
JoCG 7(1), 221–236, 2016 221

Journal of Computational Geometry jocg.org

WEIGHTED GEOMETRIC SET MULTI-COVER

VIA QUASI-UNIFORM SAMPLING ∗

Nikhil Bansal† and Kirk Pruhs‡

Abstract. We give a randomized polynomial-time algorithm with approximation ratio
O(log φ(n)) for weighted set multi-cover instances with a shallow cell complexity of at most
f(z, k) = zφ(z)kO(1). Up to constant factors, this matches a recent result of Chan, Grant,
Könemann and Sharpe [6] for the set cover case, i.e. when all the covering requirements are
1. One consequence of this is an O(1)-approximation for geometric weighted set multi-cover
problems when the geometric objects have linear union complexity; for example when the
objects are disks, unit cubes or halfspaces in R3. Another consequence is that the real
di�culty of many natural capacitated set covering problems lies with solving the associated
priority cover problem only, and not with the associated multi-cover problem.

1 Introduction

In the weighted set multi-cover problem we are given a set P of n points and a collection S
of m subsets of P. Each element p ∈ P has a positive integer demand dp, and each set s ∈ S
has a positive weight ws. A subset X of S is a feasible multi-cover if each p ∈ P lies in (or
equivalently is covered by) at least dp distinct sets in X, and the goal is to �nd a minimum
weight feasible multi-cover. The case when all the demands are unit (i.e. dp = 1 for all p) is
known as the weighted set cover problem and has been studied extensively.

It is well known that the natural greedy algorithm is a 1 + lnn-approximation algo-
rithm for the weighted set multi-cover problem, and unless NP has slightly super-polynomial-
time algorithms, no polynomial-time algorithm can achieve a better approximation ratio (up
to lower order terms), even for unit demands and weights [9]. Thus, we focus here on special
classes of instances where the underlying structure of the set system allows for an improved
approximation. Such classes commonly arise in natural combinatorial optimization prob-
lems. For example, some network design problems can be cast as covering a collection of cuts
using edges. Another class of such instances arise in geometry, where the sets are geometric
objects such as disks, rectangles or fat triangles and the elements are points in Rd. This
paper is motivated by the following meta-question:

If a particular set system (or class of set systems) admits a good approximation

∗NB was supported in part by a NWO Vidi grant 639.022.211 and an ERC consolidator grant 617951.
KP was supported in part by NSF grants CCF-0830558, CCF-1115575, CNS-1253218, CCF-1421508, and
an IBM Faculty Award.
†Eindhoven University of Technology, n.bansal@tue.nl
‡University of Pittsburgh, kirk@cs.pitt.edu

http://jocg.org/

JoCG 7(1), 221–236, 2016 222

Journal of Computational Geometry jocg.org

algorithm for the set cover problem, then does it also admit a good approximation
algorithm for the multi-cover case?

In addition to its direct relevance, multi-cover problems arise naturally in many
practical settings, another important theoretical motivation to study this question arises
from the result in [5] that a capacitated set cover problem can be reduced to a priority set
cover problem, and a multi-cover problem on similar set systems. Thus, in many cases, better
bounds for multi-cover problems will directly improve upon known bounds for capacitated
problems.

While the set cover problem has been extensively studied for many classes of set
systems, the corresponding multi-cover case has received less attention. At �rst glance, it
seems that there should be a simple general method for extending a set cover result to the
corresponding multi-cover case. After all, their natural integer linear programming formula-
tions di�er only in the right hand side of the constraints, i.e. Ax ≥ 1 v.s. Ax ≥ d. However,
this seems unlikely in general. For example, consider the classic survivable network design
problem (SNDP): Given a graph G = (V,E) and demands r(u, v) for pairs u, v ∈ V , �nd a
minimum cost subset F of edges such that G′ = (V, F) has r(u, v) edge disjoint paths for
each pair u, v. SNDP can be viewed as a multi-cover problem where each cut S has covering
requirement d(S) = maxu∈S,v /∈S r(u, v). Note that this problem seems much harder than
the corresponding set cover case, r(u, v) ∈ {0, 1}, which is the Steiner network problem. A
2-approximation algorithm for Steiner network was known long before a 2-approximation
was found for SNDP [10]. In fact, obtaining an O(1)-approximation for SNDP directly from
the Steiner Network result would be a signi�cant breakthrough. Further, extending common
techniques for obtaining approximation algorithms for geometric set cover problems to the
corresponding multi-cover problems poses several additional challenges (see [7] for a discus-
sion). The only generic connection between set cover and multi-cover that we are aware of is
the following (most likely folklore) result [3]: if a set system has an linear programming based
α-approximation for set cover, then it has an O(min(log dmax, log log n)α)-approximation for
multi-cover, where dmax is the maximum coverage requirement.

In this paper, we study the weighted set multi-cover problem on geometric set sys-
tems, and slight generalizations thereof. We extend the best known approximation results
for the corresponding weighted set cover problem to hold for weighted multi-cover. Thus, we
give a partial answer to the meta-question above: that for common geometric set systems,
weighted multi-cover is not harder to approximate than set cover.

1.1 Previous Work

The goal in geometric set cover problems is to improve the lnn set cover bound by ex-
ploiting the underlying geometric structure. This is an active area of research and various
di�erent techniques have been developed. However, until recently most of these techniques
applied only to the unweighted case. A key idea is the connection between set covers and
ε-nets [4], which implies that proving better bounds on sizes of ε-nets for various geometric
systems (an active research area in discrete geometry) directly gives improved guarantees
for the unweighted set-cover problem. In another direction, [8] related the guarantee for

http://jocg.org/

JoCG 7(1), 221–236, 2016 223

Journal of Computational Geometry jocg.org

unweighted set-cover to the complexity of the geometric objects. Here the complexity of
a geometric shape refers to the size needed to describe it (which is roughly the number of
vertices, edges, faces etc.). More precisely, [8] showed that if the complexity of the verti-
cal decomposition of the complement of the union of any k sets is O(kh(k)), then there is
an O(h(n))-approximation for unweighted set cover. This was subsequently improved to
O(log(h(n))) [12, 2], and these results were further extended to the (unweighted) multi-
cover case in certain �well-behaved" cases [7]. However, none of these techniques work with
weights. Roughly speaking, the problem is the following: all these techniques begin by
random sampling (say, according to the optimum linear programming solution), followed
by an alteration phase where the points that are left uncovered during the sampling phase
are now covered. Their techniques are able to show that not many extra sets are needed in
the alteration phase. However, they are unable to avoid the possibility that some sets may
have a much higher chance of being picked than others, which is problematic if weights are
present.

The �rst breakthrough on weighted geometric cover problems was made by Varadara-
jan [11], who showed that for geometric set systems with union complexity1 O(kh(k)), there
is an e�cient randomized algorithm with approximation ratio O(exp(O(log∗ n)) log h(n)).
Further, he showed that if the function h(n) is mildly increasing(in particular, it su�ces
to have h(n) = ω(log(j) n) for some constant j), then the approximation ratio improves to
O(log h(n)). The key idea behind this result was a new sampling approach, called quasi-
uniform sampling, which gives a uniform bound on the factor by which the probability that
a set is sampled exceeds the value for that set in the optimal linear programming solution.
Recently, Chan et al. [6] re�ned this approach further and removed the mildly increas-
ing requirement on h(n). They give an O(log h(n))-approximation algorithm for geometric
set systems with union complexity O(nh(n)). In particular, this algorithm guarantees an
O(1)-approximation if h(n) = O(1), which for example is the case for disks, pseudo-disks,
axis-aligned octants, unit cubes, or half-spaces in three-dimensional space.

Instead of using union complexity, [6] presented their results using the notion of
shallow cell complexity.

De�nition 1. Let f(z, k) be a function that is non-decreasing in both k and z. A set system
S of m sets has shallow cell complexity f(z, k) if for all 1 ≤ z ≤ m and for any collection X
of z sets from S, the number of distinct regions covered by k or fewer sets in X is at most
f(z, k). Here a region refers to an equivalence class of points that are covered by precisely
the same sets in X.

Chan et al. [6] gave an O(log φ(n))-approximation algorithm for weighted set cover
instances with shallow cell complexity zφ(z)kO(1) (here we assume without loss of generality
that φ(z) ≥ 2). We remark that Varadarajan [11] also works with shallow cell complexity,
without using this terminology directly. In particular, he uses the fact that geometric sets
in Rd with union complexity nφ(n) have shallow cell complexity O(zφ(z)kd−1).

1Unlike in [8, 7], the union complexity here means the complexity of the shape of the union of sets, and
not of the vertical decomposition of the complement of the union.

http://jocg.org/

JoCG 7(1), 221–236, 2016 224

Journal of Computational Geometry jocg.org

1.2 Result and Consequences

Our main result is:

Theorem 2. There is a randomized polynomial-time algorithm that computes a c′ log(φ(n))-
approximation to the minimum weight multi-cover problem on n points where the underlying

set system has shallow cell complexity f(z, k) = zφ(z)kc, for some constant c. Here c′ is a
universal constant that only depends on c.

This matches the guarantee (up to constant factors) in [6] for the set cover case,
and thus this extends all the geometric covering results in that paper from set cover to the
multi-cover case.

An important consequence of our result is for capacitated covering problems. Here,
each set s has a capacity cs in addition to a weight ws, and each point p has a demand dp; a
solution is feasible if the aggregate capacity of the selected sets covering a point is at least the
point's demand. Perhaps surprising at �rst sight, capacities make the problem substantially
more di�cult. For example, even if there is just one point to cover (a trivial problem without
capacities), we obtain the NP-Hard Knapsack Cover problem. Recently, [5] gave a general
method to deal with capacities, and show that any weighted capacitated covering problem
can be reduced to weighted multi-cover problem(s) and the weighted priority cover problem
on closely related systems. In a weighted priority cover problem, each set and each point has
a priority, and each point must be covered by at least one set of higher priority than itself. In
particular, they show that an O(α+β)-approximation algorithm for a weighted capacitated
cover problem follows from an α-approximation algorithm for the underlying weighted multi-
cover problem, and a β-approximation algorithm for the underlying weighted priority cover
problem.

Our result implies that the real bottleneck for approximating capacitated covering
problems in geometric settings is solving the associated priority cover problem. This already
improves several results where previously the guarantee for the multi-cover problem was a
bottleneck. One application is to Theorem 1.3 in [6], which says that any capacitated cover-
ing problem on an underlying network matrix has O(log log n)-approximation. Applying the
improved bound in Theorem 2. together with the result in [6] that network matrices have
O(nk) shallow cell complexity, improves the approximation ratio to O(1) for such problems.
Another application is to a general scheduling problem introduced in [3]. They show that
this problem can be cast as a capacitated covering problem where the sets are axis-parallel
rectangles with the bottom side touching the x-axis. Applying Theorem 2 to such sets gives
an O(1)-approximation for the associated multi-cover problem, improving upon the previous
O(log log n) bound given in [3]. This improves the approximation for the scheduling problem
in [3] from O(log log nP) to O(log logP), where P is the ratio of the maximum to minimum
job size.

1.3 Overview of Algorithm Design and Analysis

As mentioned previously, most previous approaches for geometric covering problems work
via random sampling. The starting point is an optimal solution to the linear programming

http://jocg.org/

JoCG 7(1), 221–236, 2016 225

Journal of Computational Geometry jocg.org

relaxation of the natural integer programming formulation of the problem. If α is the desired
approximation, then �rst the sets s are sampled with probability O(αxs), where xs is the
probability that s is selected in the optimal linear programming solution. After this step, a
forcing procedure is applied (perhaps recursively) to cover the remaining uncovered points.
The key insight in [11] and [6] is to develop a forcing procedure where the probability
of picking each set s remains bounded by αxs. Such a forcing is called a quasi-uniform
sampling. As our algorithm also uses this framework, we elaborate on this approach a bit
more.

Let us start with explaining the approach, specialized to set cover, in which each
demand is 1. Without loss of generality, the values xs can be assumed to be integer multiples
of 1/M for some large integer M . The rounding proceeds in rounds. In round i, for each
set s we independently with probability (roughly) 1/2, either double xs, or set xs to 0.
This ensures that each xs is an integer multiple of 2i/M . This continues for roughly logM
rounds, until all variables are close to 0 or 1. In expectation, the extent to which each point
is fractionally covered stays (roughly) the same. However, due to the randomness in the
doubling step, if some point is p unlucky and is fractionally covered by signi�cantly less
sets than expected, then a greedy forcing procedure is invoked to select some sets that will
cover p. To obtain a quasi-uniform sampling, we need that the probability of forcing is
su�ciently small and that the forcing procedure doesn't force any particular set with too
high probability.

We want to adapt the above approach to multi-cover so that no dependence on the
covering requirement dmax is incurred in the approximation ratio. The main reason that
this is challenging is that a point p must be covered by dp distinct sets, that is, we cannot
pick the same set twice. If a set can be picked multiple times, the set-cover analysis in [6]
can be adapted very easily to multi-cover (see [7]).

Our basic idea for overcoming this issue is simple. We �rst pick all sets s with xs ≥
1/Q for some large enough constant Q, and update the covering requirements accordingly.
As the linear programming solution for the residual problem now satis�es xs < 1/Q for
each s, each point p must be fractionally covered by Qdp sets in the linear programming
solution. Thus, if the rounding proceeded according to expectation, there would be enough
distinct sets to form a multicover at the end of the rounding. However, if it so happens
that the number of distinct sets fractionally covering a point becomes signi�cantly less than
expected, then we will again need a forcing procedure to reestablish that condition. The
greedy forcing procedure for multicover is the natural extension to the forcing procedure for
set cover. And we will again need to argue that the probability of forcing is su�ciently small.
However, for multi-cover the argument that the probability of forcing is su�ciently small is
signi�cantly more involved than the analogous argument for set cover. This argument is the
main technical extension to the analysis for set cover in [6].

The rounding algorithm is described in Section 2. The algorithm's analysis is de-
scribed in Section 3.

http://jocg.org/

JoCG 7(1), 221–236, 2016 226

Journal of Computational Geometry jocg.org

2 The Algorithm Description

The rounding of the linear programming solution proceeds in rounds. We �rst describe the
initial setup that creates the initial instance from the linear programming solution. We
then describe the invariant that we wish to maintain at each round. During each round
there is a sampling phase that discards some copies of certain sets, a forcing phase that
permanently selects some sets and ensures that the invariant in maintained in the next
round, and a cleanup phase. We next describe the sampling and cleanup phases, and the
termination condition, which are relatively straightforward. The description of the forcing
phase is postponed until Subsection 2.1 because it is more involved.

The Initial Setup: We assume that the given set system has shallow cell complexity
f(z, k) = zφ(z)kc for some constant c and some nondecreasing function φ(z). To ensure
that log(φ(z)) is positive, we will assume that φ(z) ≥ 2.

The exact integer formulation of the weighted set multicover problem is the following:

min
∑
s∈S

wsxs s.t.
∑
s:p∈s

xs ≥ dp, ∀p ∈ P and xs ∈ {0, 1}, ∀s ∈ S,

where xs indicates whether the set s is selected or not.

The algorithm begins by solving the natural linear programming relaxation where
we relax the requirement xs ∈ {0, 1} to xs ∈ [0, 1]. Let x denote some �xed basic optimum
solution to this linear program. As there are n non-trivial constraints, at most n variables
xs lie strictly between 0 and 1. Let Q be a large enough constant, whose value will be
speci�ed later. For each s with xs ≥ 1/(2Q), select s and decrease the demand dp by 1 for
every point p covered by s. Clearly, the cost of selecting these sets is at most 2Q times the
linear program cost. Consider the residual instance on the remaining sets and points. Let
us rede�ne dp to be the residual covering requirement of p. Clearly, the residual solution xs
is still feasible for the residual instance.

Let M = n. We create a new instance by making ns = b2Mxsc copies of each
set s. To distinguish between the original sets and the copies in the new instance, we will
use replicas to denote the copies of a set s. As the linear program solution is feasible,∑

s:p∈s xs ≥ dp for each point p, and thus p is covered by at least

∑
s:p∈s

ns ≥
∑

s:p∈s,xs>0

(2Mxs − 1) ≥

(∑
s:p∈s

2Mxs

)
− n ≥M (2dp − 1) ≥Mdp (1)

replicas in the new instance. The second inequality uses the fact that the linear program
support is at most n.

Note that in this new instance, each point p is covered by at least Mdp replicas of
sets containing p, and each set has at most ns ≤ 2Mxs ≤M/Q replicas, as xs ≤ 1/(2Q). So
p is covered by replicas corresponding to at least Qdp distinct sets. Let N denote the number
of replicas in the instance. As there are at most n sets in the support and ns ≤ 2M = 2n
for each s, we have that N ≤ 2n2. As N = O(n2) and φ(z) ≤ zd for geometric problems in
dimension d, log(φ(N)) = O(log(φ(n))).

http://jocg.org/

JoCG 7(1), 221–236, 2016 227

Journal of Computational Geometry jocg.org

The Invariant: We �rst state the invariant, in equation (2), then give some intuition, and
�nally formally de�ne all the terms used in the invariant.∑

s:p∈s
min

(
ns(i),

k(i)

b(i)

)
≥ k(i)dp(i) ∀p. (2)

This says that each point must be covered by at least k(i)dp(i) replicas, but each set is only
allowed to contribute up to k(i)/b(i) replicas. In particular this implies that there are at
least b(i)dp(i) distinct sets that can cover p. Actually our algorithm will also ensure that
ns(i) ≤ k(i)/b(i) for each set s, but it is more convenient to state the invariant (2) this way.

The term ns(i) is the number of replicas of set s at the start of round i. The term
dp(i) is the residual covering requirement for point p at the start of round i. The term
k(i) = M/2i−1 is the number of replicas we would expect for each set at the start of round
i if we retained replicas with probability exactly 1/2. We de�ne

ε(i) = R

√
log k(i) + log φ(N)

k(i)
(3)

for some su�ciently large constant R. In a couple of places we will need that R is su�ciently
large so that we can argue that some bad events are su�ciently rare. The quantity ε(i)
represents the bias in the rounding in round i towards retaining a set. Finally the term

b(i) =
Q∏i−1

j=1(1 + 4ε(j))

roughly represents a lower bound on the ratio of the number distinct sets covering a point p
to the demand of p. We choose Q large enough so that in the �nal round r, b(r) = 2. This
completely determines Q. In Claim 7 we will show that Q = O(1).

Clearly, ns(1) = ns, k(1) = M , dp(1) = dp, and b(1) = Q. Thus by noting that
ns(1) ≤M/Q = k(1)/b(1), we can see that invariant (2) initially holds.

A Generic Round: The algorithm does the following in each round i for which ε(i) < 1/2.

• Sampling Phase: For each set s, independently retain each replica with probability
1/2 + ε(i), and discard the rest. Let n∗s(i) denote the number of retained replicas for
set s.

• Forcing Phase: After the sampling phase, if the invariant (2) is violated for a point p,
that is if ∑

s:p∈s
min

(
n∗s(i),

k(i+ 1)

b(i+ 1)

)
< k(i+ 1)dp(i),

then some sets covering p are permanently selected (also referred to as forced) to ensure
that invariant (2) holds at the start of next round. Details are given in Subsection 2.1.
All the replicas of a forced set s are removed, and the residual covering requirement
of points in s is reduced by 1. This will be the only point in the algorithm where the
residual covering requirement of a point changes.

http://jocg.org/

JoCG 7(1), 221–236, 2016 228

Journal of Computational Geometry jocg.org

• The Cleanup Phase: For each s, if n∗s(i) > k(i+ 1)/b(i+ 1), we retain k(i+ 1)/b(i+ 1)
arbitrary replicas of s and discard the rest. Thus we will also have the invariant that
the number of replicas of s in the next round ns(i+ 1) = min(n∗s(i), k(i+ 1)/b(i+ 1)).

Termination: When ε(i) becomes greater than or equal to 1/2 in the �nal round r, then
all the sets that have one or more replicas left are selected.

2.1 The Forcing Phase

We now explain how the sets to be forced are selected in a generic round i. Roughly speaking,
all points that violate invariant (2) and have the same residual demand are considered in
each sub-round. To determine which sets to pick to cover these points, an ordered list of
replicas of sets is constructed carefully. This ordering ensures that property that not too
many points that can force a set to be picked.

First we de�ne the pseudo-depth of a point, which is a more convenient notion to
work with than residual requirement. Then we show in Claim 4 that the pseudo-depth is
an upper bound on the residual covering requirement. We then explain, for each possible
pseudo-depth q, how to construct an ordered list Lq of replicas that have the property that
they cover at least one point of pseudo-depth q, and that is increasingly ordered by the
number of equivalent regions that they cover. We then explain how to use these lists to
determine the sets to force. Finally, in Claim 5 we show why this forcing ensures that the
invariant (2) holds.

De�nition 3. The pseudo-depth qp(i) of point p is b
∑

s:p∈s ns(i)/k(i)c, i.e. the number of
replicas covering p at the start of round i, divided by k(i).

Claim 4. If invariant (2) holds at the start of round i, then for all p, qp(i) ≥ dp(i).

Proof. Invariant (2) implies that for each p,
∑

s:p∈s ns(i) ≥ k(i)dp(i). Since dp(i) is an
integer, this implies that qp(i) ≥ dp(i).

Constructing the list Lq: For q = 1, . . . , let Pq be the collection of all points with pseudo-
depth exactly q. Let Cq denote the collection of all replicas that cover some point in Pq. For
a collection of sets, a region is an equivalence class of points that are all covered by exactly
the same sets. We initialize Lq the empty order, and initialize the collection C ′q of remaining
replicas to Cq We construct an ordering Lq of the replicas in Cq by iterating the following
steps.

1. Select a replica r ∈ C ′q that covers the least number of regions.

2. Append the replica r to the end of the list Lq, and remove it from C ′q.

Without loss of generality we can assume that all the replicas corresponding to the
same set appear consecutively in Lq (as removing a replica r does not change the regions
formed by Cq unless r was the last remaining replica of its set). Thus, we can also view

http://jocg.org/

JoCG 7(1), 221–236, 2016 229

Journal of Computational Geometry jocg.org

Lq as an ordering of the sets. Let Lp,q denote the ordered sublist of Lq of sets that cover
point p. Given a point p and a set s ∈ Lp,q we de�ne the rank ρp,q(s) of s as the number of
distinct sets in Lp,q that lie no later than s in the ordering (i.e. there are exactly ρp,q(s)− 1
distinct sets before s in Lp,q).

Using the lists Lq to determine which sets to force: Let sq be the last set s ∈ Lq for
which there is some point p such that p ∈ Pq and p ∈ s for which the following forcing
condition holds: ∑

t∈Lp,q :ρp,q(t)≥ρp,q(s)

min

(
n∗t (i),

k(i+ 1)

b(i+ 1)

)
< k(i+ 1) (q − (ρp,q(s)− 1)) . (4)

The forcing condition says that the total number of replicas of sets that contain p from s
until the end of the list Lq are insu�cient to satisfy the invariant (2) (in the next round)
even if we pick all the replicas of the ρp,q(s)− 1 sets appearing before s. Note that sq may
not exist. If sq exists, then for each list Lp,q all the sets with rank ρp,q(sq) or less are forced.

Claim 5. If the forced sets are selected for the multicover, and residual demands are updated
appropriately, then invariant (2) will hold for all points.

Proof. We consider a pseudo-depth q. We need to show that the sets forced by pseudo-depth
q cause invariant (2) to hold for points of pseudo-depth q, and does not cause invariant (2)
to be violated for other pseudo-depths.

First assume that sq does not exist. Let p be a point with pseudo-depth q. So in
particular the forcing condition does not apply for the set s with ρp,q(s) = 1. Hence∑

s:p∈s
min

(
n∗s(i),

k(i+ 1)

b(i+ 1)

)
≥ k(i+ 1)q ≥ k(i+ 1)dp(i) ≥ k(i+ 1)dp(i+ 1)

and thus invariant (2) holds for p at the start of the next round.

Now assume that sq exists, and again let p be a point with pseudo-depth q. Let s′q
be the set with ρp,q(s

′
q) = ρp,q(sq) + 1 that appears after sq in the ordering Lp,q. The set s

′
q

exists as sq cannot be the last in Lp,q. This is because the invariant (2) after phase i ensures
that |Lp,q| =

∑
s∈Lp,q ns(i) ≥ b(i)q ≥ 2q ≥ q+1, and it must necessarily be that ρp,q(sq) ≤ q

for (4) to hold. As the forcing condition does not hold for p and s′q∑
t∈Lp,q :ρp,q(t)≥ρp,q(s′q)

min

(
n∗t (i),

k(i+ 1)

b(i+ 1)

)
≥ k(i+ 1)

(
q − (ρp,q(s

′
q)− 1)

)
= k(i+ 1) (q − ρp,q(sq)) . (5)

As the sets in Lp,q of rank ≤ ρp,q(sq) will be in the multicover, the residual requirement for
p reduces from dp(i) to at most dp(i)− ρp,q(sq) in round i+ 1. So equation (5) ensures that
the invariant (2) holds for p at the start of round i+ 1.

Finally we show that the forcing for pseudo-depth q does not cause invariant (2) to
be violated for a point p of pseudo-depth not equal to q. If a set s covering p is forced, the

http://jocg.org/

JoCG 7(1), 221–236, 2016 230

Journal of Computational Geometry jocg.org

residual demand dp(i) decreases by 1. So the right hand side of invariant (2) reduces by
k(i+ 1). In contrast, the contribution min(n∗s(i), k(i+ 1)/b(i+ 1)) on the left hand side of
invariant (2) reduces by at most k(i+ 1)/b(i+ 1) ≤ k(i+ 1).

3 The Algorithm Analysis

We �rst show that the algorithm returns a feasible multicover upon termination, and then
focus on bounding the cost of the solution.

3.1 Feasibility

The correctness of the algorithm follows directly by the following argument.

Claim 6. The algorithm returns a valid multi-cover upon termination.

Proof. As invariant (2) holds at the last round r, each point p satis�es

∑
s:p∈s,ns(r)>0

k(r)

b(r)
≥ k(r)dp(r),

and hence is covered by replicas involving at least b(r)dp(r) distinct sets. As b(r) = 2 > 1,
and each set s with ns(r) > 0 is picked upon termination, the solution forms a valid multi-
cover.

3.2 Bounding the cost via Quasi-Uniformity

We now prove that the algorithm produces a quasi-uniform sample, that is, every set is
sampled with probability at most O(log φ(N)) times2 its LP contribution xs.

First we show that Q = O(1) and thus the algorithm only loses an O(1) by rounding
all xs ≥ 1/Q to 1. This calculation is similar to Claim 2 in [6], but we describe it in detail
here for completeness.

Claim 7. If Q is chosen so that b(r) = 2, then Q = O(1).

Proof. As b(i) = Q/
∏i−1
j=1(1+4ε(j)), using 1+x ≤ exp(x), we obtain that b(i) ≥ Q exp(−4

∑
j ε(j)),

where the summation is over all the rounds j until ε(j) ≤ 1/2. Recall that ε(j) =

Θ
(√

log k(j)+log φ(N)
k(j)

)
. As k(j) decreases geometrically as M/2j−1 it follows that ε(j) also

increases geometrically (in particular it varies either as
√

log k(j))/k(j) if k(j) ≥ φ(N) or
as
√

log(φ(N))/k(j) otherwise) and thus
∑

i:ε(i)≤1/2 ε(i) = O(1).

2As N = O(n2) and φ(n) ≤ nd for geometric problem in dimension d, log(φ(N)) = O(log(φ(n))), and
hence we will use them interchangeably.

http://jocg.org/

JoCG 7(1), 221–236, 2016 231

Journal of Computational Geometry jocg.org

We now prove that quasi-uniformity. The key result, which is proved in Lemma 10, is
that the probability that a set is selected (picked) in round i is at most 1

k(i)2
. Given Lemma

10, the rest of the analysis follows along the lines in [6], which we give here for completeness.
In particular, we have the following claim.

Claim 8. If the forcing probability of a replica in round i is at most 1/k(i)2, then the
probability that a set s is picked eventually by the solution is O(xs log φ(N)).

Proof. If s is never forced until the end of the algorithm, the probability that some �xed
replica f of s survives until the end is

∏r−1
j=0(1/2 + ε(j)), which by the calculation in Claim

7 is O(1)/2r, which is O(log φ(N)/M) by the choice of r.

On the other hand, if f (or equivalently s) is selected in round i, then this happens
with probability at most 1/k(i)2 conditioned on having survived until round i. As the
probability of surviving until round i is O(1/2i), the probability that f is ever forced is at
most

r∑
i=1

O(1)

2i
· 1

k(i)2
=

r∑
i=1

O(1) · 2i

M2
= O

(
1

M

)
.

As there are xsM replicas of s in the beginning, the probability that s is picked by the
algorithm, either at termination or due to forcing is O(xsM ·log φ(N)/M) = O(xs log φ(N)).

The rest of the analysis focuses on proving Lemma 10. We begin by stating the
standard Cherno� bounds [1] that we will use repeatedly.

Theorem 9. If X = X1 + . . .+Xn where each Xi is a 0-1 random variables and µ = E[X],
then for any 0 < δ < 1, Pr[X ≤ (1 − δ)µ] ≤ exp(−δ2µ/2) and Pr[X ≥ (1 + δ)µ] ≤
exp(−δ2µ/4).

Lemma 10. The probability that a set u is selected in round i is at most 1
k(i)2

.

Proof. Consider some �xed round i and some set u. For notational convenience, let us
denote k(i) by k. The set u is picked when the forcing rule (4) applies for a particular pair
(p, s) such p ∈ u and p ∈ s, and s appears no earlier than u in the ordering given by Lp,q.
By the construction of the list Lq, a replica of set u was placed in the list when there were at
most k(q+1)f(N, k(q+1))/N = φ(N)(k(q+1))c+1 points p ∈ u (recall that points within a
region are combinatorially identical, so we can assume there is exactly one point per region).
As each point p has pseudo-depth q there are at most k(q+1) sets that can contain it. Thus
there are at most φ(N)(k(q + 1))c+2 pairs (p, s) that can cause u to be picked.

Let us �x a set s and a point p at pseudo-depth q. Let us de�ne the event Ep,q,s that
the pair (p, s) is forced at pseudo-depth q.

We will show that

Pr[Ep,q,s] = O((kqφ(N))−c−4). (6)

http://jocg.org/

JoCG 7(1), 221–236, 2016 232

Journal of Computational Geometry jocg.org

This will imply Lemma 10 as follows. By a union bound over all possible values of
q, and all possible pairs (p, s) it follows that the probability that set u is picked is∑

p,s

∑
q≥1

Pr[Ep,q,s] · φ(N)(k(q + 1))c+2 = O((kqφ(N))−2) = O(1/k2).

We now focus on showing (6). For notational simplicity we will drop p and q from
the subscripts in Lp,q and ρp,q(s). We will also drop i from b(i) and ε(i).

By the de�nition of forcing (4), we can write the event Ep,q,s, that we denote as E
for notational convenience, as

E :
∑

t∈L:ρ(t)≥ρ(s)

min

(
n∗t ,

k(1 + 4ε)

2b

)
<
k

2
(q − (ρ(s)− 1)).

To bound E , it is convenient to de�ne two simpler events E1, E2 and bound their
probabilities.

E1 :
∑

t∈L:ρ(t)≥ρ(s)

n∗t ≤ (1 + ε)

(
kq

2
− k(ρ(s)− 1)

4

)
, (7)

E2 :
∑

t∈L:ρ(t)≥ρ(s)

(
1
n∗t>

k(1+4ε)
2b

)(
n∗t −

k(1 + 4ε)

2b

)
≥ εkq

2
. (8)

These events are useful for the following reason.

Claim 11. For E to happen, it must be that (i) ρ(s) ≤ q, and (ii) at least one of the
following events E1 or E2 must occur.

Proof. If ρ(s) ≥ q + 1, then the right hand side of E is at most 0 and E cannot occur.

For the second part we argue as follows. For any c, d, as min(c, d) = c− 1c>d(c− d),
note that the left hand side of E is identical to the di�erence of the left hand sides of E1 and
E2. Thus if neither E1 or E2 occurs, then

∑
t∈L:ρ(t)≥ρ(s)

min

(
n∗t ,

k(1 + 4ε)

2b

)
≥ (1 + ε)

(
kq

2
− k(ρ(s)− 1)

4

)
− εkq

2
(9)

≥
(
kq

2
− k(ρ(s)− 1)

2

)
(10)

where the last step uses that ε ≤ 1. This implies that E does not occur either.

We now bound Pr[E1] and Pr[E2].

http://jocg.org/

JoCG 7(1), 221–236, 2016 233

Journal of Computational Geometry jocg.org

Bounding Pr[E1]: Let us denoteX =
∑

t∈L:ρ(t)>ρ(s) n
∗
t . Note that as each replica is sampled

with probability 1/2 + ε, X is the sum of independent 0-1 random variables with mean

µ =

(
1

2
+ ε

) ∑
t∈L:ρ(t)≥ρ(s)

nt.

Lemma 12. For any set s,

∑
t∈L:ρ(t)≥ρ(s)

nt ≥
(
kq − k (ρ(s)− 1)

2

)
,

and thus µ ≥ (12 + ε)(kq − k (ρ(s)−1)
2).

Proof. As the invariant (2) holds at the beginning of round i for point p, and the pseudo-
depth of p is q, by de�nition 3 this implies that

∑
t∈L nt ≥ kq. As nt ≤ k/b ≤ k/2 for each

set t and exactly ρ(s)− 1 sets appear before s in L, it follows that∑
t∈L:ρ(t)≥ρ(s)

nt ≥
∑
t∈L

nt − (k/2)(ρ(s)− 1)

which implies the result.

Using the notation above, observe that E1 is simply the event X ≤ (1 + ε) µ
1+2ε =(

1− ε
1+2ε

)
µ. As ε ≤ 1/2 and µ = (1/2 + ε)E[X] ≤ E[X], we have that

Pr[E1] ≤ Pr
[
X ≤

(
1− ε

3

)
E[X]

]
.

By Theorem 9, this is at most

Pr
[
X ≤

(
1− ε

3

)
E[X]

]
≤ exp

(
−ε

2E[X]

18

)
≤ exp

(
−ε

2µ

18

)
≤ exp

(
−ε

2kq

72

)
. (11)

The last inequality holds for the following reason. By Claim 11, (ρ(s)− 1) ≤ q, and
by Lemma 12, µ ≥ (kq − k (ρ(s)−1)

2) which together imply that µ ≥ kq/4.
By the de�nition of ε in (3), we have that ε2kq = Ω((log k + log φ(N))q), and the

constant in Ω(·) can be made arbitrary large by increasing the constant R in (3). Thus by
(11), we have that

Pr[E1] ≤ exp(−Ω((log k + log φ(N))q))

≤ 1/(kqφ(N))−c−5. (12)

http://jocg.org/

JoCG 7(1), 221–236, 2016 234

Journal of Computational Geometry jocg.org

Bounding Pr[E2]: Call set a t bad if n∗t ≥ k(1 + 4ε)/(2b), and let

Yt := 1n∗t>k(1+4ε)/2b

be the 0-1 random variable that indicates t is bad. As n∗t ≤ nt and
∑

t∈L nt ≤ k(q + 1) (by
the de�nition of pseudo-depth), there can be at most 2b(q + 1)/(1 + 4ε) ≤ 4bq candidate
bad sets, and thus ∑

t∈L
Yt ≤ 4bq.

Lemma 13. For any set t, Pr[Yt = 1] ≤ min(ε/16, (kφ(N))−c−5).

Proof. As nt ≤ k/b, and n∗t is obtained by sampling each replica of t with probability
1/2 + ε = (1 + 2ε)/2, E[n∗t] ≤ (1 + 2ε)k/2b. By theorem 9

Pr[Yt = 1] = Pr

[
n∗t ≥

k(1 + 4ε)

2b

]
≤ Pr

[
n∗t ≥

1 + 4ε

1 + ε
E[n∗t]

]
≤ Pr [n∗t ≥ (1 + ε)E[n∗t]] , (13)

where the last step follows as (1 + 4ε)/(1 + 2ε) ≤ (1 + ε) for ε ≤ 1/2.

As n∗t ≤ nt, it must necessarily hold that nt ≥ k(1 + 4ε)/(2b) for t to be bad. So we
can assume for the sets we care about that E[n∗t] = (1/2 + ε)nt ≥ k/8b. Thus (13) gives us
that

Pr[Yt = 1] = exp(−ε2k/32b) ≤ (kφ(N))−2c−12.

The last inequality follows as b = O(1) by Claim 7, and as ε2k = Θ(log k+log φ(N))
by (3) and as we can pick the constant in Θ(·) large enough.

Finally by (3), we have that ε = Ω(1/
√
k) and thus k−2c−12 ≤ ε/16.

Lemma 14. Pr[E2] ≤ Pr[
∑

t Yt ≥ εbq/2].

Proof. We will show that if E2 holds, then at least εbq/2 sets must be bad. As n∗t ≤ nt ≤ k/b,
if ` < εbq/2 sets are bad, then the left hand side of (8) can be at most `(k/b), and thus E2
cannot hold.

As Yt is a 0-1 random variable with probability at most ε/16 and as there are at most
4bq relevant variables (that have non-zero probability of being 1), we have E[

∑
t Yt] ≤ εbq/4.

Thus, by theorem 9 (with δ = 1),

Pr

[∑
t

Yt ≥
εbq

2

]
≤ exp

(
−ε

2b2q2

64

)
. (14)

Let us consider two cases. If b2q ≥ k, then the right hand side of (14) is at most
exp(−ε2kq/64) which by the choice of ε in (3) is at most (kqφ(n))−c−5.

http://jocg.org/

JoCG 7(1), 221–236, 2016 235

Journal of Computational Geometry jocg.org

Otherwise, if b2q ≤ k, then by Lemma 13 and taking union bound over all the 4bq
sets,

Pr[
∑
t

Yt ≥ 1] ≤
∑
t

Pr[Yt = 1] ≤ 4bq · (kφ(N))−2c−12

≤ 4 · (kφ(N))−2c−11 ≤ 4(kqφ(N))−c−5.

Here we use that 4bq ≤ 4b2q ≤ 4k, and the last inequality uses that q ≤ k.
Together this gives

Pr[E2] ≤ O(kqφ(N)−c−5). (15)

By (12),(15) and Claim 11, it follows that (6) holds which implies Lemma 10 as
desired.

References

[1] N. Alon and J. Spencer. The Probabilistic Method. John Wiley, 2008.

[2] Boris Aronov, Esther Ezra, and Micha Sharir. Small-size epsilon-nets for axis-parallel
rectangles and boxes. In ACM Symposium on the Theory of Computing, pages 639�648,
2009.

[3] Nikhil Bansal and Kirk Pruhs. The geometry of scheduling. In IEEE Symposium on

Foundations of Computer Science, pages 407�414, 2010.

[4] Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in �nite VC-
dimension. Discrete & Computational Geometry, 14(4):463�479, 1995.

[5] Deeparnab Chakrabarty, Elyot Grant, and Jochen Könemann. On column-restricted
and priority covering integer programs. In Conference on Integer Programming and

Combinatorial Optimization, pages 355�368, 2010.

[6] Timothy M. Chan, Elyot Grant, Jochen Könemann, and Malcolm Sharpe. Weighted
capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In
ACM-SIAM Symposium on Discrete Algorithms, pages 1576�1585, 2012.

[7] Chandra Chekuri, Kenneth L. Clarkson, and Sariel Har-Peled. On the set multi-cover
problem in geometric settings. In Symposium on Computational Geometry, pages 341�
350, 2009.

[8] Kenneth L. Clarkson and Kasturi R. Varadarajan. Improved approximation algorithms
for geometric set cover. Discrete & Computational Geometry, 37(1):43�58, 2007.

[9] Uriel Feige. A threshold of lnn for approximating set cover. J. ACM, 45(4):634�652,
July 1998.

[10] Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network
problem. Combinatorica, 21(1):39�60, 2001.

http://jocg.org/

JoCG 7(1), 221–236, 2016 236

Journal of Computational Geometry jocg.org

[11] Kasturi Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In
ACM Symposium on the Theory of Computing, pages 641�648, 2010.

[12] Kasturi R. Varadarajan. Epsilon nets and union complexity. In Symposium on Com-

putational Geometry, pages 11�16, 2009.

http://jocg.org/

	Introduction
	Previous Work
	Result and Consequences
	Overview of Algorithm Design and Analysis

	The Algorithm Description
	The Forcing Phase

	The Algorithm Analysis
	Feasibility
	Bounding the cost via Quasi-Uniformity

