
Two Dimensional Range Minimum Queries and
Fibonacci Lattices?

Gerth Stølting Brodal1, Pooya Davoodi2??, Moshe Lewenstein3? ? ?,
Rajeev Raman4, and S. Srinivasa Rao5†

1 MADALGO‡, Aarhus University, Denmark. E-mail: gerth@cs.au.dk
2 Polytechnic Institute of New York University, United States.

E-mail: pooyadavoodi@gmail.com
3 Bar-Ilan University, Israel. E-mail: moshe@cs.biu.ac.il

4 University of Leicester, UK. E-mail: r.raman@leicester.ac.uk
5 Seoul National University, S. Korea. E-mail: ssrao@cse.snu.ac.kr

Abstract. Given a matrix of size N , two dimensional range minimum
queries (2D-RMQs) ask for the position of the minimum element in a
rectangular range within the matrix. We study trade-offs between the
query time and the additional space used by indexing data structures
that support 2D-RMQs. Using a novel technique—the discrepancy prop-
erties of Fibonacci lattices—we give an indexing data structure for 2D-
RMQs that uses O(N/c) bits additional space with O(c log c(log log c)2)
query time, for any parameter c, 4 ≤ c ≤ N . Also, when the entries of
the input matrix are from {0, 1}, we show that the query time can be
improved to O(c log c) with the same space usage.

1 Introduction

The problem we consider is to preprocess a matrix (two dimensional array) of
values into a data structure that supports range minimum queries (2D-RMQs),
asking for the position of the minimum in a rectangular range within the matrix.
More formally, an input is an m×n matrix A of N = m·n distinct totally ordered
values, and a range minimum query asks for the position of the minimum value
in a range [i1 · · · i2] × [j1 · · · j2], where 0 ≤ i1 ≤ i2 ≤ m− 1 and 0 ≤ j1 ≤ j2 ≤
n − 1 (the case when m = 1 is referred to hereafter as 1D-RMQ). Both 1D-

? Part of this work appeared in ESA 2012.
?? Research supported by NSF grant CCF-1018370 and BSF grant 2010437. Research

partly done while the author was a PhD student at MADALGO, Aarhus University,
Denmark.

? ? ? Research supported by BSF grant 2010437 and GIF grant 1147/11. Research partly
done while the author was visiting MADALGO, Aarhus University, Denmark.
† Research partly supported by Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of Education, Science
and Technology (Grant number 2012-0008241).
‡ Center for Massive Data Algorithmics, a Center of the Danish National Research

Foundation.

Table 1. Results for 2D-RMQs. Encoding results marked with ∗.

Reference Query time Space (bits)

[13] O(logN) O(N log2N)

[1, 2] O(1) O(N logN)

[8] Any Ω(N logN)∗

[4] O(1) O(N ·min{m, logn})∗
[4] Any Ω(N logm)∗

[4] O(c log2 c) O(N/c)

[4] Ω(c) O(N/c)

New O(c log c(log log c)2) O(N/c)

and 2D-RMQ problems are fundamental problems with a long history dating
back nearly 25 years [13, 5] that find applications in computer graphics, image
processing, computational biology, databases, etc.

We consider this problem in two models [4]: the encoding and indexing mod-
els. In the encoding model, we preprocess A to create a data structure enc and
queries have to be answered just using enc, without access to A. In the indexing
model, we create an index idx and are able to refer to A when answering queries.
The main measures we are interested in are (i) the time to answer queries (ii) the
space (in bits) taken by enc and idx respectively and (iii) the preprocessing time
(in general there may be a trade-off between (i) and (ii)). Note that an encoding
is only interesting if it uses o(N logN) bits—otherwise we could store the sorted
permutation of A in enc and trivially avoid access to A when answering queries.
We defer to [4] for a further discussion of these models.

The 1D-RMQ problem seems to be well-understood. In the encoding model,
it is known that enc must be of size at least 2N−O(logN) bits [17, 12]. Further-
more, 1D-RMQs can be answered in O(1) time6 using an encoding of 2N +o(N)
bits after O(N)-time preprocessing [12, 7]. In the indexing model, Brodal et al. [4]
showed that an index of size O(N/c) bits suffices to answer queries in O(c) time,
and that this trade-off is optimal.

Following Chazelle and Rozenberg’s work [5], the study of 2D-RMQs was
restarted by Amir et al. [1], who explicitly asked in what ways the 2D- and
1D-RMQ problems differ; this question turned out to have a complex answer:

1. In the indexing model, Atallah and Yuan [2] showed that, just as for 1D-
RMQs, O(N) preprocessing time suffices to get an index that answers 2D-
RMQs in O(1) time, improving upon the preprocessing time of [1]. Their
index size of O(N) words, or O(N logN) bits, was further reduced to O(N)
bits by Brodal et al. [4], while maintaining query and preprocessing times.

2. Demaine et al. [8] showed that, unlike 1D-RMQ, non-trivial (size o(N logN)
bits) encodings for 2D-RMQs do not exist in general. Non-trivial encodings
may only exist when m� n [4], or in expectation for random A [14].

6 This result uses, as do all the results in this paper, the word RAM model of compu-
tation with word size logarithmic in the size of inputs.

2

3. In the indexing model, Brodal et al. [4] showed that with an index of size
O(N/c) bits, Ω(c) query time is needed to answer queries, and gave an index
of size O(N/c) bits that answered queries in O(c log2 c) time.

Thus, the question of whether 1D-RMQs and 2D-RMQs differ in the time-space
trade-off for the indexing model remains unresolved, and we make progress to-
wards this question in this paper.

Our Contributions. We show the following results:

– We give an index of size O(N/c) bits that for any 4 ≤ c ≤ N , takes
O(c log c(log log c)2) time to answer 2D-RMQs, improving upon Brodal et
al.’s result by nearly a log c factor.

– For the case where A is a 0-1 matrix, and the problem is simplified to finding
the location of any 0 in the query rectangle (or else report that there are no
0s in the query rectangle) we give an index of size O(N/c) bits that supports
2D-RMQs in O(c log c) time, improving upon the Brodal et al.’s result by
a log c factor. Note that in the 1D-RMQ case, the 0-1 case and the general
case have the same time-space trade-off [4].

We recursively decompose the input matrix, which in turn partitions a 2D-
RMQ into several disjoint sub-queries, some of which are 3-sided or 2-sided
queries, which have one or two sides of the query rectangle ending at the edge
of a recursive sub-matrix. To deal with 3-sided queries in the general case, we
recursively partition the 3-sided query into a number of disjoint sub-queries in-
cluding 2-sided queries (also called dominance queries), whereas for 0-1 matrices
we make a simple non-recursive data structure. The techniques used to answer
the 2-sided queries in the general case are novel. In the following we explain
Fibonacci lattices that are used in our data structure.

Fibonacci lattices. The sequence of Fibonacci numbers is defined as follows:

f1 = f2 = 1

fn = fn−1 + fn−2; for n ≥ 3 .

Fibonacci lattices are 2D point sets with applications in graphics and image
processing [6, 11] and parallel computing [10], defined as follows:

Definition 1. [15] Let fk be the k-th number in the Fibonacci sequence, where
f1 = f2 = 1. In an n × n grid, the Fibonacci lattice of size n = fk is the two
dimensional point set

{(i, i · fk−1 mod n) | i = 0, . . . , n− 1} .

Figure 1 depicts an example of Fibonacci lattices. A Fibonacci lattice has several
“low-discrepancy” properties including:

3

Fig. 1. The Fibonacci lattice of size 8.

Lemma 1. [11] In an n× n grid, there exists a constant α such that any axis-
aligned rectangle whose area is larger than α ·n, contains at least one point from
the Fibonacci lattice of size n.

We solve 2-sided queries via weighted Fibonacci lattices, in which every point
is assigned a value from A. Such queries are reduced, via new properties of
Fibonacci lattices (which may be useful in other contexts as well), to 2-sided
queries on the weighted Fibonacci lattice. The weighted Fibonacci lattice is
space-efficiently encoded using a succinct index of Farzan et al. [9].

In our data structure, we make use of the property of Fibonacci numbers that
fx divides fy iff x divides y, for x, y ≥ 3. Let the function gcd(x, y) return the
greatest common divisor of the numbers x and y. Therefore, gcd(fk, fk−1) = 1.

Outline. The paper is structured as follows. In Section 2 we explain how to
support 2-sided queries. In Section 3 we show how to use it to support 4-sided
queries, giving our main result, the trade-off of O(c log c(log log c)2) query time
and O(N/c) bits additional space for 2D-RMQs. In Section 4, we consider 0-1
matrices. Section 4 is devoted to 2D-RMQs in 0-1 matrices.

2 2-Sided 2D-RMQs and Fibonacci Lattices

We present data structures that support 2-sided 2D-RMQs within an n × n
matrix. Without loss of generality, assume that the query range is of the form
[0 · · · i] × [0 · · · j], i.e. that 2-sided queries have a fixed corner on the top-left
corner of the matrix. First we present a data structure of size O(n log n) bits
additional space that supports 2-sided queries in O(n log n) time. Although this
result is weaker than that of [4], it gives the main ideas. We then reduce the
query time to O(n) with the same space usage.

A First Solution. Given n, we create a modified Fibonacci lattice as follows.
Choose the Fibonacci lattice of smallest size n′ ≥ n, clearly n′ = O(n). Observe

4

lower envelope of the
enlarged point

lower envelope of
the query

query

Fig. 2. The 2-sided query is divided into two sub-queries by its lower envelope. The
enlarged point above the lower envelope is the FP with minimum priority within the
query range, and its priority comes from an element below its lower envelope.

that no points in the Fibonacci lattice have the same x or y coordinate (this
follows from the fact that gcd(fk, fk−1) = 1). Eliminate all points that do not
lie in [0 · · ·n− 1]× [0 · · ·n− 1] and call the resulting set F ; note that F satisfies
Lemma 1, albeit with a different constant in the O(·) notation. The points of F ,
which specify entries of the matrix, are called the FPs. For any point p in the
matrix, its 2-sided region is the region above and to the left of p. As shown in
Figure 2, a 2-sided query is divided into two disjoint sub-queries by a polygonal
chain (called the lower envelope) derived from all the FPs within the query
range that are not in the 2-sided region of any other FP within the query range.
We find the answer to each of the two sub-queries and return the smaller. The
lower sub-query (the area below the lower envelope) is answered by a brute-force
(scan of all entries in the area), which will be described later. In the following,
we explain how to answer the upper sub-query (area above and on the lower
envelope).

Upper Sub-query. Each FP p ∈ F is assigned a “priority” which equals the value
of the minimum element within its 2-sided region (i.e. p’s priority is the value
of the element returned by a 2-sided query at p). As the upper sub-query region
is entirely covered by the 2-sided regions of all FPs within the query range,
the minimum element in the upper sub-query is the smallest priority of all the
FPs within the upper sub-query. The data structure for the upper sub-query
comprises three parts: the first maps each FP p to the row and column of the
matrix element containing the minimum value in the 2-sided query at p, using
say a balanced search tree.

The next part is an orthogonal range reporting data structure that returns a
list of all FPs that lie in a rectangle [i1 · · · i2]× [j1 · · · j2].

5

Lemma 2. Given the Fibonacci lattice of size n, there exists a data structure of
size O(n) bits that supports 4-sided orthogonal range reporting queries in O(k)
time, where k is the number of reported points.

Proof. We report all the FPs within the query rectangle by sweeping a horizontal
line from the top of the rectangle towards the bottom in k steps, reporting one
FP at each step in O(1) time. The line initially jumps down from above the
rectangle to the row in which the top-most FP within the rectangle is located.
In subsequent steps, we move the sweep line from the row i containing the just-
reported FP down to a row i + x containing the next FP within the query
rectangle. Notice that the function L(i) = i · fk−1 mod n is invertible, and thus
row and column indexes in the lattice can be converted to each other in constant
time.

Let the columns j` and jr be the left and right sides of the query. The point
in row i+ x is within the rectangle if j` ≤ L(i+ x) = (L(i) +L(x)) mod n ≤ jr;
thus L(x) ≥ j` − L(i) + n or L(x) ≤ jr − L(i). Let Z1(i) = j` − L(i) + n
and Z2(i) = jr − L(i). Since there is no point between the rows i and i + x
within the rectangle, therefore x must be the minimum positive number such
that L(x) ≥ Z1(i) or L(x) ≤ Z2(i). We preprocess L(i) for i ∈ [1 · · ·n − 1] into
a data structure to find x in O(1) time.

Construct an array Linv[0 · · ·n − 1], where Linv[L(x)] = x. We find the
minimum in each of the ranges [Z1(i) · · ·n − 1] and [0 · · ·Z2(i)], and we return
the smaller one as the right value for x. To do this, we encode Linv with a 1D-
RMQ structure of size O(n) bits that answers queries in O(1) time [16, 12, 7]. ut

The final part solves the following problem: given a point q, find the point
p ∈ F in the 2-sided region specified by q with the smallest priority. For this,
we use a succinct index by Farzan et al. [9, Corollary 1], which takes F and the
priorities as input, preprocesses it and outputs a data structure D of size O(n)
bits. D encodes priority information about points in F , but not the coordinates
of the points in F . Given a query point p, D returns the desired output q, but
while executing the query, it calls the instance of Lemma 2 a number of times to
retrieve coordinates of relevant points. The index guarantees that each call will
report O(log n) points. The result is stated as follows:

Lemma 3. [9, Corollary 1] Given n points in 2D rank space, where each point
is associated with a priority, there exists a succinct index of size O(n) bits that
supports queries asking for the point with minimum priority within a 2-sided
range in O(log log n · (log n + T)) time. Here T is the time taken to perform
orthogonal range reporting on the n input points, given that the index guarantees
that no query it asks will ever return more than O(log n) points. The space bound
does not include the space for the data structure for orthogonal range reporting.

We now put things together. To solve the upper sub-query, we use Lemmas 2
and 37 to find the FP with lowest priority in O(log n log log n) time (by Lemma 2

7 The points in F are technically not in 2D rank space, as some rows may have no
points from F ; this can be circumvented as in [3] (details omitted).

6

query

doubling
height

2i · x
2i−1 · x

doubling
height

Fig. 3. The cross sign is the bottom-right corner of a 2-sided query.

we can use T = O(log n) in Lemma 3). Since each FP is mapped to the location
of the minimum-valued element that lies in its 2-sided region, we can return the
minimum-valued element in the upper query region in O(log n) further time. The
space usage is O(n) bits for Lemmas 2 and 3, and O(n log n) bits for maintaining
the location of minimum-valued elements (the mapping).

Corollary 1. The upper sub-query can be solved in O(log n log log n) time using
O(n log n) bits.

Lower Sub-Query. The lower sub-query is answered by scanning the whole re-
gion in time proportional to its size. The following lemma states that its size is
O(n log n), so the lower sub-query also takes O(n log n) time (the region can be
determined in O(n) time by a sweep line similar to Lemma 2).

Lemma 4. The area of the lower sub-query region is O(n log n).

Proof. Consider O(log n) axis-aligned rectangles each with area α · n, with dif-
ferent aspect ratios, where the bottom-right corner of each rectangle is on the
query point, where α is the constant of Lemma 1. By Lemma 1, each of the
rectangles has at least one FP (see Figure 3).

Let x× (αn/x) be the size of the first rectangle such that it contains the top-
most FP on the lower envelope. Let (2ix)× ((αn)/(2ix)) be the size of the other
rectangles, for i = 1 · · · dlog(αn/x)e. Doubling the height of each rectangle, i.e.
taking rectangle (2i+1x)× ((αn)/(2ix)) instead of (2ix)× ((αn)/(2ix)), ensures
that all the rectangles together cover the area below the lower envelope, and this
does not increase the size of the rectangles asymptotically, thus the total area is
O(α · n · log n) = O(n log n). ut

From Corollary 1 and Lemma 4 we obtain:

7

Lemma 5. There exists an index of size O(n log n) bits that can answer 2-sided
2D-RMQs within an n× n matrix in O(n log n) query time.

Improving Query Time to O(n). The bottleneck in the query time of
Lemma 5 is the brute force algorithm, which reads the entire region below the
lower envelope. To reduce the size of this region to O(n), we increase the number
of FPs in the grid from n to at most n log n.

Lower Sub-Query. We create a dense Fibonacci lattice of at most n log n FPs
in the n × n grid A as follows. In the preprocessing of A, we expand A to an
n log n×n log n grid A′ by expanding each cell to a log n× log n block. We make
a (modified) Fibonacci lattice of size n log n in A′. In the next step, we shrink
the Fibonacci lattice as follows, such that it fits in A. Put a FP in a cell of A
iff the block of A′ corresponding to the cell has at least one FP. Notice that the
number of FPs in A is at most n log n. The following lemma states that the area
below the lower envelope, after growing the number of FPs to n log n, is O(n).

Lemma 6. In the dense FP set, the area of the lower sub-query is O(n).

Proof. Recall that A and A′ are respectively the n × n and n log n × n log n
grids. We can deduce from Lemma 4 that the area below the lower envelope
in the Fibonacci lattice of size n log n in A′ is O(n log2 n). We prove that the
area below the lower envelope in A is O(n) by contradiction. Suppose that the
area is ω(n). Since each element in A corresponds to a log n× log n block in A′,
the same region in A′ has area ω(n log2 n), and it can be easily shown that this
region is also below the lower envelope in A′. This is a contradiction. ut

Upper Sub-Query. We proceed as in the previous subsection, but with a space
budget of O(n log n) bits. We begin by modifying Lemma 2 to work with the
dense Fibonacci lattices:

Lemma 7. Given the dense Fibonacci lattice of size at most n log n within
an n×n grid A, there exists a data structure of size O(n log n) bits that supports
orthogonal range reporting queries in O(k log2 n) time, where k is the number of
reported points.

Proof. Make the data structure D of Lemma 2 for the n log n× n log n grid A′.
Recall that D supports reporting queries in O(k) time using O(n log n) bits. Now
given a query range within A, extend it to A′. While D reports each point in
the query within A′, change the coordinates of the point to the corresponding
coordinates in A, and do not report it if the point has been already reported.
Since each of the k points in the query within A can correspond to at most log2 n
points in A′, the query time is O(k log2 n). ut
From Lemmas 7 and 3, we can find the FP with lowest priority in O(n log n) bits
and O(log3 n log log n) time8. Unfortunately, the mapping from FPs to minimum

8 Again, when using Lemma 3, the fact that the dense FP points are not in 2D rank
space is circumvented as in [3].

8

values now requires O(n(log n)2) bits, which is over budget. For this, recall that
the priority of each FP p was previously the minimum value in the 2-sided
region of p. Instead of mapping p to the position of this minimum, we change
the procedure of assigning priorities as follows. Suppose the minimum value in
p’s 2-sided region is x. If there is another FP q contained in p’s 2-sided region,
such that x is also the minimum in q’s 2-sided region, then we assign p a priority
of +∞; otherwise we assign p a priority equal to x (ties between priorities of FPs
are broken arbitrarily). This ensures that entry containing the value equal to the
priority of p always comes from below the lower envelope of p: once we obtain a
FP with minimum priority within the sub-query, we read the entire region of the
lower envelope of the FP to find the position that its priority comes from (see
Figure 2). This can be done in O(n) time, by Lemma 6. We have thus shown:

Lemma 8. There exists a data structure of size O(n log n) bits additional space
that can answer 2-sided 2D-RMQs within an n× n matrix in O(n) query time,
excluding the space to perform range reporting on the dense FP set.

3 Improved Trade-off for 2D-RMQs

We present a data structure of size O(N/c · log c log log c) bits additional space
that supports 2D-RMQs in O(c log log c) time in a matrix of size N , for any c ≤
N . Substituting c with O(c log c log log c) gives a data structure of size O(N/c)
bits additional space with O(c log c(log log c)2) query time.

We first reduce the problem to answering queries that are within small c× c
matrices, and then we explain how we can answer such queries. Answering these
queries is in fact the bottleneck of our solution. The reduction algorithm spends
O(N/c) bits additional space and O(c) query time (later in Lemma 10). We
show how to answer each query within a c× c matrix in O(c log log c) time using
O(c log c log log c) bits additional space. The reduction algorithm makes this sub-
structure for O(N/c2) disjoint sub-matrices of size c × c. This space and query
time dominate the bounds of the reduction algorithm, since we need to make
this data structure for O(N/c2) disjoint sub-matrices of size c× c. We will make
use of the following result in our solution.

Lemma 9. [4] Given a matrix of size N , there exists a data structure supporting
2D-RMQs in the matrix in O(1) time using O(N) bits additional space.

3.1 Reduction to Queries within Matrices of size c × c

We show how to reduce general 2D-RMQs in a matrix of size N to 2D-RMQs
in small matrices of size c× c. We partition the matrix into blocks of size 1× c,
we build a data structure D1 of Lemma 9 for the matrix M of size m × n/c
containing the minimum element of each block, and then we delete M . The size
of D1 is O(N/c) bits, and whenever its query algorithm wants to read an element
from M , we read the corresponding block and find its minimum in O(c) time.
Similarly, we make another partitioning of the original matrix into blocks of size

9

c× 1, and build another data structure D2 of Lemma 9 on the minimum of the
blocks. Now, we explain how to make the reduction using D1 and D2.

The two partitionings together divide the matrix into O(N/c2) square blocks
each of size c× c. If a query is contained within one of these square blocks, the
reduction is done. If a query is large, it spans over several square blocks; the first
partitioning divides the query into three vertical sub-queries: the middle part
that consists of full 1× c blocks, and the left and right sub-queries that contain
partial 1 × c blocks. We find the minimum element of the middle part in O(c)
query time using D1. Each of the other two parts is similarly divided into three
parts by the second partitioning: the middle part which consists of full c × 1
blocks, and the other two parts that contain partial c × 1 blocks. The middle
part can be answered using D2 in O(c) query time, and the other two parts are
contained in square blocks of size c× c. We sum up in the following lemma:

Lemma 10. If, for a matrix of size c× c, there exists a data structure of size S
bits additional space that answers 2D-RMQs in time T , then, for a rectangular
matrix of size N , we can build a data structure of size O(N/c + N/c2 · S) bits
additional space that supports 2D-RMQs in time O(c+ T).

3.2 2D-RMQs within Matrices of size c × c

We present a recursive data structure of size O(c log c log log c) bits additional
space that supports 2D-RMQs within a c× c matrix in O(c log log c) time. Let r
denote the size of the recursive problem with an input matrix of size r×r (at the
top level r = c). We assume that c is a power of 2. We divide the matrix into r/k
mutually disjoint horizontal slabs of size k×r, and r/k mutually disjoint vertical
slabs of size r × k. A horizontal and a vertical slab intersect in a k × k square.
We choose k the power of 2 such that k/2 < d√re ≤ k; observe that r/k ≤ k,
k = Θ(

√
r), and k2 = Θ(r).

We recurse on each horizontal or vertical slab. A horizontal slab of size k×r is
compressed to a k×k matrix by dividing each row into k groups of k consecutive
elements, and representing each group by its minimum element. A vertical slab
is also compressed to a k × k matrix similarly. The compressed matrix is not
represented explicitly. Instead, if a solution to a recursive k × k problem wants
to read some entry x from its input (which is a compressed k × k matrix), we
scan the entire sub-array that x represents to find the location of x in the r × r
matrix; the size of the sub-array will be called the weight of x. Note that all
values in a recursive sub-problem will have the same weight denoted by w. The
recursion terminates when r = O(1).

A given query rectangle is decomposed into a number of disjoint 2-sided,
3-sided, and 4-sided queries (see Figure 4). In addition to the (trivial) base case
that r = O(1), there are three kinds of terminal queries which do not generate
further recursive problems: small queries contained within the k×k squares that
are the intersection of slabs, also called micro queries; 4-sided square-aligned
queries whose horizontal and vertical boundaries are aligned with slab bound-
aries; and 2-sided queries. To answer micro queries, we simply scan the entire

10

r

k

small query within a k × k
square (micro query)

3-sided query within a slab

4-sided square-aligned query

4-sided query within a slab
(answered recursively)

Fig. 4. The recursive decomposition. Two different queries which are decomposed in
two different ways.

query range in O(k2w) = O(rw) time without using any additional space. For
each of the recursive problems, we store a data structure of Lemma 8 that an-
swers 2-sided queries in O(rw) time using O(r log r) bits additional space.

4-Sided Square-Aligned Queries. To answer 4-sided square-aligned queries in
an r× r recursive problem, we divide the r× r matrix into k2 disjoint blocks of
size k×k in the preprocessing. We make a k×k rank-matrix out of the minimum
element of the blocks, and then replace each element in the rank-matrix by its
rank among all the elements in the rank-matrix. The rank-matrix is stored using
O(k2 log k) = O(r log r) bits. A square-aligned query is first converted into a
4-sided query within the rank-matrix, which can be answered by brute force in
O(k2) = O(r) time. This determines the block containing the minimum within
the query range. Then we find the position of the minimum within the block in
O(k2w) = O(rw) time by scanning the block.

Query Algorithm. The recursion terminates when r = O(1), or after log log c−
O(1) levels (recall that k = Θ(

√
r)); no data is stored with these terminal prob-

lems at the base of the recursion, and they are solved by brute-force.
A query, depending on its size and position, is decomposed in one of the

following two ways (Figure 4): (1) decomposed into at most four micro queries,
at most one 4-sided square-aligned query, and at most four 3-sided queries each
within a slab; (2) decomposed into at most two micro queries, and at most one
4-sided query within a slab.

As previously described, micro queries and 4-sided square-aligned queries
are terminals. A 4-sided query within a slab is answered recursively on the com-
pressed matrix of the slab. A 3-sided query within a slab is converted to a 3-sided
query within the compressed matrix of the slab, and that is answered using our
decomposition as follows (see Figure 5). A 3-sided query within an r×r matrix is

11

r

k

3-sided square-aligned query

2-sided query within a slab

small query within a k×k
square (micro query)

3-sided query within a slab
(answered recursively)

Fig. 5. The recursive decomposition of 3-sided queries.

decomposed into at most two micro queries, at most one 3-sided square-aligned
query, at most two 2-sided queries each within a slab, and at most one 3-sided
query within a slab. As previously described, micro queries, and 4-sided (includ-
ing 3-sided) square-aligned queries are terminals. Also a 2-sided query within a
slab is converted into a 2-sided query within the compressed matrix of the slab,
and thus becomes a terminal query. A 3-sided query within a slab is answered
recursively on the compressed matrix of the slab. In Section 2, we describe how
we answer 2-sided queries in O(rw) time using O(r log r) bits.

Lemma 11. Given a c× c matrix, there exists a data structure supporting 2D-
RMQs in O(c log log c) time using O(c log c log log c) bits additional space.

Proof. The query time of the algorithm for an r × r problem is given by

T (r, w) = O(rw) + T (k, kw) ,

where k = Θ(
√
r). The recurrence is terminated with O(w) cost when r =

O(1). Since the product rw is maintained across the recursive calls, and the
depth of the recursion is O(log log c), it follows that T (c, 1) = O(c log log c).

The space usage of the data structure for an r × r problem is given by

S(r) = O(r log r) + (2r/k) · S(k) ,

where k = Θ(
√
r), which solves to S(r) = O(r log r log log r). ut

Theorem 1. There exists a data structure of size O(N/c) bits additional space
that supports 2D-RMQs in a matrix of size N in O(c log c(log log c)2) query time,
for a parameter c ≤ N .

Proof. Lemmas 10 and 11 together imply a data structure of size O(N/c′ ·
log c′ log log c′) bits additional space with O(c′ log log c′) query time, for a pa-
rameter c′ ≤ N . Substituting c′ with O(c log c log log c)) proves the claim. ut

12

4 2D-RMQs in 0-1 Matrices

In this section we consider the binary case, where the RMQ query is essentially
an “emptiness” query: is there a 0 value in the query rectangle? We present
results for both the 4-sided and 2-sided cases.

4.1 The 4-sided case

We first present a data structure of size O(N/c) bits additional space that sup-
ports 2D-RMQs in O(c log c) time within a 0-1 matrix of size N . Analogous to
Section 3, the problem is reduced to 2D-RMQs in c×c matrices using Lemma 10.
We show that a 2D-RMQ in a c × c matrix can be answered in O(c) query
time using O(c log c) bits additional space. This implies a data structure of size
O(N/c · log c) bits with O(c) query time, which then leads to our claim after
substituting c with c log c.

Lemma 12. There exists a data structure of size O(c log c) bits additional space
that can answer 2D-RMQs within a c× c matrix in O(c) time.

Proof. The data structure is recursive and similar to the one in Section 3.2,
with a few differences. Let r × r denote the size of the matrix for the recursive
sub-problem, and k = Θ(

√
r). Similar to Section 3.2, a 4-sided query, depending

on its size and position, is decomposed into one of the following two ways. (1)
decomposed into at most four micro queries, at most one 4-sided square-aligned
query, and at most four 3-sided queries each within a slab; (2) decomposed into
at most two micro queries, and at most one 4-sided query within a slab. We solve
(1) in a non-recursive way, whereas we approach (2) recursively, the recursion
continues until (2) changes to (1) at some level of the recursion.

(1) Similar to Section 3.2, we answer each micro sub-query by brute force
(scanning the whole sub-query region). For 4-sided square-aligned queries, as
opposed to using the rank-matrix (which takes O(r · log r) bits), we instead
make the data structure of Lemma 9 for the rank-matrix using O(r) bits. This
and the following 3-sided sub-structure together can solve (1) using O(r) bits
with O(rw) query time.

We present a non-recursive structure for 3-sided queries, and thus yield a
non-recursive solution for (1). The sub-structure supports 3-sided queries in O(r)
query time using O(r) bits additional space. This sub-structure is much simpler
than the recursive structure we use in Section 3.2 for 3-sided queries (the latter
provides O(r log log r) query time and O(r log r) bits space). Assume without
loss of generality that the 3-sided query is open to the left. We always return the
position of the left-most 0 within the query. If such an element does not exist, we
return an arbitrary position within the query. In the preprocessing of a matrix,
we make an array A of size r such that A[i] stores the column-number of the left
most 0 within the i-th row of the matrix. We build an encoding data structure
of size O(r) bits that supports 1D-RMQs in A in constant time, and then we
delete A. To answer the 3-sided query, we first find the row j that contains the

13

left most 0 within the query, using the 1D-RMQ structure of A in O(1) time.
Now that we have the row j, we scan the row j in O(r) time to find the position
of the left-most zero within the query, if a 0 exists within the query; otherwise
(containing 1) we return an arbitrary position within the query.

(2) A 4-sided query within a slab is reduced to a 4-sided query within the
compressed slab (a k × k square) and is answered recursively. We answer each
micro sub-query by brute force (scanning the whole sub-query region). We show
that the total area consisting all the micro sub-queries in all the recursive levels
altogether is O(c) in the worst case. This implies that the query time of our data
structure is O(c), and the space given by S(r) = O(r)+(2r/k) ·S(k) is O(c log c)
bits.

Recall that (from Section 3.2) at each recursive level of the problem, all
entries in the matrix have a weight. In the first level, the weight is w(1) = 1;
in the second level, the weight increases to w(2) = c1/2, and in the i-th level

w(i) = c1/2
i−1 ·∏i−1

j=1 w(j). Notice that the weight is increasing exponentially
along the levels. At each level, the query can occur within either a horizontal or
a vertical slab. A query that occurs in a horizontal slab of some level is called
a horizontal query and that level is called a horizontal level. Let wh(i) denote
the horizontal-weight in the i-th horizontal level which is the weight that only

increases in horizontal levels, that is, wh(i) = c1/2
l−1 ·∏i−1

j=1 wh(j), where the i-th
horizontal level occurs in level l. Vertical levels, vertical queries, and vertical-
weights wv(i) are defined analogously. Let `h and `v be the number of horizontal
and vertical levels respectively.

We only consider the horizontal micro sub-queries, as the vertical ones are
analogous. Also the horizontal micro sub-queries are either in the left or right
side of the original query; we compute the total area of the horizontal micro sub-
queries on the left side, as the other side is analogous. We bound the size of this
area on the left side by the area of the smallest rectangle R that encloses all the
horizontal micro sub-queries on the left side. We bound the width and height of
R separately, and then multiply them. It is easy to see that the width of R equals
the sum of the width of all the horizontal micro sub-queries, and the height of R
equals the sum of the height of all the vertical micro sub-queries plus the height
of the sub-query of type (1) that is left after the last level (see Fig.). Regarding
the fact that the horizontal/vertical-weights are increasing exponentially along
the levels, we show that each of these sums is dominated by the width or height
in the last corresponding level.

Observe that the width of a micro sub-query in the i-th horizontal level
is at most wh(i). Since the weights increase exponentially, the width of R is
dominated by the width of the micro sub-query in the `h-th horizontal level,
that is O(wh(`h)). The height of R is dominated by the height of the sub-query
of type (1) arising after the last recursive level, using the same argument. If the
last recursive level ` is a horizontal level, then the height of R is dominated by

O(c1/2
`−1 ·wv(`v)). Otherwise, the height of R is dominated by O(c1/2

lh−1 ·wv(lv),
where the last horizontal level occurs in level lh and the lv-th vertical level is
the last vertical level before lh. Regarding the fact that c1/2

i−1 · w(i) = O(c)

14

(0,0)

(8,6)

(a) (b)

Fig. 6. (a) An example (5, 7) staircase. The bit-string B corresponding to this staircase
is 00110001110100. (b) The approximate version of the (n, n) staircase is shaded in:
marked squares are shown as blue.

and wh(`h) ·wv(`v) = w`, in both cases the product of width and height of R is
dominated by O(c). ut

Theorem 2. For a matrix of size N with elements from {0, 1}, there exists a
data structure of size O(N/c) bits additional space that supports 2D-RMQs in
O(c log c) time, for a parameter c ≤ N .

4.2 The 2-sided case

We now consider the 2-sided case. It is helpful to describe an auxiliary data
structure first. For integers r, s > 0, let an (r, s)-staircase S be a sequence of
integers (0, 0) = (x0, y0), (x1, y1), . . . , (xr+s+2, yr+s+2) = (r+ 1, s+ 1), such that
for all i = 0, . . . , r + s + 1, exactly one of xi+1 = xi + 1 or yi+1 = yi + 1 holds.
As illustrated in Fig. 6(a), S can represent an arbitrary monotone boundary
dividing an r× s grid into two parts. Given a query point (x, y) ∈ [1..r]× [1..s],
we wish to determine if (x, y) is on, above, or below S. We observe:

Proposition 1. An (r, s)-staircase can be represented in O(r + s) bits so that
given (x, y) ∈ [1..r]×[1..s], we can determine whether (x, y) is on, below or above
S in O(1) time.

Proof. We encode S as a bit-string B = b1b2 . . . br+s+2 where bi = 1 if xi =
xi−1 + 1 and 0 otherwise. It is easy to see that if y′ = select1(B, x)−x+ 1 and
y′′ = select1(B, x+ 1)− 1 then (x, y′) and (x, y′′) are the point in S with the
lowest and highest second coordinate among points in S with first coordinate

15

equal to x. Thus (x, y) is below S if y < y′, on S iff y′ ≤ y ≤ y′′ and above S
otherwise. ut

We now show the following:

Theorem 3. For an n×n matrix with elements from {0, 1}, there exists a data
structure of size O(n/c) bits additional space that supports 2D-RMQs in O(c2)
time, for a parameter 1 ≤ c ≤ n.

Proof. We first determine the maximal 0s in the input: these determine a bound-
ary such that query points above the boundary have a null answer, while points
below or on the boundary can be answered by giving the location of one of the
maximal 0s on the boundary.

Assuming without loss of generality that c divides n, we again divide the n×n
input into c× c blocks. Shrinking each c× c block to a single entry, we call each
block that contains a maximal 0 a marked block. The marked blocks determine
an approximate boundary, which is an (n/c, n/c)-staircase S (see Fig 6). We
represent the approximate boundary using Proposition 1. In addition to the
bit-vector B that is used to represent the staircase in Proposition 1 we store a
bitvector B′, also of length |S|, whose i-th bit is 1 iff the i-th entry of S represents
a marked block.

A query (x, y) is answered as follows. If (x, y) is above S, the null answer is
returned. If (x, y) is on S, then let b be the c × c block containing (x, y) and
let b1 and b2 represent the first (if any) marked blocks strictly before and after
b in S; b1 and b2 can be found in O(1) time by rank operations on B′. It is
easy to see that by scanning b, b1 and b2 in O(c2) time, we can determine the
intersection of the boundary with b. This allows us to either return a maximal 0
in b as an answer, determine that the query point (x, y) is above the boundary
and return a null answer, or that a maximal 0 in either b1 or b2 is the answer.
The case where (x, y) is below S is similar. ut

Remark 1. As we only need to access blocks on the boundary, we can choose
c = 1 in Theorem 3. In this case, the bit-vectorB′ effectively encodes the contents
of the blocks on the boundary, and we can dispense with accesses to the input
matrix.

References

1. A. Amir, J. Fischer, and M. Lewenstein. Two-dimensional range minimum queries.
In Proc. 18th Annual Symposium on Combinatorial Pattern Matching, volume 4580
of LNCS, pages 286–294. Springer Verlag, 2007.

2. M. J. Atallah and H. Yuan. Data structures for range minimum queries in mul-
tidimensional arrays. In Proc. 20th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 150–160. SIAM, 2010.

3. P. Bose, M. He, A. Maheshwari, and P. Morin. Succinct orthogonal range search
structures on a grid with applications to text indexing. In Proc. 11th International
Symposium on Algorithms and Data Structures, pages 98–109, 2009.

16

4. G. S. Brodal, P. Davoodi, and S. S. Rao. On space efficient two dimensional range
minimum data structures. Algorithmica, 63(4):815–830, 2012.

5. B. Chazelle and B. Rosenberg. Computing partial sums in multidimensional ar-
rays. In Proc. 5th Annual Symposium on Computational Geometry, pages 131–139.
ACM, 1989.

6. B. Chor, C. E. Leiserson, R. L. Rivest, and J. B. Shearer. An application of
number theory to the organization of raster-graphics memory. Journal of ACM,
33(1):86–104, 1986.

7. P. Davoodi, R. Raman, and S. S. Rao. Succinct representations of binary trees
for range minimum queries. In Proc. 18th Annual International Conference on
Computing and Combinatorics, 2012. To appear.

8. E. D. Demaine, G. M. Landau, and O. Weimann. On Cartesian trees and range
minimum queries. In Proc. 36th International Colloquium on Automata, Languages
and Programming, volume 5555 of LNCS, pages 341–353. Springer Verlag, 2009.

9. A. Farzan, J. I. Munro, and R. Raman. Succinct indices for range queries with
applications to orthogonal range maxima. In Proc. 39th International Collo-
quium on Automata, Languages and Programming, 2012. To appear, available
as arXiv:1204.4835v1 [cs.DS].

10. A. Fiat and A. Shamir. Polymorphic arrays: A novel VLSI layout for systolic
computers. Journal of Computer and System Sciences, 33(1):47–65, 1986.

11. A. Fiat and A. Shamir. How to find a battleship. NETWORKS, 19:361–371, 1989.
12. J. Fischer and V. Heun. Space-efficient preprocessing schemes for range minimum

queries on static arrays. SIAM J. Comput., 40(2):465–492, 2011.
13. H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques

for geometry problems. In Proc. 16th Annual ACM Symposium on Theory of
Computing, pages 135–143. ACM, 1984.

14. M. J. Golin, J. Iacono, D. Krizanc, R. Raman, and S. S. Rao. Encoding 2D range
maximum queries. In In Proc. 22nd International Symposium on Algorithms and
Computation, volume 7074 of LNCS, pages 180–189. Springer Verlag, 2011.

15. J. Matousek. Geometric Discrepancy. Algorithms and Combinatorics. Springer
Verlag, 1999.

16. K. Sadakane. Succinct data structures for flexible text retrieval systems. Journal
of Discrete Algorithms, 5(1):12–22, 2007.

17. J. Vuillemin. A unifying look at data structures. Communications of the ACM,
23(4):229–239, 1980.

17

