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Abstract. After a sequence of improvements Boyd, Sitters, van der Ster, and Stougie proved
that any 2-connected graph whose n vertices have degree 3, i.e., a cubic 2-connected graph, has a
Hamiltonian tour of length at most (4/3)n, establishing in particular that the integrality gap of the
subtour LP is at most 4/3 for cubic 2-connected graphs and matching the conjectured value of the
famous 4/3 conjecture. In this paper we improve upon this result by designing an algorithm that
finds a tour of length (4/3− 1/61236)n, implying that cubic 2-connected graphs are among the few
interesting classes of graphs for which the integrality gap of the subtour LP is strictly less than 4/3.
With the previous result, and by considering an even smaller ε, we show that the integrality gap of
the TSP relaxation is at most 4/3− ε even if the graph is not 2-connected (i.e. for cubic connected
graphs), implying that the approximability threshold of the TSP in cubic graphs is strictly below
4/3. Finally, using similar techniques we show, as an additional result, that every Barnette graph
admits a tour of length at most (4/3 − 1/18)n.

1. Introduction

The traveling salesman problem (TSP) in metric graphs is a landmark problem in combinatorial
optimization and theoretical computer science. Given a graph in which edge-distances form a met-
ric the goal is to find a tour of minimum length visiting each vertex at least once. In particular,
understanding the approximability of the TSP has attracted much attention since Christofides [7]
designed a 3/2-approximation algorithm for the problem. Despite the great efforts, Christofides’
algorithm continues to be the current champion, while the best known lower bound, recently ob-
tained by Lampis [12] states that the problem is NP-hard to approximate within a factor 185/184,
which improved upon the work of Papadimitriou and Vempala [16]. Very recently Karpinski and
Schmied [10] obtain explicit inapproximability bounds for the cases of cubic and sub cubic graphs.
A key lower bound to study the approximability of the problem is the so-called subtour elimination
linear program which has long been known to have an integrality gap of at most 3/2 [25]. Although
no progress has been made in decreasing the integrality gap of the subtour elimination LP, its value
is conjectured to be 4/3 (see e.g. Goemans [9]).

1.1. Recent related work. There have been several improvements for important special cases of
the metric TSP in the last couple of years. Oveis Gharan, Saberi, and Singh [15] design a (3/2− ε)-
approximation algorithm for the case of graph metrics, while Mömke and Svensson [13] improve
that to 1.461, using a different approach. Mucha [14] then showed that the approximation guarantee
of the Mömke and Svensson algorithm is 13/9. Finally, still in the shortest path metric case, Sebö
and Vygen [20] find an algorithm with a guarantee of 7/4. These results in particular show that
the integrality gap of the subtour LP is below 3/2 in case the metric comes from a graph. Another
notable direction of recent improvements concern the s − t path version of the TSP on arbitrary
metrics, where the natural extension of Christofides’ heuristic guarantees a solution within a factor
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of 5/3 of optimum. An, Shmoys, and Kleinberg [2], find a (1 +
√

5)/2-approximation algorithm
this version of the TSP, while Sebö [19] further improved this result obtaining a 8/5-approximation
algorithm.

This renewed interest in designing algorithms for the TSP in graph metrics has also reached the
case when we further restrict to graph metrics induced by special classes of graphs. Gamarnik,
Lewenstein, and Sviridenko [8] show that in a 3-connected cubic graph on n vertices there is always
a TSP tour –visiting each vertex at least once– of length at most (3/2− 5/389)n, improving upon
Christofides’ algorithm for this graph class. A few years later, Aggarwal, Garg, and Gupta [1]
improved the result obtaining a bound of (4/3)n while Boyd et al. [5] showed that the (4/3)n
bound holds even if only 2-connectivity assumed. Finally, Mömke and Svensson [13] approach
allows to prove that the (4/3)n bound holds for subcubic 2-connected graphs. Interestingly, the
latter bound happens to be tight and thus it may be tempting to conjecture that there are cubic
graphs on n vertices for which no TSP tour shorter than (4/3)n exists. In this paper we show that
this is not the case. Namely, we prove that any 2-connected cubic graph on n vertices has a TSP
tour of length (4/3 − ε)n, for ε = 1/61236 > 0.000016. We further refine this result and establish
that for cubic graphs, not necessarily 2-connected, there exists a 4/3− ε′ approximation algorithm
for the TSP, where ε′ = ε/(3 + 3ε).

On the other hand, Qian, Schalekamp, Williamson, and van Zuylen [17] show that the integrality
gap of the subtour LP is strictly less than 4/3 for metrics where all the distances are either 1 or 2.
Their result, based on the work of Schalekamp, Williamson, and van Zuylen [18], constitutes the
first relevant special case of the TSP for which the integrality gap of the subtour LP is strictly less
than 4/3. Our result implies in particular that the integrality gap of the subtour LP is also strictly
less than 4/3 in connected cubic graphs.

From a graph theoretic viewpoint, our result can also be viewed as a step towards resolving Bar-
nette’s [4] conjecture, stating that every bipartite, planar, 3-connected, cubic graph is Hamiltonian
(a similar conjecture was first formulated by Tait [21], then refuted by Tutte [23], then reformulated
by Tutte and refuted by Horton, see e.g., [6], and finally reformulated by Barnette more than 40
years ago). It is worth mentioning that for Barnette’s graphs (i.e., those with the previous proper-
ties) on n vertices it is straightforward to construct TSP tours of length at most (4/3)n, however
no better bound was known. Of course, our result improves upon this, and furthermore, in this
class of graphs our bound improves to (4/3− 1/18)n < 1.28n.

1.2. Our approach. An Eulerian subgraph cover (or simply a cover) is a collection Γ = {γ1, . . . , γj}
of connected multi-subgraphs of G, called components, satisfying that (i) every vertex of G is cov-
ered by exactly one component, (ii) each component is Eulerian and (iii) no edge appears more
than twice in the same component. Every cover Γ can be transformed into a TSP tour T (Γ) of
the entire graph by contracting each component, adding a doubled spanning tree in the contracted
graph (which is connected) and then uncontracting the components. Boyd et al [5] defined the

contribution of a vertex v in a cover Γ, as zΓ(v) = (`+2)
h , where ` and h are the number of edges

and vertices (respectively) of the component of Γ in which v lies. The extra 2 in the numerator is
added for the cost of the double edge used to connect the component to the other in the spanning
tree mentioned above, so that

∑
v∈V zΓ(v) equals the number of edges in the final TSP tour T (Γ)

plus 2. Let D = {(Γi, λi)}ki=1, be a distribution over covers of a graph. This is, each Γi is a cover

of G and each λi is a positive number so that
∑k

i=1 λi = 1. The average contribution of a vertex v

with respect to distribution D is defined as zD(v) =
∑k

i=1 λizΓi(v).
As the starting point of our article, we study short TSP tours on Barnette graphs (bipartite,

planar, cubic and 3-connected). This type of graphs is very special as it is possible to partition
its set of faces into three cycle covers i.e., Eulerian subgraph covers in which every component is a
cycle. By a simple counting argument, one of these cycle covers is composed of less than n/6 cycles.
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By using the transformation described on the previous paragraph, we can obtain a TSP tour of
length at most 4n/3. To get shorter TSP tours we describe a simple procedure that perform local
operations to reduce the number of cycles of the three initial cycle covers. In a nutshell, the local
operations consists in the iterative alternation of faces. That is, we replace the current cycle cover
C by the symmetric difference between C and the edges of a face, provided that the resulting graph
is a cycle cover with fewer cycles. By repeating this process on the three initial cycle covers, it is
possible to reach a cover with fewer than 5n/36 cycles, which, in turn, implies the existence of a
TSP tour of length at most (4/3− 1/18)n. This result is described in Section 2.

The idea of applying local operations to decrease the number of components of an Eulerian
subgraph cover can still be applied on more general graph classes. Given a 2-connected cubic graph
G, Boyd et al. [5] find a TSP tour T of G with at most 4

3 |V (G)| − 2 edges. Their approach has
two phases. In the first phase, they transform G into a simpler cubic 2-connected graph H not
containing certain ill-behaved structures (called p-rainbows, for p ≥ 1). In the second phase, they
use a linear programming approach to find a polynomial collection of perfect matchings for H such
that a convex combination of them gives every edge a weight of 1/3. Their complements induce
a distribution over cycle covers of H. By performing certain local operations on each cover, they
get a distribution of Eulerian subgraph covers having average vertex contribution bounded above
by 4/3. They use this to find a TSP tour for H with at most 4

3 |V (H)| − 2 edges, which can be
easily transformed into a TSP tour of G having the desired guarantee. The local operations used
by Boyd et al. [5] consists of iterative alternation of 4-cycles and a special type of alternation of
5-cycles (in which some edges get doubled).

Our main result is an improvement on Boyd et al.’s technique that allows us to show that every
2-connected cubic graph G admits a TSP tour with at most (4/3 − ε)|V (G)| − 2 edges. The first
difference between the approaches, described in Section 3, is that our simplification phase is more
aggressive. Specifically, we set up a framework to eliminate large families of structures that we use
to get rid of all chorded 6-cycles. This clean-up step can very likely be extended to larger families
and may ultimately lead to improved results when combined with an appropriate second phase.
The second difference, described in Section 4, is that we extend the set of local operations of the
second phase by allowing the alternation of 6-cycles of a Eulerian subgraph cover. Again, it is
likely that one can further exploit this idea to get improved guarantees. Mixing these new ideas
appropriately requires significant work but ultimately leads us to find a distribution D of covers of
the simplified graph H for which

∑
v∈V (H) zD(v) ≤ (4

3 − ε)n−2. From there, we obtain a TSP tour

of G with the improved guarantee.
Our analysis allows us to set ε as 1/61236 > 0.000016 for cubic 2-connected graphs. It is worth

noting here that by adding extra hypothesis it is possible to improve this constant. For instance,
the case of cubic 2-connected bipartite graphs is interesting. This type of graphs is actually 3-
edge colorable; therefore, by taking the complements of the three perfect matchings induced by
the coloring, we obtain a cycle cover distribution whose support has only 3 cycle covers making
the problem much easier to analyze. In fact, by slightly relaxing the simplification phase we can
impose that the resulting graph is still bipartite (but allowing certain type of chorded hexagons)
and thus, the operation consisting on the alternation of 5-cycles will never occur. It is possible to
show (see Larré’s Master Thesis [11]) that this modified algorithm yields a tour of length at most
(4/3− 1/108)n− 2 for any cubic 2-connected bipartite graph.

2. Barnette graphs

Barnette [4] conjectured that every cubic, bipartite, 3-connected planar graph is Hamiltonian.
More than forty years later and despite considerable effort, Barnette’s conjecture is still not settled.
This motivates the definition of a Barnette graph as a cubic, bipartite, 3-connected planar graph.
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Even though we are not able to prove or disprove Barnette’s conjecure, in this section we show that
this type of graphs admit short tours.

Recall that a tour of a graph G is simply a spanning Eulerian subgraph where every edge appears
at most twice. The main idea for obtaining short tours is to find a cycle cover C of G having small
number of cycles. The tour T (C) obtained by taking the union of the edges of C and a doubled
spanning tree of the multigraph obtained by contracting each cycle of C in G has length n+2|C|−2,
where |C| is the number of cycles in C.

Let G be a Barnette graph on n vertices. By 3-connectedness, G has a unique embedding on the
sphere up to isomorphism [24], therefore its set of faces is well-determined. Furthermore, it has a
unique planar dual G∗, which is an Eulerian planar triangulation. As Eulerian planar triangulations
are known to be 3-colorable (see, e.g., [22]), Barnette graphs are 3-face colorable. Furthermore,
finding such coloring can be done in polynomial time.

We can use this to easily get a tour of G of length at most 4n/3 as follows. Denote the vertex,
edge and face sets of G as V = V (G), E = E(G) and F = F (G) respectively and let c : F → {1, 2, 3}
be a proper 3-face coloring of G. Let F (i) be the set of faces of color i. Since the graph is cubic,
|E| = 3n/2, and by Euler’s formula, |F | = 2 + |E| − |V | = (n + 4)/2. This means that there is
a color i such that |F (i)| ≤ (n + 4)/6. Since F (i) is a cycle cover, the tour T (F (i)) obtained as
before has length n+ 2|F (i)| − 2 ≤ (4n− 2)/3.

We will devise an algorithm that find a short cycle covers of Barnette graphs by performing
certain local operations to reduce the number of cycles of the three cycle covers given by F (1),
F (2) and F (3). Recall that an even cycle C0 is alternating for a cycle cycle cover C of G if the
edges of C0 alternate between edges inside C and edges outside C. If C0 is an alternating cycle of
C we can define a new cycle cover C4C0 whose edge set is the symmetric difference between the
edges of C and those of C0.

The next procedure constructs cycle covers C(i), for each i ∈ {1, 2, 3}. Initialize C(i) as F (j) for
some j 6= i, for example j = i + 1 (mod 3). As we will see later, each face of F (i) is alternating
for C(i) at every moment of the procedure. Iteratively, check if there is a face f in F (i) such that
C(i)4f has fewer cycles than C(i). If so, replace C(i) by the improved cover. Do this step until no
improvement is possible to obtain the desired cover. Let C be the cycle cover of fewer cycles among
the three covers found. By returning the tour associated to C we obtain Algorithm 1 below.

Algorithm 1 to find a tour on a Barnette graph G = (V,E).

1: Find a 3-face coloring of G with colors in {1, 2, 3}.
2: for each i ∈ {1, 2, 3} do
3: C(i)← F (j), for j = (i+ 1) (mod 3).
4: while there is a face f ∈ F (i) such that |C(i)4f | < |C(i)| do
5: C(i)← C(i)4f .
6: end while
7: end for
8: Let C be the cycle cover of smalles cardinality among all C(i).
9: Return the tour associated to C.

To analyze the algorithm it will be useful to extend the initial face-coloring to an edge-coloring
of G, by assigning to each edge e the color in {1, 2, 3} that is not present in both incident faces of e.
Denote as E(i) the set of edges of color i. Then E(1), E(2) and E(3) are disjoint perfect matchings
and furthermore E(i)∪E(j) are exactly the edges of F (k), for {i, j, k} = {1, 2, 3}. Lemma 1 below
implies, in particular, that the algorithm is correct.

Lemma 1. In every iteration of Algorithm 1, C(i) is a cycle cover of G containing E(i) and every
face f ∈ F (i) is alternating for C(i).
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Proof. We proceed by induction. Observe that C(i) equals F (j) for j 6= i in the beginning so it
contains E(i). Suppose the lemma holds at the beginning of an iteration and let f be a face of
F (i), so f has no edges of color i. As C(i) contains E(i), and every vertex v of f has degree 2 in
C(i) we conclude that f is alternating for C(i) and thus, C(i)4f is a cover containing E(i). �

Lemma 2. Let C(i) be the cycle cover obtained at the end of the while-loop in Algorithm 1 and let
f be a face of length 2k in F (i), then f intersects at most bk+1

2 c cycles of C(i).

Proof. Let C′ be the collection of cycles in C(i) intersecting f and let H be the subgraph of G whose
edge set is the union of the edges of C′ and those of f . Using the planar embedding of G having f
as the outer face, we can see that H consists of the outer cycle f and a collection of non-crossing
paths on the inside connecting non-adjacent vertices of f as in Figure 1.

+

+

+

+

−

−

−

Figure 1. The graph H in the proof of Lemma 2.

Label with a plus (+) sign the regions of H bounded by cycles in C(i) and by a minus (−) sign
the rest of the regions except for the outer face, thus |C′| equals the number of + regions. By
construction the number of + regions must be at most that of − regions, as otherwise replacing
C(i) by C(i) ∩ f would decrease the number of cycles in C(i). But since f has length 2k, the total
number of regions labeled + and − is k+ 1. Since |C ′| is an integer, we get |C ′| ≤ b(k+ 1)/2c. �

With this lemma we can bound the size of the tour returned. For i ∈ {1, 2, 3} and k ∈ N define
Fk(i) as the set of faces of color i and length k, and Fk as the total number of faces of length k.

Lemma 3. Let C(i) be the cycle cover obtained at the end of the while-loop in Algorithm 1. Then

|C(i)| ≤ 1 +
∞∑
k=2

⌊k − 1

2

⌋
|F2k(i)| = 1 + |F6(i)|+ |F8(i)|+ 2|F10(i)|+ 2|F12(i)|+ . . .

Proof. Let G′ be the graph G restricted to the edges of C(i). Let H be the connected Eulerian
multigraph obtained by contracting in G′ all the faces in F (i) to vertices. Observe that the edge set
of H is exactly E(i). One by one, uncontract each face f in H. In each step we obtain an Eulerian
graph which may have more connected components than before. We can estimate the number of
cycles in C(i) as 1 (the original component in H) plus the the increase on the number of connected
components on each step of this procedure.

Consider the graph H immediately before expanding a face f . Let Hf be the connected com-
ponent of H containing the vertex associated to f . If f has length 2k, then, after expanding f ,
Hf splits into at most bk+1

2 c connected components. This follows since after expanding all the
cycles of F (i), Hf is split into at most that many components by Lemma 2. But then, expanding

f increases the number of connected components of H by at most bk+1
2 c − 1 = bk−1

2 c. �

The previous bound is not enough to conclude the analysis. Fortunately we can find another
bound that will be useful.
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v4`+2f2

f1 v4` v4`+1 v4`+4 v4`+5

v4`+3

Figure 2. A cycle C intersecting two faces f1 and f2.

Lemma 4. Let C(i) be the cycle cover obtained at the end of the while-loop in Algorithm 1. If
|C(i)| 6= 1, then

3|C(i)| ≤ |C(i) ∩ F4|+
∞∑
k=2

⌊k + 1

2

⌋
|F2k(i)|

= |C(i) ∩ F4|+ |F4(i)|+ 2|F6(i)|+ 2|F8(i)|+ 3|F10(i)|+ . . .

Proof. Since C(i) contain E(i), every cycle C ∈ C(i) must intersect at least two faces in F(i). In
particular, every 4-cycle in C(i) intersects exactly two faces in F(i). Consider now a cycle C ∈ C(i)
of length at least 6.

We claim that C must intersect three of more faces of F(i). If this was not the case then C
intersects exactly two faces f1 and f2. Then the edges of C must alternate as one edge of f1, then
one edge in E(i) crossing between the faces, then one edge in f2 and one edge in E(i) crossing
between the faces. In particular, the length of C must be divisible by 4. Let v0, v1, . . . , v4k−1 be
the vertices of C. By the previous observation we can assume that for every 1 ≤ ` ≤ k, v4`v4`+1 is
an edge of f1, v4`+2v4`+3 is an edge of f2 and the rest of the edges of C are crossing between faces,
as depicted in Figure 2.

Suppose that there exist a vertex in f1 not contained in C, then there must be an index `
such that v is in the path P from v4`+1 to v4`+4 in f1, that is internally disjoint with C. Since
f1 is a face of G, we deduce that removing v4`+1 and v4`+4 from G disconnects the graph. But
this contradicts the 3-connectedness of G. Therefore, C contains all the vertices in f1 and, by
an analogous argument, all the vertices of f2. Since the graph is cubic and connected, the only
possibility is that C contains all the vertices of G. But then |C(i)| = 1 which contradicts the
hypothesis of the lemma. Therefore, we have proved the every cycle in C(i) of length at least six
intersects at least 3 faces.

Define the set

J(i) = {(C,H) ∈ C(i)×F(i) : cycle C intersects face H }.
By the previous discussion we have,

|J(i)| ≥ 2|C(i) ∩ F4|+ 3|C(i) \ F4| = 3|C(i)| − |C(i) ∩ F4|.
By Lemma 2 we have

|J(i)| ≤
∞∑
k=2

⌊k + 1

2

⌋
|F2k(i)|.

Combining the last two inequalities we get the desired result. �

Now we have all the ingredients to bound the size of the cycle cover returned by the algorithm.

Lemma 5. Let C be the cycle cover computed by Algorithm 1. Then

|C| ≤ min

{
n+ 4

6
− |F4|

6
,
(n+ 1)

9
+
|F4|

6

}
.
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Proof. First we need a bound on a quantity related to previous lemmas. Let α be
∑∞

k=2

⌊
k−1

2

⌋
|F2k|.

We claim that α ≤ 1
2 (n− 2− |F4|) .

Since |F | = (n+4)/3, the claim above is equivalent to proving that 2|F4|+2|F |+4α ≤ 3n. Note
that 2|F4|+ 2|F |+ 4α equals

2|F4|
+ 2|F4|+ 2|F6|+ 2|F8|+ 2|F10|+ 2|F12|+ 2|F14|+ · · ·
+ + 4|F6|+ 4|F8|+ 8|F10|+ 8|F12|+ 12|F14|+ · · ·
= 4|F4|+ 6|F6|+ 6|F8|+ 8|F10|+ 8|F12|+ 10|F14|+ · · · ,

which is upper bounded by
∑∞

k=2 2k|F2k|. This quantity is the sum of the length of all the faces in
G. As each vertex is in three faces, this quantity is at most 3n, which proves the claim.

By Lemma 3 we have,

|C| ≤ 1

3

3∑
i=1

|C(i)| ≤ 1 +
α

3
≤ 1 +

1

6
(n− 2− |F4|) =

n+ 4

6
− |F4|

6
.

On the other hand, using that |F | = (n+ 4)/2 and Lemma 4, we get

9|C| ≤ 3
3∑
i=1

|C(i)| ≤
3∑
i=1

|C(i) ∩ F4|+ α+ |F | ≤
3∑
i=1

|C(i) ∩ F4|+
1

2
(2n+ 2− |F4|).

Note that each cycle in F4 avoids one color, therefore it can only appear in two cycle covers C(i),
i.e.

∑3
i=1 |C(i) ∩ F4| ≤ 2|F4|. From here we get that

|C| ≤ 1

9
(2|F4|+ n+ 1− |F4|/2) =

n+ 1

9
+
|F4|

6
. �

The previous lemma implies the main result of this section.

Theorem 1. Let C be the cycle cover computed by Algorithm 1 and T be the tour returned. Then
|C| ≤ 5n+14

36 , and the length of T is at most |T | = 23n−22
18 =

(
4
3 − 1

18

)
n − 11

9 . In particular every
Barnette graph admits a tour of length |T |.
Proof. The expression on the right hand side of Lemma 5 is maximized when |F4| = n+10

6 , for which

it attains a value of 5n+14
36 . Therefore, for every value of |F4|, this quantity is an upper bound of

|C|. To conclude, we just use that the length of T is n+ 2(|C| − 1). �

3. 2-connected cubic graphs: Simplification phase

We now go back to general 2-connected cubic graphs. Our algorithm starts by reducing the input
graph G to a simpler 2-connected cubic graph H which does not contain a cycle of length six with
one or more chords as subgraph. In addition our reduction satisfies that if H has a TSP tour of
length at most (4/3− ε)|V (H)| − 2 then G has a TSP tour of length at most (4/3− ε)|V (G)| − 2,
where V (H) and V (G) denote the vertex sets of H and G respectively. We will use the notation
χF ∈ {0, 1}E of F ⊂ E, to denote the incidence vector of F (χFe = 1 if e ∈ F , and 0 otherwise).

Reduction 1: Let γ be a 6-cycle having two chords and let G[V (γ)] be the subgraph induced by the
set of vertices contained in γ, and let v1 and v2 be the two vertices connecting γ to the rest of G.
Our reduction replaces G[V (γ)] by a 4-cycle with a chord (shown in Figure 3), identifying v1 and
v2 with the vertices of degree 2 in the chorded 4-cycle. This procedure in particular removes the
p-rainbow structure in Boyd et al. [5].

The second step is to consider 6-cycles having only one chord. Let γ be such a cycle and let
G[V (γ)] be the subgraph induced by the set of vertices contained in γ. Consider the four edges

7



Figure 3. A 4-cycle with a chord.

e1, e2, e3 and e4 connecting γ to the rest of G. Letting wi be the endpoint of ei outside γ, we
distinguish the following three reductions according to three different cases.

Reduction 2: If only two of the wi’s are distinct, we proceed as in the previous case (Reduction 1),
that is, replacing G[V (γ)] by a chorded 4-cycle.

Reduction 3: If three of the wi’s are distinct we replace the 7 vertex structure formed by γ and the
wi adjacent to two vertices in γ by a triangle (3-cycle), identifying the degree two vertices in the
structure with those in the triangle. Figure 4 shows an example of this reduction in the specific
case that γ has a chord connecting symmetrically opposite vertices.

Figure 4. Reduction 3 in the case that γ has a chord connecting symmetrically
opposite vertices.

Reduction 4: The final case is when all four wi’s are distinct. Assume, without loss of generality
that the w′is are indexed in the cyclic order induced by γ. In this case we replace γ by an edge e
and we either connect w1, w2 to one endpoint of e and w3, w4 to the other, or we connect w1, w4

to one endpoint and w2, w3 to the other. The previous choice can always be made so that in the
reduced graph, e is not a bridge, as the following lemma shows.

Lemma 6. Let γ be a chorded 6-cycle considered in Reduction 4. Then, the edges in G[V (γ)]
do not simultaneously contain a cut of G separating the vertex sets {w1, w2} and {w3, w4}, and a
second cut separating the vertex sets {w2, w3} and {w1, w4}.
Proof. By contradiction: suppose that the edge set of G[V (γ)] contains two cuts of G such that the
first cut separates the vertex sets {w1, w2} and {w3, w4}, and the second cut separates the vertex
sets {w2, w3} and {w1, w4}. By deleting the vertices and edges of γ, we split G into four connected
components, one containing each wi; thus all paths connecting w1 and w3 in G must use the edge
e1, contradicting the 2-connectivity of G. �

Note that all the above reduction steps strictly decrease the number of vertices in the graph while
keep the graph cubic and 2-connected, and that each step requires only polynomial time. Thus
only a linear number of polynomial time steps needs to be done to obtain a cubic and 2-connected
reduced graph H which does not contain 6-cycles with one or more chords. The following result
shows that any TSP tour in the reduced graph H of length at most (4/3 − ε)|V (H)| − 2 can be
turned into a TSP tour in the original graph G of length at most (4/3− ε)|V (G)| − 2.
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Proposition 1. Let T ′ a TSP tour in the reduced graph H of length at most α|V (H)| − 2, with
5/4 ≤ α ≤ 4/3. Then, a TSP tour T can be constructed in the original graph G in polynomial
time, such that the length of T is at most α|V (G)| − 2.

Proof. We distinguish certain cases, depending on what reduction was performed over the graph.

• Case of Reduction 1 or 2: in this case the result is a consequence of the following lemma.

Lemma 7. Let G = (V,E) be a graph and U ⊂ V such that the cut δ(U) has only two elements,
say δ(U) = {e1, e2}. Let v, w ∈ U be the two end vertices of e1 and e2 in U , respectively. Let us
suppose that the subgraph G[U ] is Hamiltonian and contains a Hamiltonian path connecting v and
w. Let H be the graph resulted from replacing the subgraph G[U ] by a chorded 4-cycle D and let T ′

be a TSP tour in H. Then, there exists a TSP tour T in G with length |T | ≤ |T ′|+ |U | − 4.

Proof of Lemma 7. Let χP be the incidence vector of some Hamiltonian path P connecting v and
w, and let χC be the incidence vector of some Hamiltonian cycle C in G[U ]. Let us denote by x′ the

vector χT
′
(the incidence vector of T ′). We are going to extend the TSP tour T ′ to the original graph

G depending on the value of x′ on edges e1 and e2. We know that x′({e1, e2}) := x′(e1) + x′(e2)
must be an even number, since T ′ is a TSP tour. Considering that x′ takes values over {0, 1, 2},
we have that all the possible cases for the values of x′(e1) and x′(e2) are as follows.

• Case x′(e1) = 1 and x′(e2) = 1: in this case there is a path in the chorded 4-cycle D and in
T ′ of length 3 connecting v and w. Then, we define the vector x as

x(e) =

{
χP (e) , if e ∈ E(G[U ]),

x′(e) , if e ∈ E(G) \ E(G[U ]]).

• Case x′(e1) = 2 and x′(e2) = 0 (or the symmetrical case): in this case there is a 4-cycle in
D and in T ′. Then, we define the vector x as

x(e) =

{
χC(e) , if e ∈ E(G[U ]),

x′(e) , if e ∈ E(G) \ E(G[U ]).

• Case x′(e1) = 2 and x′(e2) = 2: in this case we redefine x′(e2) = 0 and then we define the
vector x as the previous case.

In any case x is the incident vector of a TSP tour T in G, of length |T | ≤ |T ′|+ |U | − 4. �

It is straightforward to verify that both Reduction 1 and 2 satisfy the hypothesis of Lemma 7.
In the case of Reduction 1, the vertex set of the replaced structure has size |U | = 6, and in the case
of Reduction 2, the vertex set of the replaced structure has size |U | = 8. Whatever the case, we
have that |V (G)| = |V (H)|+ |U | − 4, and then

|T | ≤ |T ′|+ |U | − 4

≤ α|V (H)| − 2 + |U | − 4

= α|V (G)| − 2− (α− 1)(|V (G)| − |V (H)|)
≤ α|V (G)| − 2,

where the first inequality holds by Lemma 7.

• Case of Reduction 3: in this case the result is a consequence of the following lemma.

Lemma 8. Let G = (V,E) a graph and U ⊂ V such that |U | = 7 and the cut δ(U) has only three
elements, say δ(U) = {e1, e2, e3}. Let v1, v2, v3 ∈ U be the three end vertices of e1, e2 and e3 in U ,
respectively. Let us suppose that the subgraph G[U ] contains a cycle C of length at most 8 which
visits every vertex of U , and for every pair of vertices v, w ∈ {v1, v2, v3} there exists a path P (v, w)
of length at most 7 which visits every vertex of U . Let H be the graph resulted from replacing the
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subgraph G[U ] by a triangle and let T ′ be a TSP tour in H. Then, there exists a TSP tour T in G
with length |T | ≤ |T ′|+ 5.

Proof of Lemma 8. Let χP (v, w) be the incidence vector of path P (v,W ) and χC be the incidence

vector of C. Let us denote by x′ the vector χT
′

(the incidence vector of T ′). We are going to
extend the TSP tour T ′ to the original graph G depending on the value of x′ on edges e1, e2 and
e3. We know that x′({e1, e2, e3}) := x′(e1) + x′(e2) + x′(e3) must be an even number, since T ′ is
a TSP tour. Considering that x′ takes values over {0, 1, 2}, we have that all the possible cases for
the values of x′(e1), x′(e2) and x′(e3) are as follows.

• Case x′(e1) = 2 and x′(e2) = x′(e3) = 0 (or another possible permutation): in this case we
define the vector x as

x(e) =

{
χC(e) , if e ∈ E(G[U ]),

x′(e) , if e ∈ E(G) \ E(G[U ]]).

• Case x′(e1) = 2, x′(e2) ∈ {0, 2} and x′(e3) ∈ {0, 2} (or another possible permutation): first
we redefine x′(e2) = x′(e3) = 0 and then we define the vector x as the previous case.
• Case x′(e1) = x′(e2) = 1 and x′(e3) = 0 (or another possible permutation): in this case we

define the vector x as

x(e) =

{
χP (v1,v2)(e) , if e ∈ E(G[U ]),

x′(e) , if e ∈ E(G) \ E(G[U ]]).

• Case x′(e1) = x′(e2) = 1 and x′(e3) = 2 (or another possible permutation): first we redefine
x′(e3) = 0 and then we define the vector x as the previous case.

Clearly, in any case x is the incident vector of a TSP tour T in G. Since at most 5 edges were
necessary to construct x from x′, we have that |T | ≤ |T ′|+ 5. �

To see that all possible structures that are considered in Reduction 3 satisfy the hypothesis of
Lemma 8, we only need to check by inspection that there exist a cycle C of length at most 8 and
paths of length at most 7 connecting every pair of vertices, which visit every vertex of the structures
of Figure 5.

Figure 5. All possible structures that are considered in Reduction 3.
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Then, applying the Reduction 3, we can define a TSP tour T in the original graph with length

|T | ≤ |T ′|+ 5

≤ α|V (H)| − 2 + 5

= α|V (G)| − 2 + 5 + α(|V (H)| − |V (G)|)
= α|V (G)| − 2 + (5− α4)

≤ α|V (G)| − 2,

where the first inequality holds by Lemma 8 and the last one since 5/4 ≤ α.

• Case of Reduction 4: in this case it is easy to construct a TSP tour T in the original graph G
with length |T | ≤ |T ′|+ 4. Then

|T | ≤ |T ′|+ 4

≤ α|V (H)| − 2 + 4

= α|V (G)| − 2 + 4 + α(|V (H)| − |V (G)|)
= α|V (G)| − 2 + (4− α4)

≤ α|V (G)| − 2,

where the last inequality holds since α ≥ 1.

Considering this latter case, we finish the proof of Proposition 1. �

Finally, note that –as mentioned above– only a linear number of reduction steps need, and each
step requires only polynomial time, not only to find the desired structure, but also to recover the
TSP tour in the original graph. Thus this graph simplification phase runs in polynomial time.

4. 2-connected cubic graphs: Eulerian subgraph cover phase

We say that a matching M is 3-cut perfect if M is a perfect matching intersecting every 3-cut
in exactly one edge. Boyd et al. [5] have shown the following lemma.

Lemma 9 ([5]). Let G = (V,E) be a 2-connected cubic graph. Then, the vector 1
3χ

E can be
expressed as a convex combination of incident vectors of 3-cut perfect matchings of G. This is,
there are 3-cut perfect matchings {Mi}ki=1 and positive real numbers λ1, λ2, . . . , λk such that

k∑
i=1

λi = 1 (1) and
1

3
χE =

k∑
i=1

λiχ
Mi . (2)

Furthermore, Barahona [3] provides an algorithm to find a convex combination of 1
3χ

E having

k ≤ 7n/2− 1 in O(n6) time.

Consider a graph G that is cubic, 2-connected and reduced. That is, no 6-cycle in G has chords.
We also assume that n ≥ 10 as every cubic 2-connected graph on less than 10 vertices is Hamiltonian.

Let {Mi}ki=1 and {λi}ki=1 be the 3-cut matchings and coefficients guaranteed by Lemma 9. Let
{Ci}ki=1 be the family of cycle covers associated to the matchings {Mi}ki=1. This is, Ci is the
collection of cycles induced by E \Mi. Since each matching Mi is 3-cut perfect, the corresponding
cycle cover Ci does not contain 3-cycles. Furthermore every 5-cycle in Ci is induced (i.e., it has no
chord in G).

In what follows we define three local operations, (U1), (U2) and (U3) that will be applied
iteratively to the current family of covers. Each operation is aimed to reduce the contribution of
each component of the family. We stress here that operations (U2) and (U3) are exactly those used
by Boyd et al., but for reader’s convenient we explain them here. We start with operation (U1).
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Figure 6. Operation (U1).

(U1) Consider a cycle cover C of the current family. If C1, C2 and C3 are three disjoint cycles of C,
that intersect a fixed 6-cycle C of G, then we merge them into the simple cycle obtained by
taking their symmetric difference with C. This is, the new cycle in V (C1)∪ V (C2)∪ V (C3)
having edge set (E(C1) ∪ E(C2) ∪ E(C3))∆E(C).

An example of (U1) is depicted in Figure 6. We apply (U1) as many times as possible to get a
new cycle cover {CU1

i }ki=1. Then we apply the next operation.

(U2) Consider a cycle cover C of the current family. If C1 and C2 are two disjoint cycles of C,
that intersect a fixed 4-cycle C of G, then we merge them into a simple cycle obtained by
taking their symmetric difference with C. This is, the new cycle in V (C1) ∪ V (C2) having
edge set (E(C1) ∪ E(C2))∆E(C).

We apply operation (U2) as many times as possible to obtain a new cycle cover {CU2
i }ki=1 of G.

The next operation we define may transform a cycle cover C of the current family into a Eulerian
subgraph cover Γ, having components that are not necessarily cycles.

(U3) Let Γ be an Eulerian subgraph cover of the current family. If γ1 and γ2 are two components
of Γ, each one having at least 5 vertices, whose vertex set intersect a fixed 5-cycle C of G,
then combine them into a single component, by adding at most 1 extra edge.

To explain how we combine the components in operation (U3) we need the following two lemmas.

Lemma 10 ([5]). Let H1 and H2 be two connected Eulerian multi-subgraphs of a cubic graph G
having at least two vertices in common and let H3 be the sum of H1 and H2, i.e., the union of
their vertices and the sum of their edges (allowing multiple parallel edges). Then we can remove
(at least) two edges from H3 such that it stays connected and Eulerian.

Proof. Let u and v be in both H1 and H2. The edge set of H3 can be partitioned into edge-disjoint
(u, v)-walks P1, P2, P3 and P4. Since u has degree 3 in G, there must be two parallel edges incident
to u that are on different paths, say e1 ∈ P1 and e2 ∈ P2. If we remove e1 and e2 then the graph
stays Eulerian. Moreover, it stays connected since u and v are still connected by P3 and P4 and
every vertex of P1 and P2 is still connected to one of u and v. �

Lemma 11 (Similar to an observation in [5]). If v belongs to a component γ of any of the covers
Γ considered by the algorithm, then at least two of its 3 neighbors are in the same component.

Proof. The lemma holds trivially when γ is a cycle. In particular, the lemma holds before the
application of operation (U3). As the vertex set of a component created by operation (U3) is the
union of the vertex set of 2 previous components, the lemma also holds after operation (U3). �

Observe that if γ is a component of a cover in the current family, and C is an arbitrary cycle of
G containing a vertex of γ then, by the cubicity of G and Lemma 11, C and γ must share at least
two vertices. In particular, if γ1 and γ2 are the two components intersecting a 5-cycle C considered
by operation (U3), then one of them, say γ1, must contain exactly 2 vertices of C and the other
one must contain the other 3 vertices (note that they cannot each share 2 vertices, since then a
vertex of C would not be included in the cover). To perform (U3) we first merge γ1 and C using
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Figure 7. Sketch of operation (U3).

Lemma 10 removing 2 edges, and then we merge the resulting component with γ2, again removing
2 edges. Altogether, we added the 5 edges of C and removed 4 edges. Finally, we remove 2 edges
from each group of triple or quadruple edges that may remain, so that each edge appears at most
twice in each component. Figure 7 shows an example of (U3).

Remark 1. Operation (U3) generates components having at least 10 vertices. Therefore, any com-
ponent having 9 or fewer vertices must be a cycle. Furthermore, all the cycles generated by (U1) or
(U2) contain at least 10 vertices (this follows from the fact that G is reduced, and so operation (U2)
always involve combine 2 cycles of length at least 5). From here we observe that any component
having 9 or fewer vertices must be in the original cycle cover {Ci}ki=1.

We say that a 4-cycle C with a chord is isolated if the two edges incident to it are not incident
to another chorded 4-cycle. The following is the main result of this section. Before proving it we
show it implies the main result of the paper.

Proposition 2 (Main Proposition). Let {Γi}ki=1 be the family of Eulerian subgraph covers at the
end of the algorithm (that is, after applying all operations), and let z(v) = zD(v) be the average
contribution of vertex v for the distribution D = {(Γi, λi)}ki=1. Furthermore, let γi be the component
containing v in Γi and Γ(v) = {γi}ki=1. We have the following.

(P1) If v is in an isolated chorded 4-cycle then z(v) ≤ 4/3.
(P2) If v is in a non-isolated chorded 4-cycle of G then z(v) ≤ 13/10.
(P3) Else, if there is an induced 4-cycle γ ∈ Γ(v), then z(v) ≤ 4/3− 1/60.
(P4) Else, if there is an induced 5-cycle γ ∈ Γ(v), then z(v) ≤ 4/3− 1/60.
(P5) Else, if there is an induced 6-cycle γ ∈ Γ(v), then we have both z(v) ≤ 4/3 and

∑
w∈V (γ) z(w) ≤

6 · (4/3− 1/729).
(P6) In any other case z(v) ≤ 13/10.

Theorem 2. Every 2-connected cubic graph G = (V,E) admits a TSP tour of length at most
(4/3− ε)|V | − 2, where ε = 1/61236. This tour can be computed in polynomial time.

Proof of Theorem 2. From Section 3, we can assume that G is also reduced and so the Main Propo-
sition holds. Let B be the union of the vertex sets of all isolated chorded 4-cycles of G. We say a
vertex is bad if it is in B, and good otherwise. We claim that the proportion of bad vertices in G
is bounded above by 6/7. To see this, construct the auxiliary graph G′ from G by replacing every
isolated chorded 4-cycle with an edge between its two neighboring vertices. Since G′ is cubic, it
contains exactly 2|E(G′)|/3 vertices, which are good in G. Hence, for every bad vertex there are
at least (1/4) · (2/3) = 1/6 good ones, proving the claim.

The Main Proposition guarantees that every bad vertex v contributes a quantity z(v) ≤ 4/3.
Now we show that the average contribution of all the good vertices is at most (4/3− δ) for some δ
to be determined. To do this, define H = {γ ∈ ⋃i Γi : |V (γ)| = 6} as the collection of all 6-cycles
appearing in some cover of the final family, and let H =

⋃
γ∈H V (γ) be the vertices included in some

6-cycle of H. It is easy to check that B and H are disjoint. Furthermore, the Main Proposition
guarantees that if v ∈ V \ (B ∪ H) then z(v) ≤ (4/3 − 1/60). So we focus on bounding the
contribution of the vertices in H.
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For every v ∈ H, let f(v) be the number of distinct 6-cycles in H containing v. Since G is cubic,
there is an absolute constant K, such that f(v) ≤ K. By the main proposition, z(v) ≤ 4/3 for
v ∈ H and for every γ ∈ H,

∑
v∈V (γ) z(v) ≤ 6 · (4/3 − ε′), where ε′ = 1/729. Putting all together

we have:

K ·
∑
v∈H

[
z(v)−

(
4

3
− ε′

K

)]
= |H|ε′ +K

∑
v∈H

(
z(v)− 4

3

)
≤ 6|H|ε′ +

∑
v∈H

f(v)

(
z(v)− 4

3

)
= 6|H|ε′ +

∑
γ∈H

∑
v∈V (γ)

(
z(v)− 4

3

)
≤ 6|H|ε′ −

∑
γ∈H

6ε′ = 0.

It follows that 1
|H|
∑

v∈H z(v) ≤ (4/3− ε′/K). Since ε′/K ≤ 1/60, we get∑
v∈V

z(v) ≤
∑
v∈B

z(v) +
∑
v∈H

z(v) +
∑

v∈V \(B∪H)

z(v)

≤ 4

3
|B|+

(
4

3
− ε′

K

)
(|V | − |B|) = |V |

(
4

3
− ε′

7K

)
.

We conclude that there is an index i such that
∑

v∈V zi(v) ≤ |V | (4/3− ε′/(7K)). By adding a
double spanning tree of G/E(Γi) we transform Γi into a TSP tour T of length |V | (4/3− ε′/(7K))−
2. Noting that K ≤ 12 and ε′ = 1/729 we obtain the desired bound1. Clearly, all operations can
be done in polynomial time. �

4.1. Proof of the Main Proposition. We start by a lemma, whose proof is the same as that of
[5, Observation 1].

Lemma 12 ([5]). For each vertex v ∈ V , and each i ∈ {1, ..., k}, the contribution zi(v) := zΓi(v) is

(a) at most h+2
h , where h = min{t, 10} and v is on a t-cycle belonging to one of the cycle covers

Ci, CU1
i and CU2

i .
(b) at most 13

10 if operation (U3) modified the component containing v.

We will also use the following notation in our proof. For any subset J of indices in [k] :=
{1, . . . , k}, define λ(J) =

∑
i∈J λi.

The proofs of parts (P1) through (P4) are similar to the arguments used by Boyd et al. [5] to
show that z(v) ≤ 4/3 when v is a 4-cycle or 5-cycle. By using the fact that G is reduced (i.e. it
contains no chorded 6-cycles) we obtain a better guarantee in (P2), (P3) and (P4). To prove part
(P5) we heavily use the fact that operation (U1) is applied to the initial cycle cover (recall that
this operation was not used in [5]).

4.1.1. Proof of part (P1) of the Main Proposition. Let v be in some isolated chorded 4-cycle C with
V (C) = {a, b, u0, u1} as in Figure 8.

For every index i, let Ci be the cycle containing v in the initial cycle cover Ci, and let C(v) =
{Ci}ki=1. Consider a cycle C ′ ∈ C(v), and recall that C ′ cannot be a triangle. If C ′ does not
contain the edge u0u1, then C ′ = C. Consider now the case in which C ′ contains u0u1. Then we
must also have ab ∈ E(C ′) and v0v1 ∈ E(C ′). Since the graph is reduced, v1u1 /∈ E as otherwise
u1−u0−a− b− v0− v1 would induce a chorded 6-cycle. Hence, the cycle C ′ cannot be of length 6.
It also cannot be of length 7 since then there would be a 3-cut with 3 matching edges. Therefore, it

1Consider two edges e1 and e2 adjacent to v. Since there is no chorded 6-cycle, if e1 and e2 are contained in a 4-cycle,
then v must be contained in at most one 6-cycle. Otherwise, there are at most four 6-cycles which may contain e1
and e2. Because there are 3 possible pairs of edges, we have K = 12.
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Figure 8. A chorded 4-cycle.

must be of length at least 8. Using that
∑
{i : u1u2∈Mi} λi = 1

3 and applying Lemma 12, we conclude

that z(v) ≤ (1/3 · 6/4 + 2/3 · 10/8) = 4/3.

4.1.2. Proof of part (P2) of the Main Proposition. Let v be in some non-isolated chorded 4-cycle
C with V (C) = {a, b, u0, u1} as in Figure 8 and recall that v1u1 6∈ E. Without loss of generality
we can assume that u1 is in a different chorded 4-cycle D. Furthermore, assume that v1 is not
connected by an edge to D, as this would imply the existence of a bridge in G.

Consider, as in the proof of part (P1) a cycle C ′ ∈ C(v). If C ′ does not contain the edge u0u1

then C ′ = C. If on the other hand the edge v0v1 is in C ′ then C ′ must contain all the vertices of
both C and D. It must also contain v1 and one of its neighbors outside C ∪D. In particular, C ′

has at least 10 vertices. By Lemma 12, we have that z(v) ≤ (1/3 · 6/4 + 2/3 · 12/10) = 13/10.

4.1.3. Proof of part (P3) of the Main Proposition. Let γ ∈ Γ(v) be an induced 4-cycle containing
v. By Remark 1, γ is in some initial cycle cover Ci. Since the cycle γ has no chord, then the four
edges incident to it (i.e. those sharing one vertex with γ) belong to matching Mi. This observation
holds not only for γ but for any cycle C∗ in some initial cycle cover Ci, so we have the following
remark.

Remark 2. Let P be a path not sharing edges with a cycle C∗ belonging to some initial cycle cover
Ci. If P connects any two vertices of C∗, then P has length at least 3.

Furthermore, as the graph is reduced, γ does not share exactly one edge with any other 4-cycle
(as this would induce a 6-cycle with a chord). In other words we have the following property.

Remark 3. Let P be a path not sharing edges with γ. If P connects any pair of consecutive edges
of γ, then P has length at least 4.

Define the sets Xp = {i : |C ∩Mi| = p}, for p = 0, 1, 2 and note that X0 ∪X1 ∪X2 = [k]. Define
also xp = λ(Xp), for p = 0, 1, 2.

By equation (1), we have x0 + x1 + x2 = 1. Also, by applying equation (2) to the set of 4 edges
incident to γ we obtain 4x0 + 2x1 = 4/3, which implies that x0 = 1/3− x1/2. Finally, by applying
(2) to the 4 edges inside γ, we obtain x1 + 2x2 = 4/3, which implies that x2 = 2/3− x1/2.

For every i ∈ X0, the cycle containing v in Ci is equal to γ. By Lemma 12 we obtain zi(v) ≤
6/4 = 3/2.

Using Remark 3 we deduce that for every i ∈ X1, the cycle containing v in Ci has length at least
7; therefore, by Lemma 12, we have zi(v) ≤ 9/7.

Consider now an index i ∈ X2. Suppose that γ intersects two different cycles of Ci. As each of
them has length at least 5 and they both share one edge with a 4-cycle of G we conclude that both
cycles are modified by operation (U1) or (U2). Remark 1 implies that v is in a cycle of length at
least 10 in CU2

i . Using Lemma 12 we have zi(v) ≤ 12/10 = 6/5.
The only remaining case is if γ is intersected by a single cycle C of Ci. Then, by Remark 3,

C has length at least 8. This cycle has length exactly 8 if and only if γ belongs to the structure
depicted in Figure 9. Assume for now that no 8-cycle of an initial cover contains the four vertices
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Figure 9. 4-cycle γ intersecting an 8-cycle.

of γ. Then, the cycle C in our previous discussion must be of length at least 9, and by Lemma 12,
zi(v) ≤ max{11/9, 6/5} = 11/9. Putting all together, we obtain

z(v) ≤ x03/2 + x19/7 + x211/9

= (1/3− x1/2)3/2 + x19/7 + (2/3− x1/2)11/9

= 71/54 + x1(9/7− 3/4− 11/18)

≤ 71/54 = 4/3− 1/54.

Now consider the case in which there is an 8-cycle Cj of an initial cover Cj containing V (γ).
Then v belongs to the structure depicted in Figure 9, where e1 6= e3, e2 6= e4 and e1, e2, e3, e4 are in
some matching Mj . As we assumed that |V (G)| ≥ 10, we cannot simultaneously have e1 = e4 and
e2 = e3. Let f and g be the leftmost and rightmost edge in the figure. Let also Y = {i : f ∈ Mi}
and Z = {i : g ∈Mi}. It is easy to check that Y ∪ Z ⊆ X2.

Consider an index i ∈ X2. If i ∈ Y ∪Z (i.e., if at least one of f and g are in Mi), then the cycle
containing v in CU2

i has at least 10 vertices, and so zi(v) ≤ 12/10 = 6/5. If i ∈ X2 \ (Y ∪ Z), then
the cycle containing v in Ci is either the 8-cycle Cj of the structure, or the 8-cycle with edge set
E(Cj)∆E(γ). In any case zi(v) ≤ 10/8 = 5/4.

Let y1 = λ(Y ∪Z) and y2 = λ(X2 \ (Y ∪Z), so that y1 + y2 = x2. Noting that y1 ≥ λ(Y ) = 1/3,
we have

z(v) ≤ x03/2 + x19/7 + y16/5 + (x2 − y1)5/4

= (1/3− x1/2)3/2 + x19/7 + (2/3− x1/2)5/4 + y1(6/5− 5/4)

= 4/3− x1(9/7− 3/4− 5/8)− y1/20 ≤ 4/3− 1/60.

4.1.4. Proof of part (P4) of the Main Proposition. Let γ ∈ Γ(v) be an induced 5-cycle containing
v. By Remark 1, γ is in some initial cycle cover Ci. We can assume that no 4-cycle shares exactly
one edge with γ, as otherwise operation (U2), or operation (U1) before that, would have modified
γ.

The proof for this part is similar to that of part (P3). Define Xp = {i : |γ ∩ Mi| = p}, for
p = 0, 1, 2, so that X0 ∪X1 ∪X2 = [k], and let xp = λ(Xp), for p = 0, 1, 2.

By Equation (1) we have x0 + x1 + x2 = 1. Applying Equation (2) to the 5 edges incident to γ,
we obtain 5x0 + 3x1 + x2 = 5/3. This implies that x0 = 1/2(1/3− x1) and x2 = 1/2(5/3− x1).

For every i ∈ X0, we have v ∈ V (γ) and γ ∈ Ci. By Lemma 12, zi(v) ≤ 7/5. For i ∈ X1, the
fact that γ does not share an edge with a 4-cycle implies that v is in a cycle of Ci having length at
least 8, and therefore zi(v) ≤ 10/8 = 5/4.

For i ∈ X2, we have two cases. If γ is intersected by a single cycle C of Ci, then, by Remark 2,
C must be of length at least 9, and so, zi(v) ≤ 11/9.

The second case is that γ is intersected by two cycles of Ci. One of them, say C ′, shares exactly
one edge with γ (and so, C ′ cannot be a 4-cycle), and the second one, C ′′, shares exactly two
consecutive edges with γ (by Remark 2, C ′ cannot be a 4-cycle either). Let C ∈ {C ′, C ′′} be the
cycle containing vertex v. If C is merged with another cycle during operations (U1) and (U2) then,
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Figure 10. Induced 6-cycle γ.

by Remark 1, the resulting cycle containing v in CU2
i is of length at least 10, and so zi(v) ≤ 12/10.

On the other hand, if C is not modified by operations (U1) and (U2) then, it must be modified by
operation (U3) (this is because C intersects the 5-cycle γ, which in turns intersects two components
of CU2

i of length at least 5). Lemma 12 guarantees in this case that zi(v) ≤ 13/10.
Summarizing, if i ∈ X2, then zi(v) ≤ max{12/10, 11/9, 13/10} = 13/10. Then,

z(v) ≤ x07/5 + x15/4 + x213/10

= 1/2(1/3− x1) · 7/5 + x15/4 + 1/2(5/3− x1) · 13/10

= 7/30 + 13/12− x1/10

≤ 79/60 = 4/3− 1/60.

4.1.5. Proof of part (P5) of the Main Proposition. Let γ ∈ Γ(v) be an induced 6-cycle containing
v. By Remark 1, γ is in some initial cycle cover Ci. We can assume that no 4-cycle shares exactly
one edge with γ, as otherwise operations (U1) or (U2) would have modified γ and so, by the end
of the algorithm γ would not be a 6-cycle.

We can also assume that γ does not intersect the 5-cycles contained in an initial cycle cover.
Indeed, if this was not the case, define S5 = {w ∈ V (γ) : w is in some 5-cycle C of an initial
cycle cover}. If w /∈ S5 then in every initial cover, the cycle containing w is of length at least 6;
usingLemma 12, part (P4) of the Main Proposition, and the fact that S5 6= ∅ implies |S5| ≥ 2, we
conclude that

∑
w∈V (γ) z(w) ≤ |S5|

(
4
3 − 1

60

)
+ |V (C)\S5|43 ≤ 6

(
4
3 − 1

180

)
, and also that z(w) ≤ 4/3

for all w ∈ V .
Under the assumptions above, all the components containing v in the final family of covers have

length at least 6. Using Lemma 12 we conclude not only that z(v) ≤ max{13/10, 8/6} = 4/3 (which
proves the first statement of P5) but also that z(w) ≤ 4/3 for the 6 vertices w ∈ V (γ).

Let us continue with the proof. Denote the edges of γ as a1, . . . , a6 and the 6 edges incident to
γ as e1, . . . , e6, as in Figure 10.

We now define some sets of indices according on how γ intersects the matchings M1, . . . ,Mk.
For every symbol Z ∈ {X0} ∪ {Xq

1}6q=1 ∪ {Xq
2}3q=1 ∪ {Y q

2 }6q=1 ∪ {Xq
3}2q=1, we define Z as the set of

indices i for which the matching Mi contains the bold edges indicated in Figure 11. For example,
X0 = {i : {e1, . . . , e6} ∈ Mi}, X1

3 = {i : {a1, a3, a5} ∈ Mi}, and so on. Let also x0 = λ(X0),
xqi = λ(Xq

i ) and yq2 = λ(Y q
i ) for every i and q and define

x1 =

6∑
q=1

xq1, x2 =

3∑
q=1

xq2, y2 =

6∑
q=1

yq2, x3 =

2∑
q=1

xq3, x2 = x2 + y2.

17



Figure 11. The different ways in which a matching can intersect γ. We use the
same orientation as that of Figure 10.

Equation (1) implies that x0 + x1 + x2 + x3 = 1. Equation (2) applied to the set {a1, . . . , a6} of
edges incident to γ implies that 6x0 + 4x1 + 2x2 = 6/3. Hence, 3x0 + 2x1 + x2 = 1. It follows that

2x0 + x1 = x3. (3)

Recall that there are no 4-cycles in G and no 5-cycles in an initial cycle cover interseting γ in
exactly one edge. Consider w ∈ V (γ) and i ∈ [k].

If i ∈ X0 (i.e., Mi shares no edge with γ) then w ∈ V (γ) and γ ∈ Ci. By Lemma 12 we have,
zi(w) ≤ 8/6. If i ∈ X1 := ∪6

q=1X
q
1 (i.e., Mi contains exactly one edge of γ) then, as no 4-cycle shares

exactly one edge with γ, w must be in a cycle C ∈ Ci of length at least 9; therefore, zi(w) ≤ 11/9.
If i ∈ X3 := ∪2

q=1X
q
3 (i.e., Mi contains three edges of γ) then we have two cases. The first case is

that γ is intersected by 1 or 3 cycles of Ci. Then, by the end of operation (U1), w must be in a
cycle of CU1

i of length at least 9 and so zi(w) ≤ 11/9. The second case is that γ is intersected by
2 cycles of Ci. One of them shares exactly 2 edges with γ, thence it must be of length at least 8.
The other cycle shares exactly one edge with γ and so it must be of length at least 6. Therefore,
in this case, 4 of the vertices w of γ satisfy zi(w) ≤ 10/8 and the remaining 2 satisfy zi(w) ≤ 8/6.

We still need to analyze the indices i ∈ X2 := ∪3
q=1X

q
2 and i ∈ Y2 := ∪6

q=1Y
q

2 (i.e., those for

which Mi shares two edges with γ). Let 0 < δ ≤ 1 be a constant to be determined. We divide the
rest of the proof in two scenarios.
Scenario 1: If x3 (which equals max{x0, x1, x3} by (3)) is at least δ.

If i ∈ X2 ∪ Y2, then every vertex w ∈ γ is in a cycle C ∈ Ci of length at least 6; therefore
zi(w) ≤ 8/6 and

∑
w∈V (γ)

z(w) ≤ 6 · (x08/6 + x111/9 + x28/6) + x3

(
2 · 8

6
+ 4 · 10

8

)

≤ 6 ·
(

(1− x3)4/3 + x3

(
4

3
− 1

18

))
≤ 6 · (4/3− δ/18) . (4)

Scenario 2: If x3 (which equals max{x0, x1, x3} by (3)) is at most δ.
We start by stating the following technical lemma.

Lemma 13. Define β := 1/9− δ. Then at least one of the following cases hold:
18



- Case 1: x1
2, x

2
2, x

3
2 ≥ β.

- Case 2: x1
2, y

2
2, y

5
2 ≥ β.

- Case 3: x2
2, y

3
2, y

6
2 ≥ β.

- Case 4: x3
2, y

1
2, y

4
2 ≥ β.

- Case 5: y1
2, y

4
2, y

2
2, y

5
2 ≥ β.

- Case 6: y2
2, y

5
2, y

3
2, y

6
2 ≥ β.

- Case 7: y1
2, y

4
2, y

3
2, y

6
2 ≥ β.

Proof. By applying (2) on edges e1 and a2 respectively (see Figure 10) we get

x0 + x1
1 + x4

1 + x5
1 + x6

1 + x1
2 + y1

2 + y6
2 =

1

3
. (5)

x4
1 + x1

2 + y4
2 + y6

2 + x2
3 =

1

3
. (6)

Substracting (5) and (6), using max{x0, x1, x3} ≤ δ and equation (3) we obtain

|y1
2 − y4

2| ≤ δ. (7)

Analogously, we also have

|y2
2 − y5

2| ≤ δ, (8)

|y3
2 − y6

2| ≤ δ. (9)

Using max{x0, x1, x3} ≤ δ, equation (3) and applying (2) on edge ej , for j ∈ {1, ..., 6} we have

x1
2 + y1

2 + y6
2 ≥ 1/3− δ, (10)

x2
2 + y2

2 + y1
2 ≥ 1/3− δ, (11)

x3
2 + y3

2 + y2
2 ≥ 1/3− δ, (12)

x1
2 + y4

2 + y3
2 ≥ 1/3− δ, (13)

x2
2 + y5

2 + y4
2 ≥ 1/3− δ, (14)

x3
2 + y6

2 + y5
2 ≥ 1/3− δ, (15)

Now we are ready to prove the lemma. Assume by sake of contradiction that none of the cases
in the lemma holds. As case 1 does not hold, we can assume without loss of generality that one of
the following is true.

(i) x1
2 < β, x2

2, x
3
2 ≥ β,

(ii) x1
2, x

2
2 < β, x3

2 ≥ β,
(iii) x1

2, x
2
2, x

3
2 < β.

Consider the case that (i) is true. Since Case 3 does not hold and x2
2 ≥ β we conclude that

min{y3
2, y

6
2} < β. Using Inequality (9) we get y3

2, y
6
2 < β + δ. Analogously, since Case 4 does not

hold and x3
2 ≥ β we conclude that min{y1

2, y
4
2} < β. Using Inequality (7) we get y1

2, y
4
2 < β + δ.

Then we have

x1
2 + y1

2 + y6
2 < 3β + 2δ = 1/3− δ,

which contradicts inequality (10).
Consider the case that (ii) is true. Similar as above, since x3

2 ≥ β and Case 4 does not hold we
conclude that y1

2, y
4
2 < β + δ. Furthermore, using inequality (8) and that Case 6 does not hold, we

have at least one of the following inequalities y2
2, y

5
2 < β + δ or y3

2, y
6
2 < β + δ. If the first one is

true then,

x2
2 + y2

2 + y1
2 < 3β + 2δ = 1/3− δ,

which contradicts Inequality (11). If the second one is true, then

x2
1 + y2

2 + y6
2 < 3β + 2δ = 1/3− δ,

which contradicts Inequality (10).
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Figure 12. 6-cycle γ for the
case in which X1

2 , X2
2 and X3

2

are nonempty and not long.

Figure 13. Operation (U1) ap-
plied to cycles in Ci1 , where i1 is
a short index of X1

2 .

Finally, consider the case that (iii) is true. As Cases 5, 6 and 7 do not hold, we have that
min{y1

2, y
4
2, y

2
2, y

5
2} < β, min{y2

2, y
5
2, y

3
2, y

6
2} < β and min{y1

2, y
4
2, y

3
2, y

6
2} < β. Without loss of gener-

ality, we can assume that y1
2, y

2
2 < β. Using inequalities (7) and (8) we conclude that y1

2, y
4
2 < β+ δ

and y2
2, y

5
2 < β + δ. Therefore,

x2
2 + y2

2 + y1
2 < 3β + 2δ = 1/3− δ,

which contradicts inequality (11). �

Denote an index i ∈ X2 ∪ Y2 as long if there are at least 2 vertices of V (γ) contained in a single
cycle of CU1

i of length at least 7, otherwise denote it as short. A set Z ⊆ [k] is called long if Z
contains only long indices.

Consider a short index i ∈ X2 ∪ Y2. Since the matching Mi contains two edges of γ, we must be
in the case where γ intersects exactly two cycles of CU1

i and both of them are 6-cycles (we assumed
at the beginning of the proof of this part that no cycle in Ci of length at most 5 intersects γ). The
next lemma complements what happens in each of the cases introduced in Lemma 13.

Lemma 14.

(1) If X1
2 , X2

2 and X3
2 are non-empty then at least one of them is long.

(2) If X1
2 , Y 2

2 and Y 5
2 are non-empty then at least one of them is long.

(3) If X2
2 , Y 1

2 and Y 4
2 are non-empty then at least one of them is long.

(4) If X3
2 , Y 3

2 and Y 6
2 are non-empty then at least one of them is long.

(5) If Y 1
2 , Y 4

2 , Y 2
2 and Y 5

2 are non-empty then at least one of them is long.
(6) If Y 2

2 , Y 5
2 , Y 3

2 and Y 6
2 are non-empty then at least one of them is long.

(7) If Y 1
2 , Y 4

2 , Y 3
2 and Y 6

2 are non-empty then at least one of them is long.

Proof. We only prove items 1, 2 and 5, since the proofs for the rest are analogous.

(1) Assume for contradiction that there are short indices i1 ∈ X1
2 , i2 ∈ X2

2 and i3 ∈ X3
3 . In

particular, every vertex of γ is in a 6-cycle of CU1
ip

(and thus, of Cip) for p = 1, 2, 3. From

this, we deduce that the neighborhood of γ in G is exactly as depicted in Figure 12. Now
focus on the short index i1 ∈ X1

2 . Since G is as in Figure 12, there are three cycles of Ci1
sharing each one edge with a 6-cycle of G. But then, as Figure 13 shows, operation (U1)
would have merge them into a unique cycle C in CU1

i1
of length at least 16, contradicting

the fact that i1 is short.
(2) Assume for contradiction that there are short cycles i1 ∈ Xi

2 i2 ∈ Y 2
2 and i3 ∈ Y 5

2 . In
particular, every vertex of γ is in a 6-cycle of CU1

ip
(and thus, of Cip) for p = 1, 2, 3. From

this, we deduce that the neighborhood of γ in G is exactly as depicted in Figure 14,
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Figure 14. 6-
cycle γ for
the case X1

2 ,
Y 2

2 , Y 5
2 are

nonempty and
not long.

Figure 15. Oper-
ation (U1) applied
to cycles in Ci1 ,
where i1 a short in-
dex of X1

2 .

Figure 16. 6-
cycle γ for the
case Y 1

2 , Y 4
2 ,

Y 2
2 , Y 5

2 are non-
empty and not
long.

Focus on the short index i1 ∈ X1
2 . Since G is as in Figure 14, there are three cycles of

Ci1 that share one edge each with a 6-cycle of G. But in this case, as Figure 15 shows,
operation (U1) would have merge them into a unique cycle C in CU1

i1
of length at least 16,

contradicting the fact that i1 is short.
(5) Assume for contradiction that there are short indices i1 ∈ Y 1

2 , i2 ∈ Y 4
2 , i3 ∈ Y 2

2 and i4 ∈ Y 5
2 .

In particular every vertex of γ is in a 6-cycle of CU1
ip

(and thus, of Cip), for p = 1, 2, 3, 4.

Then, the neighborhood of γ in G is exactly as depicted in Figure 14. But this structure
shows a contradiction, as matching Mi1 can not be completed to the entire graph. �

Using Lemmas 13 and 14 we conclude that there is a long set of indices Z ⊆ X2 ∪ Y2 for which
λ(Z) ≥ β. In particular, using Lemma 12, we conclude that for every i ∈ Z, there are 2 vertices
w in γ with zi(w) ≤ 9/7, and for the remaining four vertices of γ, zi(w) ≤ 4/3. Altogether,∑

w∈V (γ) z(w) is at most

6 ·
(
x0

8

6
+ x1

11

9
+ (x2 − β)

8

6

)
+ β

(
2· 9

7
+ 4· 8

6

)
+ x3

(
2· 8

6
+ 4· 10

8

)
≤ 6(1− β)

4

3
+ β

(
2 · 9

7
+ 4 · 8

6

)
= 6 ·

(
4

3
− 1/9− δ

63

)
. (16)

To end the proof, we set δ = 2/81, so that (1/9− δ)/63 = δ/18 = 1/729. From Inequalities (4)
and (16) we conclude that in any scenario,∑

w∈V (γ)

z(w) ≤ 6 · (4/3− 1/729). (17)

4.1.6. Proof of part (P6) of the Main Proposition. If none of the cases indicated by the previous
parts hold then there are no 4, 5 and 6-cycles in Γ(v). In other words, all components containing
v in the final family of covers have length at least 7. By Lemma 12 we conclude that z(v) ≤
max{13/10, 9/7} = 13/10.
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5. General connected cubic graphs

In this section we give a 4/3 − ε′ approximation algorithm for the TSP of a connected cubic
graph G, where ε′ = 1/183711. Additionally, our algorithm shows that the integrality gap of the
subtour LP for general cubic graphs is also at most 4/3− ε′.

Observe that if G is not 2-connected, the number n of vertices is no longer the optimum value
of the subtour LP. In order to get the desired approximation we need to consider separatedly the
bridges of G, since every feasible tour uses them at twice.

Let F be the set of bridges of G, and let b = |F |. Since G is connected, the graph G \ F is
formed by exactly (b+ 1) subcubic, 2-edge-connected components. Let C = {G1, . . . , Gb+1} be the
collection of components of G \ F . Let C0 ⊆ C be the collection of singleton-components: they are
the ones corresponding to cut-vertices of G (if G is 2-connected, then |C0| = 0). Let also ni be the
number of vertices in Gi and n0 = |C0| be the total number of singleton components.

Let SUB be the optimal subtour LP value of G and SUBi be the optimal subtour LP value of
component Gi. Clearly, if e is a bridge, the corresponding subtour LP variable has to be set to 2
in an optimal solution. Also, for every Gi, SUBi ≥ ni and if Gi is a singleton, then SUB(i) = 0.
Therefore,

OPT ≥ SUB ≥ 2b+

b+1∑
i=1

SUB(i) ≥ 2b+ n− n0, (18)

where OPT is the optimal tour value.
The idea of our algorithm is to find a short tour in each Gi and then glue the solutions into

a single tour by doubling the bridges. Since each nonsingleton component is bridgeless and has
only vertices of degree 2 and 3, we can apply Mömke and Svensson’s algorithm [13] to get tour
of length at most (4/3)ni on each of them. Unfortunately, that is not enough to get an overall
(4/3 − ε′)-approximation for G. Instead, on each nonsingleton component we apply algorithms A
and B below and choose the solution using the fewer edges. Afterwards, we output the union of
all the returned solution together with the doubled bridges.

A: Return the tour given by Mömke and Svensson’s algorithm on the component.
B: Replace each vertex of degree 2 by a chorded 4-cycle, so that the resulting graph is cubic.

Apply the (4/3− ε)-algorithm of Theorem 2 to the expanded cubic 2-connected component
to get a tour. Output the tour obtained by contracting the chorded 4-cycles.

Theorem 3. The previous algorithm returns a tour of length at most (4/3 − ε′)SUB, where ε′ =
ε/(3 + 3ε) = 1/183711.

Proof. Let A(i) and B(i) be the length of the tour returned by algorithms A and B on component
Gi respectively, and let L(A) (respectively L(B)) be the total length of the tour resulting by putting
together all tours A(i) (respectively, B(i)) and twice the collection of bridges.

Using that A(i) ≤ (4/3)ni, for all nonsingleton Gi,

L(A) = 2b+

b+1∑
i=1

A(i) ≤ 2b+ (4/3)(n− n0).

To analyze the second algorithm we need a little more of work. Let D(i) be the number of
vertices of degree 2 in component Gi before expanding it. The expanded components has ni+3D(i)
vertices. Clearly, the tour of length B(i) is obtained from the tour of length B∗(i) (in the expanded
component) by contracting the chorded 4-cycles. Using that B∗(i) contains at least 3 edges in each
chorded 4-cycle, and Theorem 2,

B(i) ≤ B∗(i)− 3D(i) ≤ (
4

3
− ε)(ni + 3D(i))− 3D(i) ≤ (

4

3
− ε)ni +D(i).
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Therefore

L(B) ≤ 2b+ (4/3− ε)(n− n0) +
b+1∑
i=1

D(i) ≤ 4b+ (4/3− ε)(n− n0).

Then, the tour we return has length at most min(L(A), L(B)), which can be checked to be at most(
1 +

1

3(1 + ε)

)
(n− n0 + 2b) ≤

(
1 +

1

3(1 + ε)

)
SUB,

where the last inequality follows from (18). �
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