ,α
α , 1 ≤ µ ≤ t

from the equalities (
∏

1≤α≤qK
c′′µ,α
α )h

′′
µ,µ = εs+µ, 1 ≤ µ ≤ t, while the non-zero

values of the monomials
∏

1≤α≤qK
c′′µ,α
α , t+ 1 ≤ µ ≤ q are chosen in an arbitrary

way. Respectively, the latter values are taken as arbitrary positive reals when one
is looking for positive reals K1, . . . ,Kq. After that, the algorithm finds uniquely

K1, . . . ,Kq from the values of the monomials
∏

1≤α≤qK
c′′µ,α
α , 1 ≤ µ ≤ q with the

help of the matrix (C ′′)−1.
Thus, the described algorithm applies twice the subroutine for construct-

ing the Smith canonical form (and does not need to involve algorithms for
solving systems of polynomial equations). Observe that solvability of (2) for
non-zero x1, . . . , xn, k1, . . . , kq is equivalent to solvability of (4). Each εj =∏

1≤α≤l β
λj,α
α , s+ 1 ≤ j ≤ l for appropriate integers λj,α ∈ Z such that

|λj,α| ≤ (d ·min{l, n})O(min{l,n}) · (d ·min{l, q})O(min{l,q})

assuming that all the exponents in (2) satisfy inequalities |gj,i|, |hj,l| ≤ d (due
to [16, 17]).

To verify (4) the algorithm constructs a relative factorization of β1, . . . , βl (for
the sake of simplifying notations assume that all β1, . . . , βl are positive integers;
for rational numbers one has to consider the absolute values of their numerators
and denominators). Namely, the algorithm constructs by recursion nonnegative
integers η1, . . . , ηr pairwise relatively prime such that βµ = η

κµ,1
1 · · · ηκµ,rr , 1 ≤

µ ≤ l for suitable nonnegative integers κµ,i. As a base of recursion the algorithm
starts with β1, . . . , βl. Assume that at some step the algorithm has constructed
β′1, . . . , β

′
l′ such that (β′1 · · ·β′l′)|(β1 · · ·βl). Take any pair β′i, β

′
j , 1 ≤ i 6= j ≤

l′ for which θ := GCD(β′i, β
′
j) 6= 1 and replace the pair β′i, β

′
j by the triple

θ, β′i/θ, β
′
j/θ. If there is no such a pair the algorithm halts.

The product of the modified (l′ + 1)-tuple is a strict divisor of the prod-
uct (β′1 · · ·β′l′) at the previous step of the algorithm. Hence after at most of



log2(β1 · · ·βl) ≤ l · log2M steps the algorithm constructs the relative factoriza-
tion η1, . . . , ηr. One can easily show that the latter is unique, although we don’t
make use of its uniqueness. The complexity of constructing η1, . . . , ηr is bounded
by a polynomial in l, logM . In particular,

∑
1≤µ≤l, 1≤i≤r κµ,i is also bounded by

a polynomial in l, logM .
Now the algorithm is able to verify equalities (4) representing each εj =∏

1≤i≤r η
νj,i
i , s+t+1 ≤ j ≤ l as a product of powers of η1, . . . , ηr for appropriate

integers νj,i (perhaps, nonnegative). Then εj = 1 iff νj,i = 0, 1 ≤ i ≤ r. The
complexity of computing all νj,i, s+ t+ 1 ≤ j ≤ l, 1 ≤ i ≤ r does not exceed a
polynomial in n, l, q, log(d ·M). Finally, we can summarize the results obtained
in this section.

Proposition 2. One can solve a parametric binomial system (2) with non-zero
values of both parameters k1, . . . , kq and variables x1, . . . , xn within polynomial
complexity, i.e. within a polynomial in the size n, l, q, log(d ·M) of the input.
Within the same complexity bound one can find positive real solutions of (2).

Remark 2. In the proof of [19, Theorem 4.1] a similar application of the Smith
normal form is used for the special case of binomial systems arising for so called
“deficiency zero systems” of chemical reaction networks (see [2] for a definition
or Sect. 4 below; please notice that [2] as the final journal version of [19] un-
fortunately no longer contains the cited algorithmic application of the Smith
normal form). However, for general parametric binomial systems our algorithm
applying twice the subroutine for constructing the Smith canonical form seems
to be new—in addition to providing a complexity analysis.

4 Applications to chemical reaction networks

There is a vast literature for chemical reaction networks with mass action kinet-
ics. We refer to [2] and the cited literature therein for definitions relevant in our
context.

In these systems the matrix A in (1) can be factored as

A = Ỹ · Ia · Ik, (5)

where Ia = (ik,j), 1 ≤ k ≤ h, 1 ≤ j ≤ m is an integer matrix with entries

0, 1,−1, Ỹ is an l × h-integer matrix with non-negative entries, and Ik is a
matrix ku,v of reaction rates, which in general are seen as parameters for the
system. The occurring dimensions can be interpreted as follows: n is the number
of participating molecular species, l is the number of reactions, and m is the
number of complexes.

Following [2] the deficiency of a chemical reaction network with an associated
polynomial system of the form

Ỹ · Ia · Ik · Y

can be defined as
rk Ia − rk Ỹ · Ia.

Hence it is a non-negative integer.



4.1 Chemical reaction networks with toric steady states

Remarkably, many chemical reaction systems have the property that the steady
state ideal of the corresponding polynomial system is a binomial ideal [18]. Using
the terminology of [18] these systems are ones having toric steady states.

For a given chemical reaction network the property of having toric steady
states is dependent on the parameters in general. A simple instance is given in
[18, Example 2.3].

For chemical reaction networks with toric steady states for all admissible
parameters Péres Millán et al. [18] establish criteria for the existence of positive
equilibria, and also for so called multi-stationarity, which are basically linear
algebra criteria.

However, in cases for which multi-stationarity is established, the criteria in
[18] give no detailed information about the structure of the equilibria of the
system, whereas our algorithm computes in polynomial time all equilibria hence
allowing a detailed analysis of them.

On the other hand, in the algorithm presented in Sect. 3 we presume that
already the input system is in the form of a parametric binomial system, whereas
in [18] it is not necessary that the input system is of this form, but the main
result in [18] gives sufficient conditions for a chemical reaction system to have
toric steady states.

For a given chemical reaction network, which potentially has toric steady
states, there are several possibilities to come up with a parametric binomial
system that in turn can be solved by the algorithm presented in Sect. 3:

– Use the construction for a binomial system given in [6]. As this construction
uses an enumeration of spanning trees of underlying graphs, it worst time
complexity is exponential.

– As a sufficient condition one can check [18, Condition 3.1]. Then [18, The-
orem 3.3] gives an easy construction for a binomial system generating the
steady state ideal. A check of [18, Condition 3.1] for a given basis of kerA
is easily doable. However, enumerating all possible bases of kerA yields ex-
ponential complexity. So one has to hope for suitable heuristics to come up
with good test candidates among all bases of kerA.

– Compute Gröbner bases (any monomial ordering would is sufficient). As
already mentioned the worst time complexity is doubly-exponential, but the
practical complexity could be much better for many relevant examples (as
also there is freedom to use a suitable monomial ordering.

Although for all of these constructions the worst case complexity is (at least)
exponential, it might nevertheless be interesting to explore their behavior for
actual chemical reaction systems.

Moreover, the factorization A = Ỹ · Ia · Ik—or other factorizations of the
matrix A—might yield much simpler problems. For instance for deficiency zero
systems the fact that rk Ia = rk Ỹ ·Ia implies that only Ia ·Ik has to be considered
instead of Ỹ · Ia · Ik.



Although the worst-case complexity of theses methods all are worse than the
one of the general algorithm given in Sect. 3, one can employ all of them and the
latter algorithm using simple coarse grained competitive parallelism, which can
be realized in many software infrastructure—e.g. the one already used a decade
ago and described in [20].

Remark 3. Of course solving systems gives significantly more information than
counting the number of solutions only. Also other forms of solution testing can be
applied. One of these criteria is whether the projection onto one coordinate of all
positive steady states of a system is unique. This property directly corresponds
to the “absolute concentration robustness” [21], for which a special criterion for
systems having deficiency of 1 is proven in [22].

4.2 Examples from the BioModels Database

We use examples stored in the BioModels database [23] in the following to discuss
the practical relevance of the assumptions made above. Of course, for other
example classes the situation might be different.

For most of the examples for which r being significantly smaller than n the
deficiency of the network is 0. Hence the Deficiency-zero-theorem already gives
significant information about the uniqueness [24, 2] of equilibria for these cases
and also the algorithm given in the proof of [19, Theorem 4.1] could compute
these unique equilibria for a fixed set of parameter, i.e. a unique solution to
the polynomial system. However, we are not aware of an implementation of this
method and our algorithm given in Sect. 3 is as efficient as the more restricted
method of [19, Theorem 4.1].

However, there are also several example of networks having deficiency 1 or
even higher deficiencies – for which no such general theorems are known, for
which r being significantly smaller than n.

Example BIOMOD188 As an example we consider the model with the num-
ber 188 in the BioModels database, which was originally described in [25]. The
network induces a stoichiometric matrix of size 20 × 20 and has a deficiency of
4. The dimension of the nullspace of the stoichiometric matrix A is 6. The rank
of the exponent matrix Y is 11.

The polynomial system is as follows (with two instances of the 0-polynomial
due to the automated construction of the system from the SBML description):

k2 · x4 − k6 · x1 + k8 · x3 − k9 · x2 · x1 + k10 · x3 − k16 · x1 · x6 + k17 · x9,
k7 · x5 − k9 · x2 · x1 + k10 · x3 − k14 · x2 · x6 + k15 · x8,
−k8 · x3 + k9 · x2 · x1 − k10 · x3, k3 · x2 + k4 · x8 − k5 · x4, k0 · x12 − k1 · x5,
k13 · x10 · x7 − k19 · x6,−k13 · x10 · x7 + k19 · x6,
k14 · x2 · x6 − k15 · x8, k16 · x1 · x6 − k17 · x9 − k18 · x9,
k11 − k12 · x10, k1 · x5 + k5 · x4 + k6 · x1 + k12 · x10 + k18 · x9,
−k0 · x12, k8 · x3, k7 · x5, k6 · x1 + k18 · x9, k2 · x4, k5 · x4, k3 · x2 + k4 · x8, 0, 0



Notice that the polynomial system no longer contains all of the variables in
the set {x1, x2, . . . , x20}, but only the subset of cardinality 11 consisting of
{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x12}.

Now if we consider the factorization of the polynomial system into

Ỹ · Ia · Ik · Y

with a diagonal matrix Ik one can consider the groupings according to the law
of associativity:

(Ỹ · Ia · Ik) · Y (6)

(Ỹ · Ia) · (Ik · Y ) (7)

If we consider the view expressed in (6) one has to perform the linear algebra
over the field Q(k1, . . . , km) but having only the x1, . . . , xn as variables in sub-
sequent steps. When considering the k1, . . . , km as part of the monomials, i.e.
taking the view expressed in (7) the linear algebra is over Q but the k1, . . . , km
are have to be counted as variables in addition to the x1, . . . , xn. Notice that the
latter view is used by Clarke [26].

Using both approaches we find that some if the Fi (1 ≤ i ≤ 20) are zero, and
hence the system does not have a solution with all non-zero entries.

When inspecting more closely which entries are zero, we find that—taking
k1, . . . , k20 as parameter— the Y3, Y4, Y5, Y10, Y11, Y12, Y13, Y16 are zero when ex-
pressed as linear combinations of the Zj . When viewing the reaction constants
as part of the monomials we obtain that Y3, Y4, Y5, Y10, Y11, Y13, Y19 are zero.
When resolving these condition in terms of the xi (and ki) we obtain in the
k-as-parameter-case the logical condition

x3 = 0 ∧ x4 = 0 ∧ x5 = 0 ∧ x10 = 0 ∧ x12 = 0 ∧ 1 = 0 (8)

and in the k-in-monomial-case

k8 · x3 = 0 ∧ k5 · x4 = 0 ∧ k1 · x5 = 0 ∧ k12 · x10 = 0 ∧ k0 · x12 = 0 ∧
k7 · x5 = 0 ∧ k2 · x4 = 0 ∧ k11 = 0 (9)

Hence there are no solutions unless k11 = 0, which is a condition leading
to the inconsistency 1 = 0 in (8)—without any further information in the k-as-
parameter-case. When going back to the original description using the software
infrastructure described in [27] we obtain the information that associated with
constant k11 there is a creation of −→ damDNA from “the environment”; more-
over, associated with k12 there is a reaction denoted damDNA −→ Sink. So
there are some quasi-steady states involved in the SBML representation of the
reaction system. Dealing rigorously with quasi-steady state approximations is
an important line of research in algebraic biology (see e.g. [28]).

When considering solutions of polynomial systems we can apply the substitu-
tions k11 = 0, x3 = 0, x4 = 0, x5 = 0, x10 = 0, x12 = 0 and consider the resulting
system.



Example BIOMOD053 As another example we take the model #53 from the
BIOMOD database.

The chemical reaction network involves 6 species and has deficiency 2. The
resulting polynomial system is as follows:

−k1x1x2 + k2x3 − k5x1,−k1x1x2 + k2x3 − k7x2x5 + k10,
k1x1x2 − k2x3 − k3x3 + k4x4 − k9x3 − k12x3, k3x3 − k4x4 − k6x4,
k5x1 − k7x2x5 − k8x5 + k11, k6x4 + k7x2x5 + k9x3

Our simple prototype implementation of our algorithms using the computa-
tional infrastructure of Maple can easily determine that the system has a solution
with all-non-zero entries. Our algorithm can come up with a explicit representa-
tion of the solution after some minutes of computation time. The string represen-
tation of the output is big (about 1 MB). However, the big output size is mainly
due to rather lengthy polynomial expressions in the parameters occurring in the
solutions. The structure of the solutions in the symbols representing a “can be
chosen arbitrarily” in the methods presented above (cf. Sect. 2) is much simpler.

5 Conclusion and future work

Although several related ideas have been around in the literature on algebraic
methods for chemical reaction systems the full algorithmic development given
above seems to be new—in addition to providing the complexity analysis.

In contrast to the known theorems developed in the context of chemical reac-
tion network theory—which only work in special cases but give results entirely
independent of the parameters—our algorithms are universally applicable.

It will be the topic of future research to systematically apply careful im-
plementations of the algorithms given in this paper to the networks given in
databases such as BioModels database and others. For this purpose we will in-
tegrate the implementation of the algorithms described in this paper into the
general infrastructure described in [27]. By these test we will not only explore
the practical limits of the methods but we also might get insight into the ques-
tion whether some of the properties that hold for deficiency-zero and deficiency-
one systems (such as unique positive steady states for a chemical compatibility
class, or the absolute concentration robustness property for a certain subclass)
also hold for systems of deficiency bigger than one—at least parametrically for
relevant ranges of parameters.
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