Skip to main content

Mental Tasks Temporal Classification Using an Architecture Based on ANFIS and Recurrent Neural Networks

  • Chapter
Recent Advances on Hybrid Intelligent Systems

Abstract

In this paper, an architecture based on adaptive neuro-fuzzy inference systems (ANFIS) assembled to recurrent neural networks, applied to the problem of mental tasks temporal classification, is proposed. The electroencephalographic signals (EEG) are pre-processed through band-pass filtering in order to separate the set of energy signals in alpha and beta bands. The energy in each band is represented by fuzzy sets obtained through an ANFIS system, and the temporal sequence corresponding to the combination to be detected, associated to the specific mental task, is entered into a recurrent neural networks. This experiment has been carried out in the context of brain-computer-interface (BCI) systems development. Experimentation using EEG signals corresponding to mental tasks exercises, obtained from a database available to the international community for research purposes, is reported. Two recurrent neural networks are used for comparison purposes: Elman network and a fully connected recurrent neural network (FCRNN) trained by RTRL-EKF (real time recurrent learning – extended Kalman filter). A classification rate of 88.12% in average was obtained through the FCRNN during the generalization stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brunner, P., Bianchi, L., Guger, C., Cincotti, F., Schalk, G.: Current trends in hardware and software for brain–computer interfaces (BCIs). Journal of Neural Engineering 8, 025001 (2011)

    Article  Google Scholar 

  2. Bashashati, M., Fatourechi, R., Ward, K., Birch, G.E.: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. Journal of Neural Engineering 4(2), R32–R57 (2007)

    Google Scholar 

  3. Berger, T.W., Chapin, J.K., Gerhardt, G.A., McFarland, D.J., Principe, J.C., Soussou, W.V., Taylor, D.M., Tresco, P.A.: WTEC Panel Report on International Assessment of Research and Development in Brain-Computer Interfaces, World Technology Evaluation Center, Inc. (2007), http://www.wtec.org/bci/BCI-finalreport-26Aug2008-lowres.pdf

  4. Neuper, C., Scherer, R., Wriessnegger, S., Pfurtscheller, G.: Motor imagery and action observation: Modulation of sensorimotor brain rhythms during mental control of a brain–computer interface. Clinical Neurophysiology 120(2), 239–247 (2009)

    Article  Google Scholar 

  5. Solis-Escalante, T., Muller-Putz, G., Brunner, C., Kaiser, V., Pfurtscheller, G.: Analysis of sensorimotor rhythms for the implementation of a brain switch for healthy subjects. Biomedical Signal Processing and Control 5(1), 15–20 (2010)

    Article  Google Scholar 

  6. McFarland, D.J., Sarnacki, W.A., Townsend, G., Vaughan, T., Wolpaw, J.R.: The P-300-based brain–computer interface (BCI): Effects of stimulus rate. Clinical Neurophysiology 122(4), 731–737 (2011)

    Article  Google Scholar 

  7. Ramirez-Cortes, J.M., Alarcon-Aquino, V., Rosas-Cholula, G., Gomez-Gil, P., Escamilla-Ambrosio, J.: Anfis-Based P300 Rhythm Detection Using Wavelet Feature Extraction on Blind Source Separated EEG Signals. In: Ao, S., Amouzegar, M., Rieger, B.B. (eds.) Intelligent Automation and Systems Engineering, ch. 27. LNEE, vol. 103, pp. 353–365. Springer, New York (2011)

    Chapter  Google Scholar 

  8. Shyu, K.K., Lee, P.L., Liu, Y.J., Sie, J.J.: Dual-frequency steady-state visual evoked potential for brain computer interface. Neuroscience Letters 483(1), 28–31 (2010)

    Article  Google Scholar 

  9. Horki, P., Solis-Escalante, T., Neuper, C., Muller-Putz, G.R.: Hybrid Motor Imagery and Steady-state Visual Evoked Potential Based BCI for Artificial Arm Control. In: Proceedings of the First Tools for Brain Computer Interaction Workshop, Graz, Austria, p. 46 (2010)

    Google Scholar 

  10. Wang, H., Li, C.S., Li, Y.G.: Brain-computer interface design based on slow cortical potentials using matlab/simulink. In: Proceedings of the International Conference on Mechatronics and Automation, Changchun, China, pp. 1044–1048 (2009)

    Google Scholar 

  11. Khare, V., Santhosh, J., Anand, S., Bhatia, M.: Performance comparison of three artificial neural network methods for classification of electroencephalograph signals of five mental tasks. J. Biomedical Science and Engineering 3, 200–205 (2010)

    Google Scholar 

  12. Wang, J., Xu, G., Wang, L., Zhang, H.: Feature extraction of brain-computer interface based on improved multivariate adaptive autoregressive models. In: Proceedings of the 3rd International Conference on Biomedical Engineering and Informatics (BMEI), Yantai, China, pp. 895–898 (2010)

    Google Scholar 

  13. Kołodziej, M., Majkowski, A., Rak, R.J.: A New Method of EEG Classification for BCI with Feature Extraction Based on Higher Order Statistics of Wavelet Components and Selection with Genetic Algorithms. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part I. LNCS, vol. 6593, pp. 280–289. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Vijean, V., Hariharan, M., Saidatul, A., Yaacob, S.: Mental tasks classifications using S-transform for BCI applications. In: Proceedings of the IEEE Conference on Sustainable Utilization and Development in Engineering and Technology, Semenyih, Malaysia, pp. 69–73 (2011)

    Google Scholar 

  15. Lotte, F.: The use of fuzzy inference systems for classification in EEG-based brain-computer interfaces. In: Proceedings of the 3rd International Brain-Computer Interfaces Workshop and Training Course, Graz, Austria (2006)

    Google Scholar 

  16. Zhang, L., He, W., He, C., Wang, P.: Improving mental task classification by adding high frequency band information. Journal of Medical Systems 34(1), 51–60 (2010)

    Article  Google Scholar 

  17. Palaniappan, R.: Utilizing Gamma band to improve mental task based brain-computer interface design. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(3), 299–303 (2006)

    Article  Google Scholar 

  18. Park, C., Looney, D., Kidmose, P., Ungstrup, M., Mandic, D.P.: Time-frequency analysis of EEG asymmetry using bivariate Empirical Mode Decomposition. IEEE Transactions on Neural Systems and Rehabilitation Engineering 19(4), 366–373 (2011)

    Article  Google Scholar 

  19. Kousarrizi, M.R.N., Ghanbari, A.A., Teshnehlab, M., Shorehdeli, M.A., Gharaviri, A.: Feature extraction and classification of EEG signals using Wavelet Transform, SVM and artificial neural networks for brain computer interfaces. In: Proceedings of the International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing, Shanghai, China, pp. 352–355 (2009)

    Google Scholar 

  20. Forney, E.M., Anderson, C.W.: Classification of EEG during imagined mental tasks by forecasting with Elman recurrent neural networks. In: Proceedings of the International Joint Conference on Neural Networks, San Jose, California, USA, pp. 2749–2755 (2011)

    Google Scholar 

  21. Coyle, D., McGinnity, T.M., Prasad, G.: Improving the separability of multiple EEG features for a BCI by neural-time-series-prediction-preprocessing. Biomedical Signal Processing and Control 5(3), 196–204 (2010)

    Article  Google Scholar 

  22. Oliver, G., Gedeon, T.: Brain Computer Interfaces: A Recurrent Neural Network Approach. Australian National University (2010)

    Google Scholar 

  23. Fuchs, E., Gruber, C., Reitmaier, T., Sick, B.: Processing short-term and long-term information with a combination of polynomial approximation techniques and time-delay neural networks. IEEE Transactions on Neural Networks 20(9), 1450–1462 (2009)

    Article  Google Scholar 

  24. Gomez-Gil, P.: Long term prediction, chaos and artificial neural networks. Where is the meeting point? Engineering Letters 15(1), 1–5 (2007)

    Google Scholar 

  25. Skarda, C., Freeman, W.: How brains make chaos in order to make sense of the world. Behavioral and Brain Sciences 10, 161–195 (1987)

    Article  Google Scholar 

  26. Elman, J.: Finding structure in time. Cognitive Science 14, 179–211 (1990)

    Article  Google Scholar 

  27. Čerňanský, M.: Training Recurrent Neural Network Using Multistream Extended Kalman Filter on Multicore Processor and Cuda Enabled Graphic Processor Unit. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part I. LNCS, vol. 5768, pp. 381–390. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  28. Werbos, P.: Backpropagation through time: what it does and how to do it. Proceedings IEEE 74(10), 1550–1560 (1990)

    Article  Google Scholar 

  29. Williams, R.: Some observations on the use of the extended Kalman Filter as a recurrent network learning algorithm. Technical Report NU-CCS-92-1. Northeastern University, Boston, MA (1992)

    Google Scholar 

  30. Haykin, S.: Neural Networks, 2nd edn. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  31. Alanis, A., Sanchez, E., Loukianov, A.: Discrete-time adaptive backstepping nonlinear control via high-order neural networks. IEEE Transactions on Neural Networks 18(4), 1185–1195 (2007)

    Article  Google Scholar 

  32. Prokhorov, D.: Toyota prius hev neurocontrol and diagnostics. Neural Networks 21, 458–465 (2008)

    Article  Google Scholar 

  33. Ralaivola, L., d’Alché-Buc, F.: Nonlinear Time Series Filtering, Smoothing and Learning using the Kernel Kalman Filter. Technical Report. Universite Pierre et Marie Curie, Paris France (2004)

    Google Scholar 

  34. García-Pedrero, A.: Arquitectura neuronal apoyada en señales reconstruidas con wavelets para predicción de series de tiempo caóticas, M. Sc. Thesis (in spanish), INAOE, Tonantzintla, Puebla (2009)

    Google Scholar 

  35. Doka, K.: Handbook of brain theory and neural networks, 2nd edn. MIT Press, Cambridge (2002)

    Google Scholar 

  36. Cernansky, M.: Matlab functions for training recurrent neural networks RTRL-EKF (2008), http://www2.fiit.stuba.sk/~cernans/main/download.html (accessed January 2009)

  37. Gomez-Gil, P., Garcia-Pedrero, A., Ramirez-Cortes, J.M.: Composite Recurrent Neural Networks for Long-Term Prediction of Highly-Dynamic Time Series Supported by Wavelet Decomposition. In: Castillo, O., Kacprzyk, J., Pedrycz, W. (eds.) Soft Computing for Intelligent Control and Mobile Robotics. SCI, vol. 318, pp. 253–268. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  38. Cernansky, M.: Matlab functions for training recurrent neural networks RTRL-EKF (2009), http://www2.fiit.stuba.sk/~cernans/main/download.html

  39. Keirn, Z.A., Aunon, J.I.: A new mode of communication between man and his surroundings. IEEE Transactions in Biomedical Engineering 37(12), 1209–1214 (1990)

    Article  Google Scholar 

  40. Cawley, G.C.: Leave-One-Out Cross-Validation Based Model Selection Criteria for Weighted LS-SVMs. In: Proceedings of the International Joint Conference on Neural Networks, Vancouver, Canada, pp. 1661–1668 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morales-Flores, E., Ramírez-Cortés, J.M., Gómez-Gil, P., Alarcón-Aquino, V. (2013). Mental Tasks Temporal Classification Using an Architecture Based on ANFIS and Recurrent Neural Networks. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Recent Advances on Hybrid Intelligent Systems. Studies in Computational Intelligence, vol 451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33021-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33021-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33020-9

  • Online ISBN: 978-3-642-33021-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics