arXiv:1111.0773v2 [cs.DS] 8 Mar 2012

On the Value of Job Migration in Online Makespan Minimizatio

Susanne Albers Matthias Hellwig

Abstract

Makespan minimization on identical parallel machines itaagical scheduling problem. We consider
the online scenario where a sequence ifbs has to be scheduled non-preemptively:omachines so as
to minimize the maximum completion time of any job. The beshpetitive ratio that can be achieved by
deterministic online algorithms is in the rangess, 1.9201]. Currently no randomized online algorithm
with a smaller competitiveness is known, for genenal

In this paper we explore the power of job migration, i.e. atinenscheduler is allowed to perform a
limited number of job reassignments. Migration is a commeghhique used in theory and practice to
balance load in parallel processing environments. As oun mesult we settle the performance that can
be achieved by deterministic online algorithms. We devealolgorithm that isy,,,-competitive, for any
m > 2, wherea,, is the solution of a certain equation. For = 2, as = 4/3 andlim,, oo @ =
W_1(=1/€?)/(1 + W_1(—1/e?)) ~ 1.4659. HereW_; is the lower branch of the Lambéit function.
Form > 11, the algorithm uses at mo%t» migration operations. For smallet, 8m to 10m operations
may be performed. We complement this result by a matchingideund: No online algorithm that uses
o(n) job migrations can achieve a competitive ratio smaller thgn We finally trade performance for
migrations. We give a family of algorithms thatdscompetitive, for anys /3 < ¢ < 2. Fore = 5/3, the
strategy uses at mostn job migrations. For = 1.75, at most2.5m migrations are used.

*Department of Computer Science, Humboldt-Universitat Rerlin, Unter den Linden 6, 10099 Berlin.
albers@informatik.hu-berlin.de

tDepartment of Computer Science, Humboldt-Universitat Rerlin, Unter den Linden 6, 10099 Berlin.
mhellwig@informatik.hu-berlin.de

http://arxiv.org/abs/1111.0773v2

1 Introduction

Makespan minimization on identical machines is a fundaalesttheduling problem that has received con-
siderable research interest over the last forty yearsolet.Jy, ..., J, be a sequence of jobs that has to be
scheduled non-preemptively en identical parallel machines. Each jobis specified by a processing time
pi, 1 < i < n. The goal is to minimize the makespan, i.e. the maximum cetigyl time of any job in a
schedule. In the offline setting all jobs are known in advahtéhe online setting the jobs arrive one by one.
Each jobJ; has to be scheduled immediately on one of the machines wikmmwledge of any future jobs
Ji, k > i. An online algorithmA is calledc-competitive if, for any job sequencd,s makespan is at most
times the optimum makespan for that sequehce [23].

Early work on makespan minimization studied the offlineisgttAlready in 1966, Graham [12] presented
theList scheduling algorithm that schedules each job on a leasttbathchineList can be used as an offline
and online strategy and achieves a performance ratio-ofl /m. Hochbaum and Shmoys devised a famous
polynomial time approximation schemie [15]. More receneaesh, published mostly in the 1990s, investi-
gated the online setting. The best competitive factor thatlme attained by deterministic online algorithms
is in the rangg1.88,1.9201]. Due to this relatively high factor, compared ltest's ratio of 2 — 1/m, it is
interesting to consider scenarios where an online schedatemore flexibility to serve the job sequence.

In this paper we investigate the impact of job migration. Ay &ime an online algorithm may perform
reassignments.e. a job already scheduled on a machine may be removedamgidrred to another machine.
Process migration is a well-known and widely used technigubalance load in parallel and distributed
systems. It leads to improved processor utilization andiced processing delays. Migration policies have
been analyzed extensively in theory and practice.

It is natural to investigate makespan minimization with jolgration. In this paper we present a com-
prehensive study and develop tight upper and lower boundbi@mrompetitive ratio that can be achieved
by deterministic online algorithms. It shows that even vétkiery limited number of migration operations,
significantly improved performance guarantees are oldaine

Previous work: We review the most important results relevant to our work. mfentioned above,.ist
is (2 — 1/m)-competitive. Deterministic online algorithms with a stealcompetitive ratio were presented
in [2,4,[10,11[16]. The best algorithm currently known i8201-competitive[[10]. Lower bounds on the
performance of deterministic strategies were given in [A,314,/18] 19]. The best bound currently known
is 1.88, for generat:. Randomized online algorithms cannot achieve a compeitiéitio smaller thaa/(e —

1) ~ 1.58 [6,21]. No randomized algorithm whose competitive ratigiisvably below the deterministic
lower bound is currently known, for generad. If job preemption is allowed, the best competitiveness of
online strategies is equal tg (e — 1) ~ 1.58 [7].

Makespan minimization with job migration was first addrelsbg Aggarwal et al.[[1]. They consider an
offline setting. An algorithm is given a schedule, in whichjabs are already assigned, and a budget. The
algorithm may perform job migrations up to the given budg€he authors design strategies that perform
well with respect to the best possible solution that can besitocted with the budget. Online makespan
minimization onm = 2 machines was considered In [17] 22]. The best competithgeie4/3. Sanders et
al. [20] study an online setting in which before the assigninté each jobJ;, jobs up to a total processing
volume of 3p; may be migrated, for some constahtFor 8 = 4/3, they present a 1.5-competitive algorithm.
They also show &1 + ¢)-competitive algorithm, for any > 0, wheres depends exponentially arye. The
algorithms are robust in that the stated competitive raimid after each job assignment. However in this
framework, over time{2(n) migrations may be performed and jobs of total processingrael3 > , p;
may be moved.

Englert et al.[[8] study online makespan minimization if &yoaithm is given a buffer that may be used to
partially reorder the job sequence. In each step an algomtssigns one job from the buffer to the machines.

Then the next job i is admitted to the buffer. Englert et al. show that, using féeebwf size©(m), the best
competitive ratio igV_;(—1/e?)/(1 + W_1(—1/¢e?)), whereW_ is the Lamber#¥ function.

Our contribution: We investigate online makespan minimization with limitegyration. The number of
job reassignments does not depend on the length of the joieseg. We determine the exact competitiveness
achieved by deterministic algorithms, for general

In Sectiori 2 we develop an optimal algorithm. For amy> 2, the strategy is,,,-competitive, wherey,,, is
the solution of an equation representing load in an ideahmaaqrofile for a subset of the jobs. Far= 2, the
competitive ratio is 4/3. The ratios are non-decreasingcamderge taV_;(—1/e?)/(1 + W_1(—1/€?)) ~
1.4659 asm tends to infinity. AgainJW_; is the lower branch of the Lambel’ function. The algorithm
uses at most[(2 — ay,)/(am — 1)%] + 4)m job migrations. Forn > 11, this expression is at mogtn. For
smaller machine numbers it&sn to 10m. We note that the competitiveness of 1.4659 is considetadiiyw
the factor of roughly 1.9 obtained by deterministic alduoris in the standard online setting. It is also below
the ratio ofe/(e — 1) attainable if randomization or job preemption are allowed.

In Section B we give a matching lower bound. We show that nerdehistic algorithm that uses(n)
job migrations can achieve a competitive ratio smaller than for anym > 2. Hence in order to beat the
factor of,,,, ©(n) reassignments are required. Finally, in Sedtion 4 we tradeations for performance. We
develop a family of algorithms that iscompetitive, for any constamtwith 5/3 < ¢ < 2. Settingc = 5/3
we obtain a strategy that uses at mést job migrations. Foe = 1.75, the strategy uses no more thaam
migrations.

Our algorithms rely on a number of new ideas. All strateglasgify incoming jobs into small and large
depending on a careful estimate on the optimum makespan.algbethms consist of a job arrival phase
followed by a migration phase. The optimal algorithm, in #réval phase, maintains a load profile on the
machines with respect to jobs that are currently small. émtiigration phase, the algorithm removes a certain
number of jobs from each machine. These jobs are then radeltealsing strategies by Graham|[12] 13]. Our
family of algorithms partitions then machines into two setd and B. In the arrival phase the algorithms
prefer to place jobs on machines #so that machines i3 are available for later migration. In general,
the main challenge in the analyses of the various algoritisnb@ bound the number of jobs that have to be
migrated from each machine.

We finally relate our contributions to some existing resulErst we point out that the goal in online
makespan minimization is to construct a good schedule wbles @rrive one by one. Once the schedule
is constructed, the processing of the jobs may start. It isstipulated that machines start executing jobs
while other jobs ofo still need to be scheduled. This framework is assumed irhallliterature on online
makespan minimization mentioned above. Consequentlynio idrawback to perform job migrations when
the entire job sequence has arrived. Nonetheless, as fatghgethms presented in this paper, the machines
can start processing jobs except for the up to 10 largestgol=mach machine. A second remark is that the
algorithms by Aggarwal et al. [1] cannot be used to achievadgesults in the online setting. The reason is
that those strategies are designed to perform well rel&bivitbe best possible makespan attainable from an
initial schedule using a given migration budget. The stjig®need not perform well compared to a globally
optimal schedule. The algorithms by Aggarwal et al. and avesdifferent, see [1].

On the other hand, our results exhibit similarities to thog&nglert et al.[[8] where a reordering buffer is
given. The optimal competitive ratio of,, is the solution of an equation that also arises In [8]. Thidus to
the fact that our optimal algorithm and thatlin [8] maintaiceatain load profile on the machines. Our strategy
does so w.r.t. jobs that are currently small while the sipate [8] considers all jobs assigned to machines. In
our framework the profile is harder to maintain becausghoinking jobsi.e. jobs that are large at some time
t but small at later times > ¢. In the job migration phase our algorithm reschedules jebsoved from some
machines. This operation corresponds to the "final phasé¢fieflgorithm in([8]. However, our algorithm
directly applies policies by Graham [12,/13] while the alton in [8] computes a virtual schedule.

In general, an interesting question is if makespan minitidmawith limited migration is equivalent to
makespan minimization with a bounded reordering buffer. dAlenot prove this in the affirmative. As for
the specific algorithms presented in [8] and in this papes,ftiowing relation holds. All our algorithms
can be transformed into strategies with a reordering huffiédre competitive ratios are preserved and the
number of job migrations is equal to the buffer size. Thissfarmation is possible because our algorithms
aremonotone If a job does not have to be migrated at timessumingr ended at time, then there is no
need to migrate it at time$ > ¢. Hence, at any time a buffer can store the candidate jobs migrated. On
the other hand, to the best of our knowledge, the algorithysriglert et al.[[8] do not translate into strategies
with job migration. All the algorithms ir [8] use the givenffer of sizecm, for some constant, to store the
cm largest jobs of the job sequence. However in our setting,gration of the largest jobs does not generate
good schedules. The problem are shrinking jobs, i.e. jodisatte among the largest jobs at some tirhat not
at later times. We cannot afford to migrate all shrinkingsjobinless we inve$d(n) migrations. With limited
job migration, scheduling decisions are final for almostélthe jobs. Hence the corresponding algorithms
are more involved than in the setting with a reordering buffe

2 Anoptimal algorithm

For the description of the algorithm and the attained coitipetatio we define a functiorf,,, («). Intuitively,
fm(a) represents accumulated normalized load in a “perfect” macprofile for a subset of the jobs. In
such a profile the load ratios of the fifst /| machines follow a Harmonic series of the fofm—1)/(m —
1),...,(a=1)/(m—|m/a]) while the remaining ratios are/m. Summing up these ratios we obtgin(«).
Formally, let

fm(a) = (@ = 1) (Hp—1 — Hii—1/aym)-1) + [(1 = 1/a)m]a/m,

for any machine number. > 2 and real-valuedv > 1. Here H, = Y% | 1/i denotes the:-th Harmonic
number, for any integek > 1. We setHy = 0. For any fixedm > 2, let o, be the value satisfying
fm(a) = 1. Lemmall below implies that,, is well-defined. The algorithm we present is exactly;-
competitive. By Lemmal2, the values,, form a non-decreasing sequence. There helgs= 4/3 and
1My, o0 0 = W_1(—1/€%) /(1 + W_1(—1/e?)) ~ 1.4659. This convergence was also stated by Englert et
al. [8] but no thorough proof was presented. The following technical lemmas are proven in the appendix.

Lemmal The functionf,,(«) is continuous and strictly increasing im, for any integerm > 2 and real
numbera > 1. There holdsf,,(1 + 1/(3m)) < 1 and f,,,(2) > 1.

Lemma2 The sequenc@y,,)>2 is non-decreasing with, = 4/3 andlim,, o o, = W_1(—1/e?)/(1+
W_1(=1/¢?)).

2.1 Description of thealgorithm

Letm > 2 andMy,..., M, be the available machines. Furthermore,dgt be as defined above. The
algorithm, calledALG(c,,), operates in two phases,j@ arrival phaseand ajob migration phase In the

job arrival phase all jobs of = .J3,...,J, are assigned one by one to the machines. In this phase no job
migrations are performed. Oneeis scheduled, the job migration phase starts. First therighgo removes
some jobs from the machines. Then these jobs are reassigodretr machines.

Job arrival phase. In this phaseALG(qx,,,) classifies jobs into small and large and, moreover, maigitain
load profile with respect to the small jobs on the machinesarittime the load of a machine is the sum of
the processing times of the jobs currently assigned to ittihee ¢ be the time when/; has to be scheduled,
1<t <n.

Algorithm AL G(a;):

Job arrival phaseEachJ;, 1 <t < n, is scheduled as follows.
e Jis small: AssignJ; to anM; with ¢,(j,t) < B(j)L;.
e J, is large: Assign/; to a least loaded machine.

Job migration phase.
e Job removal: SeR := (). While there exists an/; with ¢(j) > max{8(j)L*, (o« — 1)L}, remove the
largest job fromA/; and add it toR.
e Job reassignment®’ = {J; € R | p; > (o, — 1)L}. Fori = 1,...,m, setP; containsJ:, if
i < |R|, and J2m =i i p2mtl=i s pi /2 and2m + 1 — 4 < |R/|. Number the sets in order of
non-increasing total processing time. Eoe 1,...,m, assignP; to a least loaded machine. Assign
eachJ; € R\ (P, U...U PR,,) to aleast loaded machine.

Figure 1: The algorithmALG(w,y,).

In order to classify jobALG(a,,) maintains a lower bound; on the optimum makespan. Lgf =
Zﬁzlpi be the sum of the processing times of the firgths. Furthermore, foi = 1,...,2m + 1, let p!
denote the processing time of thh largest job in/y, . . . | J;, provided that < ¢. More formally, ifi < ¢, let
p! be the processing time of theh largest job; otherwise we sgt = 0. Obviously, whert jobs have arrived,
the optimum makespan cannot be smaller than the average#q;ﬁdon them machines. Moreover, the
optimum makespan cannot be smaller tBafW”l, which is three times the processing time(®fn + 1)-st
largest job seen so far. Define

L= max{%pzr, 3pfm+1}.

Ajob J; is calledsmallif p; < (o, — 1) Ly; otherwise it idarge. As the estimated, are non-decreasing
over time, a large joly; does not necessarily satigly > («,, — 1)Ly at timest’ > t. Therefore we need a
more refined notion of small and large. A jdb with i < ¢, issmall at timet if p; < (o, — 1) L;; otherwise
it is large at timet. We introduce a final piece of notation. In the sequepge. ., p?™ of the 2m largest
processing times up to timewe focus on those that are large. More specifically,ifee 1,...,2m, let
pi = ptif pi > (o, — 1) Ly; otherwise lep: = 0. Define

o
Ly = %(pt* - Zigpi)-

Intuitively, L} is the average machine load ignoring jobs that are largmattiSincex,,, > 4/3, by LemmaZ2,
andL; > 3p?™"!, there can exist at mo8in jobs that are large at time

We describe the scheduling steps in the job arrival phasiiallyy the machines are numbered in an
arbitrary way and this numberinfy/4, ..., M,, remains fixed throughout the execution ALG(x,,). As
mentioned above the algorithm maintains a load profile omthehines as far as small jobs are concerned.
Define _
8(j) = { (am =15t if j < [m/om]

O otherwise.

We observe thaf,, (am) = i1 B(4), taking into account thatr — |m /oy, | = [(1 — 1/ay,)m]. For
any machinel/; 1 < j < m, let/(j,t) denote its load at timebeforeJ, is assigned to a machine. L&{j, t)
be the load caused by the jobs bfy that are small at time. ALG(«,,,) ensures that at any timehere exists
a machinel; satisfyingl(j,t) < B(j)L;.

Fort = 1,...,n, eachJ; is scheduled as follows. If; is small, then it is scheduled on a machine with
ls(7,t) < B(j5)L;. In Lemmd_B we show that such a machine always existd, i large, then it is assigned
to a machine having the smallest load among all machineheMnd of the phase lét= L,, andL* = L;.

4

[m[2] 3 [4] 5 6 7 8 9 10 [11
am | 2 5 | W | 1 | It | 23 | 58 | 1863 | 5029 | 58001
m 3 11 8 89 97 193 411 1303 3517 40451
~ 1.3636 | 1.375 | 1.4045 | 1.4124 | 1.4145 | 1.4258 | 1.4298 | 1.4209 | 1.4360
pm | 10 | O 9 8 8 8 8 8 8 7

Table 1: The values af,,, and,,, for smallm.

Job migration phase. This phase consists ofjab removal steffollowed by ajob reassignment stept
any time during the phase, 1&tj) denote the current load @f;, 1 < j < m. In the removal steALG(x,)
maintains a seR of removed jobs. Initially? = (). During the removal step, while there exists a machifie
whose load/(j) exceedanax{3(j)L*, (o, — 1)L}, ALG(x,,,) removes the job with the largest processing
time currently residing od/; and adds the job t&.

If R = () at the end of the removal step, thABhG(a,,,) terminates. IfR # (), then the reassignment step
is executed. Lef?’ C R be the subset of the jobs that are large at the ent bé. whose processing time is
greater thar{ia,,, — 1)L. Again there can exist at mo3in such jobs.ALG(x,,) first sorts the jobs of?’ in
order of non-increasing processing time; ties are brokbitrarily. Let J!, 1 < i < |R/|, be thei-th job in
this sorted sequence apfl be its processing time. For= 1,...,m, ALG(x,,) forms jobs pairs consisting
of the i-th largest and thé2m + 1 — i)-th largest jobs provided that the processing time of thedgbb is
sufficiently high. A pairing strategy combining tlieh largest and th€2m + 1 — i)-th largest jobs was also
used by Graham [13]. FormallALG(«,,) builds setsP;, . .., P, that contain up to two jobs. Initially, all
these sets are empty. In a first stéds assigned td;, for anyi with 1 < i < min{m, |R’|}. In a second step
J2m+1-iis added toP; provided thap?™+1=¢ > pi /2, i.e. the processing time of?™*1~¢ must be greater
than half times that o,ﬂ,?. This second step is executed for arsuch thatl < i <m and2m+1—1i < |R/|.
For any setP;,, 1 < i < m, let m; be the total summed processing time of the job$’jn ALG(«,,) now
renumbers the sets in order of non-increasingalues such that; > ... > m,,. Then,fori = 1,...,m, it
takes the seP; and assigns the jobs &f to a machine with the smallest current loadP)fcontains two jobs,
then both are placed on the same machine. Finallg \f(P, U...U P,,) # 0, thenALG(x,,) takes care
of the remaining jobs. These jobs may be scheduled in arampivrder. Each job oR \ (P, U...U Py,)
is scheduled on a machine having the smallest current lohit. cbncludes the description ALG(«,,). A
summary in pseudo-code is given in Figlte 1.

Theorem 1 ALG(«,,) is a,,,-competitive and uses at md$t2 — a.,)/(cm — 1)%] + 4)m job migrations.

As we shall see in the analysis Af. G(a,,) in the job migration phase the algorithm has to remove at most
pm = [(2—am)/(cm — 1)%] + 4 jobs from each machine. Talile 1 depicts the competitivesatj, (exactly

and approximately) and the migration numbgys, for small values ofn. We point out thaty,, is a rational
number, for anyn > 2.

2.2 Analysisof thealgorithm

We first show that the assignment operations in the job &rplkiase are well defined. A corresponding
statement was shown by Englert et al. [8]. The following pisanore involved because we have to take care
of large jobs in the current schedule.

Lemma3 At any timet there exists a machin&/; satisfying/,(j,t) < 5(j)L;.

Proof. Suppose that there exists a timé < ¢t < n, suchthat(j,t) > 5(j)L; holds forallAf;, 1 < j < m.
We will derive a contradiction.

Among the jobs/y, ..., J;, at most2m can be large at time If there were at leas2m + 1 such jobs,
thenL; > 3p?™ ™! > 3(a,, — 1)L; > L; becausey,, > 4/3, see Lemmal2. Hence each of the jobs that is
large at timet is represented by a positive entry in the sequeiice. . , 5. Conversely, every positive entry
in this sequence corresponds to a job that is large att#iaral resides on one of the machines or is equal
to J; if J; is large. Hence i/ is large,» 7" | £(4,t) + pr = Y5, €s(5,) + E?;”l pi. If J; is small, then

Do LG) F e > 5L (G,) = D00 4s(G, 1) + S22m 5t In either case

m m

2m m 2m
STty e = D GG+ 0> Y BUILE+ D B
J=1 j=1 i=1 j=1 i=1

Lm/am] 2m

= m(am—DL; Y. 1/m =)+ (m—|m/amDamLi + > b
j=1 i=1

Taking into account thats — |m/a| = [(1 — 1/auy,)m| and thatf,, (a,,) = 1, we obtain

m

2m
Y G +pe > mLi((am — 1)(Hmo1 = Hig—1jay)m]-1) + [(1 = 1/am)m]am/m) + Y
j=1 i=1

2m
= mLifn(om) + Y B =m(l/mY p—1/mYy p)+Y b = > pi

i=1 i=1 i=1 i=1 i=1
This contradicts the fact th@?”zl ¢(j3,t) + pt is equal to the total processing ti@§:1 p;of Ji,..., Jp. O

We next analyze the job migration phase.

Lemma4 In the job removal step ALG(,) removes at most(2 — a,,,)/ (., — 1)?] + 4 jobs from each of
the machines.

Proof. Consider anyl/;, with 1 < j < m. We show that it suffices to remove at m@&2 — o,/ (cm —
1)?] + 4 jobs so thatV/;’s resulting load is upper bounded byax{3(j)L*, (atm, — 1)L}. SinceALG ()
always removes the largest jobs the lemma follows.

Lettimen + 1 be the time when the entire job sequencis scheduled and the job migration phase with
the removal step starts. A joh, with 1 < ¢ < n, issmall at timen + 1 if p; < («a,,, — 1)L; otherwise it is
large at timen + 1. SinceL = L,, any job that is small (large) at time+ 1 is also small (large) at time.
Let/(j,n + 1) be the load of\/; at timen + 1. Similarly, /5(j,n + 1) is M;'s load consisting of the jobs that
are small at timex + 1. Throughout the proof let := [(2 — a,) /(o — 1)2].

First assumé,(j,n + 1) < 5(j)L*. If at timen + 1 machine)M; does not contain any jobs that are large
attimen + 1, thenf(j,n + 1) = 45(j,n + 1) < B(j)L*. In this case no job has to be removed and we are
done. If M; does contain jobs that are large at time- 1, then it suffices to remove these jobs. Let tifriee
the last time when a jolg; that is large at timex + 1 was assigned td/;. SinceL; < L, J; was also large at
time/ and hence it was assigned to a least loaded machine. Thigsipat prior to the assignment &f M ;
has a load of at mogt" /m < L; < L. Hence it could contain at mos{ (c, — 1) jobs that are large at time
n + 1 because any such job has a processing time greatefahan- 1)L. Hence at most/(a,, — 1) + 1
jobs have to be removed front;, and the latter expression is upper bounded: by4.

Next assumé(j,n + 1) > B(j)L*. If £5(j,n) < B(j)L* = B(4)L;, thenJ, was assigned td/;. In
this case it suffices to removk, and, as in the previous case, at mbgto,,, — 1) + 1 jobs that are large at
timen + 1. Againl/(a, — 1) +2 < k+4.

In the remainder of this proof we consider the case thgt n + 1) > B(j)L* and/s(j,n) > B(5)L}.
Let¢* be the earliest time such th@&t(;j,t) > B(j)L; holds for all timeg* < ¢ < n. We havet* > 2 because
ls(j,1) = 0 < B(j)L7. Hence timet* — 1 exists. We partition the jobs residing dd; at timen + 1 into
three sets. Sefj is the set of jobs that were assignedif at or before timg* — 1 and are small at time
t* — 1. SetT, contains the jobs that were assignedig at or before timg* — 1 and are large at timg — 1.
Finally T3 is the set of jobs assigned id; at or after timet*. We show a number of claims that we will use
in the further proof.

Claim[41. Each jobinT, U T3 is large at the time it is assigned id; .

Claimi@l2. There holdS_ ;. 7\ (3 Pi < B(F)Li._1, whereJ; is the job ofT; that was assigned last 1.
Claim[43. There holdg75| < 3.

Claim[44. For anyJ; € T3, M;’s load immediately before the assignment/pfs at mostL;.

Claim[4l5. Let J; € T3 be the last job assigned 1d;. If M; contains at least jobs, different fromJ;, each
having a processing time of at ledst,, — 1)?L, then it suffices to remove theggobs and.J;
such that)/;’s resulting load is upper bounded by,,, — 1)L.

Claim[6. Ifthere exists &; € T3 with p; < (o, —1)%L, then)/;’s load immediately before the assignment
of J; is at most(a,,, — 1) L.

Proof of Claim 4L.1.The jobs ofT, are large at time* — 1 and hence at the time they were assigned to
M;. By the definition oft*, ¢,(j,t) > B(j)L; for anyt* <t < n. HenceALG(a,,) does not assign small
jobs toM; at or after timet™.

Proof of Clain{4.2All jobs of T3 \ {J;} are small at time* — 1 and their total processing time is at most
s(7,t* — 1). In fact, their total processing time is equalitqj, t* — 1) if [= ¢* — 1. By the definition oft*,
Gt = 1) < BG)LE .

Proof of Claim4.8.We show that for any time, 1 < ¢t < n, whenJ; has been placed on a machiné;
can contain at most three jobs that are large at tinTéne claim then follows by considering — 1. Suppose
that whenJ; has been scheduled/; contained more than three jobs that are large as tinfemong these
jobs letJ; be the one that was assigned lasi{g. Immediately before the assignment.pfmachine)M; had
a load greater thai,; because the total processing time of three large jobs idegrée@an3(a,,, — 1)L; >
3(am —1)L; > L; sincea,,, > 4/3, see LemmA@l2. This contradicts the fact thias placed on a least loaded
machine, which has a load of at m<p$t/m < L.

Proof of Claim[4.4.By Claim[4[1J, is large at timd and hence is assigned to a least loaded machine,
which has a load of at mogf /m < L.

Proof of Claim[4Lb. Claim[4[4 implies that immediately before the assignmenf;afhachine); has
a load of at most; < L. If M; contains at least jobs, different from.J;, with a processing time of at
least (o, — 1)?L, then the removal of thesk jobs and.J, from 1; leads to a machine load of at most
L—k(am —1)2L<L—T[(2—am)/(am —1)?](am — 1)°L < (o, — 1)L, as desired.

Proof of Clain{4.6 By Claim[4{1J; is large at timé and hencey; > (v, — 1)L;. Sincep; < (au, —1)%L,
it follows L; < (a,, — 1)L. By Claim[4[4,)M;’s load prior to the assignment df is at mostZ; and hence at
most(a,,, — 1)L.

We now finish the proof of the lemma and distinguish two casgedding on the cardinality @k U T5.

Casel: If |[To UTs| < k + 4, then by Claini #.2 it suffices to remove the jobsléfu T3 and the last job
of T assigned ta\/;.

Case 2: SupposeT, U Ts| > k + 4. By Claim[4[3,|7>| < 3 and hencéT}| > k + 1. Among the jobs of
T5 consider the last + 1 ones assigned tb/;. If each of them has a processing time of at ldast — 1)2L,

14
14

then Claini4.b ensures that it suffices to remove tlesé jobs. If one of them, say;, has a processing time
smaller than(«,,, — 1)2L, then by Claini#6\/;'s load prior to the assignment of is at most(c,, — 1)L.
Again it suffices to remove thede+ 1 jobs fromA/;. O

After the job removal step each machihg, 1 < j < m, has aload of at mostax{/5(j)L*, (a, —1)L}.
We first observe that this load is at maest, L. If (o, — 1)L > B(j)L*, there is nothing to show. We
evaluate3(j)L*. If j > |m/an], theng(j) = an, andB(j)L* = anLl* < ap, L. If j < |m/ay,], then
B() = (em = 1)m/(m — j) < (o — 1)m/(m — [m/am]) = (am — 1)m/[(1 — 1/am)m]) < an, and
thus(j)L* < o L. HenceM’s load is upper bounded hy,,, O PT', whereO PT denotes the value of the
optimum makespan for the job sequenceThe following lemma ensures that after the reassignmet, st
each machine still has a load of at mast OPT.

Lemma5 After the reassignment step each machiig 1 < j < m, has a load of at most,, OPT.

Proof. We show that all scheduling operations in the reassignniept@eserve a load of at masf, O PT

on each of the machines. We first consider the assignmeneddtsP;, ..., P,,. Suppose that these sets
are already sorted in order of non-increasing total proegssmes, i.e.ry > ... > m,. We first argue
that r; and hence any;, 1 < ¢ < m, is upper bounded bpPT. If P, contains at most one job, there
is nothing to show becaus@PT cannot be smaller than the processing time of any job.iAssume that
Py contains two jobs. Then it consists of jod$ and J2™+!1=% for somei; with 1 < i; < m. Since
the two jobs are paired there holg&" ™1~ > pit /2 and hencg?™ 1= > 7,/3. Let OPT’ denote the
optimum makespan for the job sequente. .., J>" 1~ SinceJ!t and.J?"+1~#1 are paired, jobs! and
J2m+1-i gre also paired, for anyy < i < m, becaus@?™ 1=t > p2mtl=it 5 pit /2 > i /2. Further,
the setsP, ..., P, contain all jobsJ}, ..., J""~1, and none of these was paired. Thus the #&ts. ., P,
contain all the jobs/}, ..., J?"*+1=4 which impliesm; > OPT' andp?™*!=% > OPT’/3. It follows

pt. > OPT'/3, foralliwith 1 < i < 2m + 1 — ;. Graham[[13] showed that given a sequence of upto
jobs, each having a processing time greater than a thirdstiheoptimum makespan, an optimal schedule is
obtained by repeatedly pairing tf¢h largest and2m + 1 — i)-th largest jobs of the sequence. This is exactly
the assignment computed BY.G(a,,,) for J!, ..., J?m+1=4 We concluder; = OPT’ andr; < OPT.

A final observation is that each job & that is not contained i, U . .. U P, has a processing time of at
mostOPT/3. Ajobin R'\ (P, U...U P,,) is equal to a jok/?" =% with 1 < iy < 7;. SinceJ?m+1-io
is not paired withJi°, there holdg2™+1 =% < pio /2. Assume thap?™ =% > OPT /3. Thenp?m1=i js
greater than a third times the optimum makespan for the jdbs. ., J2™+1~% Using again the results by
Graham|[13], we obtain that an optimal schedule for thedate sequence in obtained by repeatedly pairing
Ji with J2m+1=1 However, since?™ 1% < pio /2 the processing timg?™+1 - is at most a third times
the resulting optimum makespan fét, . .., J2m+1=% Hencep?™+1 - is at most a third time® P T, which
is a contradiction.

Next we compare the processing time of the job®pf) ... U P, to Z?;“l p. SetR’ contains the jobs of
Rthat are large at time + 1. There exist at mostm jobs that are large at time+ 1 and hence the processing
time of each job inR’ is represented by a positive entry in the sequeijge. . , p>™. It follows that the total
processing time of the jobs iR’ and hence the total processing time of the job&jnJ ... U P, is at most
Zf;”l p.,. Recall thatr; > ... > m,,. Then, for anyj with 1 < j < m, the productjr; is upper bounded by
the total processing time @f, U ... U P, and hencgn; < Z?Zl P

Now consider the assignment of the sBis. . . , P, to the machines. Each set is assigned to a least loaded
machine. Hence wheR;, 1 < j < m, is scheduled, it is assigned to a machine whose currentidcgtdnost
max{S(7)L*, (o, — 1)L}. If the load is at most«.,,, — 1)L, then the machine’s load after the assignment is
at most(a,, — 1)L + 7 < (e, — 1)L + OPT < o, OPT. If the current load is only upper bounded by
B(7)L*, then we distinguish two cases.

If 7 < |m/an], thenj < m/a,,, which is equivalent tan/(m — j) < am/(am — 1). The resulting
machine load is at most

o m 1 1 1 ,
B(])L +7Tj :(Oém—l)m—_](a iz:;pi_%;pi)—i_ﬂj é (am_l)m—_j(mL_jﬂ-j)_‘_ﬂ-j‘

The last inequality follows because, as argued abgwe, < Z?;“l pi. It follows that the machine load is
upper bounded by
(o — l)mL_j(mL — ;) + @i < (L — 75) + = oy L.
The last inequality holds because/(m — j) < a;,/(a, — 1), as mentioned above.
If j > [m/an]|, thenj > m/«,, becausg is integral. In this case the machine load is upper bounded by

n 2m n
BGHL + 75 = am(d_pi— D> _0)/m+m; < am(d_pi—jmy)/m+m; < aml,
i=1 i=1 =1

becausga,,, > m.

Finally we consider the job& \ (P, U ... U P,,). Each job ofR \ R’ has a processing time of at most
(o, — 1)L. As argued above, each job &f \ (P, U ... U P,,) has a processing time of at mastP7'/3,
which is upper bounded bfyv,, — 1) OPT sincecw,, > 4/3. Hence each job ok \ (P, U ... U P,,) has a
processing time of at moéty,,, — 1) OPT. Each of these jobs is scheduled on a least loaded machirtwnd
after the assignment the corresponding machine has a lagdvadstOPT + (o, — 1)OPT < a,,, OPT. O

The proof of Theorerml1 is complete.

3 A lower bound

We present a lower bound showing tRdiG(«,,,) is optimal.

Theorem 2 Letm > 2. No deterministic online algorithm can achieve a compsitiatio smaller thany,,
if o(n) job migrations are allowed.

Proof. Let A be any deterministic online algorithm that is allowed to ugeto g(n) job migrations on a
job sequence of length. Suppose thatl achieves a competitive ratio smaller thap,. We will derive a
contradiction.

Choose are > 0 such thatA has a competitive ratio strictly smaller thap, — e¢. Lete’ = ¢/3. Since
g(n) = o(n) there exists am(such thaty(n)/n < € /(2m), for all n > ny. Hence there exists am such
thatg(n+m)/(n+m) < €/(2m), for alln > max{m, ne}. Letn’, with n’ > max{m,ng}, be the smallest
integer multiple ofm. We haveg(n’ + m)/n’ < ¢’ /m because)’ + m < 2n’/. An adversary constructs a job
sequence consisting of + m jobs. Letp; = m/n’. By our choice of2/, there holdg; < €¢'/g(n’ +m). The
following adversarial sequence is similar to that used bgl&m et al. [8]. However, here we have to ensure
that in migratingo(n) jobs, an online algorithm cannot benefit much.

First the adversary presents$ jobs of processing timg;. We will refer to them ag-jobs. If after the
assignment of these job$ has a machiné/;, 1 < j < m, whose load is at least,,, then the adversary
presentsn jobs of processing timg, = ¢'/m. Using job migration A can remove at mogt(n’ 4+ m) p;-jobs
from M;. Sinceg(n’ + m)p; < €, after job migration); still has a load of at least,,, — . On the other
hand the optimal makespaniist ¢’ /m. In an optimal assignment each machine contairis p;-jobs and

onepq-job. The ratio(a,,, — €')/(1 + € /m) is at least,, — € by our choice of’ and the fact thatv,,, < 2,
see Lemmall. We obtain a contradiction.

In the following we study the case that after the assignmétiteop,-jobs each machine id’s schedule
has a load strictly smaller tham,,. We number the machines in order of non-decreasing load thath
¢(1) < ... < £(m). Here/(j) denotes the load ai/; after thep,-jobs have arrived] < j < m. For
j=1,...,m—1, defineg(j) = (am — 1)m/(m — j). We first argue that there must exist a machidg,

1 <j <m—1,in A's schedule whose load is at le@tj). Suppose that each maching, 1 < j <m —1,

had a load strictly smaller thaf(j). By Lemm&1,«,, > 1 and hencd (1 — 1/a,,)m| > 1. Consider the

[(1 —1/ay,)m] machines with the highest load i's schedule. Each of these machines has a load strictly
smaller thanv,,,. The remaining machines have a load strictly smaller théh) = (o, — 1)m/(m — j),
forj=1,...,m—[(1 —1/amm)m]. We conclude that after the arrival of thg-jobs the total load on the
machines is strictly smaller than

m—[(1-1/am)m] 1
(am — 1)m Z p— + (1 = 1/am)m]am,
j=1
= m((am — 1) (Hpm-1 — Hia—1/amym)-1) + [(1—=1/am)m]am/m) =mfum(amy) = m.

The last equation holds becaugg(«.,,) = 1, by the choice ofy,,,. We obtain a contradiction to the fact that
after the arrival of the;-jobs a total load of exactlhy resides on the machines.

Let Mj,, with 1 < j, < m — 1, be a machine whose load is at le@gt,). SinceA’s machines are
numbered in order of non-decreasing load there exist at figost1 machines having a smaller load than
B(jo). The adversary presenjs jobs of processing timgs = m/(m — jo). Using job migrationA can
remove at mos§(n’ + m) p1-jobs from any of the machines, thereby reducing the loadt loyaste’. Hence
in A’s final schedule there exists a machine having a load of & #ag) + m/(m — jo) — €. This holds true
if the po-jobs reside on different machines. If there exists a macbantaining twg,-jobs, then its load is at
least2m/(m — jo) > (am —1)m/(m—jo) +m/(m— jo) = B(jo) +m/(m — jo) as desired. The inequality
holds because,,, < 2, by Lemmd_ll. Hencel's makespan is at least(jy) + m/(m — jo) — €.

The optimum makespan for the job sequence is upper bounded by, — jo) + €. In an optimal schedule
the jo p2-jobs are assigned to different machines. The,-jobs are distributed evenly among the remaining
m — jo machines. Ifn’ is an integer multiple ofn — 7y, then the load on each of these — j, machines
is exactlyn/p; /(m — jo) = m/(m — jo), which is exactly equal to the processing time gf.gjob. If n’
is not divisible bym — jy, then the maximum load on any of these— j, machines cannot be higher than
m/(m — jo) +p1 < m/(m—jo) +€/g(n' +m) <m/(m — jo) + €.

Dividing the lower bound od’s makespan by the upper bound on the optimum makespan wi obta
(amm/(m —jo) —€)/(m/(m—jo)+€) > (m—€)/(1+€) > am —e. The lastinequality holds because
¢ = ¢/3 anda,, < 2, see LemmaAl]1. We obtain a contradiction to the assumptiardfea&ompetitiveness is

strictly smaller thany,,, — e. O

4 Algorithmsusing fewer migrations

We present a family of algorithm&LG(c) that uses a smaller number of job migrations. We first desctib
family and then analyze its performance.

4.1 Description of ALG(c)

ALG(c) is defined for any constantwith 5/3 < ¢ < 2, wherec is the targeted competitive ratio. Animportant
feature ofALG(c) is that it partitions the machine¥/, ..., M,, into two setsA = {Mj,..., M, >} and

10

B = {Mp,/21,---, Mn} of roughly equal size. In a job arrival phase the jobs areepaslly assigned to
machines in4, provided that their load it not too high. In the job migratiphase, jobs are mostly migrated
from machines ofd (preferably to machines if?) and this policy will allow us to achieve a smaller number of
migrations. Setting = 5/3 we obtain an algorithmh\LG(5/3) that is5/3-competitive usinglm migrations.
Forc = 1.75 the resulting algorithrLG(1.75) is 1.75-competitive and uses at mastm migrations. In the
following let5/3 < ¢ < 2.

Algorithm ALG(c): Job arrival phase. At any timet ALG(c) maintains a lower bound, on the
optimum makespan, which is defined Bs= max{Lp;", p;, 2p;"*'}. Here we use the same notation as in
Section 2. Recall that} andp;’“rl are the processing times of the largest &nd+ 1)-st largest jobs in
J1,. .., Ji, respectively. A jobJ; is smallif p, < (2¢ — 3)L;; otherwise it islarge. A job J;, with i < ¢,
is small at timet if p; < (2¢ — 3)L,. For any machiné/; and any time, £(j,t) is M;’s load immediately
beforeJ; is assigned and;(j, t) is its load consisting of the jobs that are small at time

Any job J;, 1 <t < mn, is processed as follows. Jf is small, therALG(c) checks if there is a machine in
A whose load valué,(j,t) is at most(c — 1)L,. If this is the case, then among the machinesl iwith this
property, J; is assigned to one having the smallégtj, ¢) value. If there is no such machine i thenJ, is
assigned to a least loaded machine3inIf J, is large, therALG(c) checks if there is machine iA whose
load value/(j,t) is at most(3 — ¢) L,. If this is the case, thed, is scheduled on a least loaded machinelin
OtherwiseJ; is assigned to a least loaded machinéinAt the end of the phase lét= L,,.

Job migration phase. At any time during the phase Iéfj) denote the current load af/;, 1 < j < m.
We first describe the job removal step. For any macliifiec B, ALG(c) removes the largest job from that
machine. Furthermore, while there exists a machifiec A whose current load excee@ls— 1)L, ALG(c)
removes the largest job from the machine. Rebe the set of all removed jobs. In the job reassignment step
ALG(c) first sorts the jobs in order of non-increasing processimgsi For any, 1 < i < |R|, let J! be the
i-th largest job in this sequence, and jétbe the corresponding processing time. Fet 1,...,|R|, J¢ is
scheduled as follows. If there exists a machide € B such that/(j) + p. < cL, i.e. J! can be placed on
M without exceeding a makespandf, then.J! is assigned to this machine. Otherwise the job is scheduled
on a least loaded machine ih A pseudo-code description 8.G(c) is given in Figuré P.

Algorithm ALG(c): Let5/3 < ¢ < 2.
Job arrival phaseEachJ;, 1 <t < n, is scheduled as follows.
o Jiissmall: Letd’ = {M; € A | ls(j,t) < (c—1)L}. If A’ # 0, then assign, to a machinel/; € A’
having the smallest,(j, t) value. Otherwise assigh to a least loaded maching; € B.

e J,is large: If there is a/; € A with £(j,t) < (3 — ¢)L, then assign/; to a least loaded machine in
A. Otherwise assigd; to a least loaded machine is.

Job migration phase.

e Job removal: SeR := (). For anyM; € B, remove the largest job fromi/; and add it toR. While
there exists ad/; € A with ¢(j) > (¢ — 1)L, remove the largest job frod/; and add it toR.

e Job reassignment: Sort the jobs®fin order of non-increasing processing time. ket 1,...,|R|,
schedule/; as follows. If there is ad/; € B with £(j) + p’ < cL, then assign/{ to M;. Otherwise
assign it to a least loaded machinedn

Figure 2: The algorithm\LG(c).

Theorem 3 ALG(c) is c-competitive, for any constantwith 5/3 < ¢ < 2.

The proof of the above theorem is presented in Section|418.drder to obtain good upper bounds on the
number of job migrations, we focus on specific values.dfirst, setc = 5/3. In ALG(5/3)a job J; is smalll

11

if p, < 1/3 - L. In the arrival phase a small job is assigned to a maching iinthere exists a machine in
this set whose load consisting of jobs that are currentlyllsmat most2/3 - L,. A large job is assigned to a
machine inA if there exists a machine in this set whose load is at mo3L;.

Theorem 4 ALG(5/3) isg-competitive and uses at mast job migrations.

In fact, for anyc with 5/3 < ¢ < 2, ALG(c) uses at mostm job migrations. Finally, let = 1.75. In
ALG(1.75)a job J; is small ifp, < 0.5 - L,. In the arrival phase a small job is assigned to a machingiin
there is a machine in this set whose load consisting of jodisatte currently small is no more thary52;. A
large job is assigned to a machinedrnif there exists a machine in this set whose load is at ma@st’;.

Theorem 5 ALG(1.75) isl.75-competitive and uses at masbm job migrations.

Again, for anyc with 1.75 < ¢ < 2, ALG(c) uses at mos2.5m job migrations. The proofs of Theorerns 4
and® are contained in Section 4]2.2.

4.2 Analysisof ALG(c)

In this section we analyz&LG(c), for any ¢ with 5/3 < ¢ < 2, and prove Theorenid 8] 4 ahd 4. We
first determine the competitive ratio 8.G(c) and then bound the number of job migrations performed for
c=5/3andc = 1.75.

4.2.1 Analysisof the competitiveratio

We start by showing two lemmas that will allow us to bound loadmachines im3. Again, let timen + 1
be the time when the entire job sequewnce- J, ..., J, has been scheduled and the migration phase starts.
Ajob J;, 1 <i < n,issmall at timen + 1 if p; < (2¢ — 3)L = (2¢ — 3)L,; otherwise the job ifarge at

timen + 1. For anyM;, 1 < j < m, let{(j,n + 1) be its load at time: + 1 and let/,(j,» + 1) be the load
consisting of the jobs that are small at time- 1. Let L, := L.

Lemma6 Foranytimet, 1 <t <n+ 1, and anyM; € B, there hold¥(j,t) — p; < (3 — ¢)L;—1, whereJ;
with [< t is the last job assigned tb/;.

Proof. By the definition ofALG(c), whenJ; is assigned td/;, all machines ofA have a load greater than
(c—1)L; andM; is a least loaded machine . Hencel/;'s load at time is at most(3 —c¢) L, since otherwise
the total load on thex machines would be greater tham /2 |(c—1)L;+ [m/2|(3—c¢)L; > mL; > Zﬁzl Di,
which is a contradiction. Hend&j,t) = ¢(j,1) + ;1 < (3 —¢)L;+pi < (3 —¢)Li—1 + py. O

Lemma7 Suppose that there exists a maching- € A with /,(j*,n + 1) < (2 — ¢)L. Then, for any
M; e B,{(j,n+1) —p < (c— 1)L, whereJ; is the last job assigned tb/;.

Proof. Consider anyM/; € B and letJ; be the last job assigned to it. First assume thas large at time
[. By the definition ofALG(c), at time! all machines ofA have a load greater thal — c¢)L;. Moreover,
M; is a least loaded machine i at timel. We argue that a least loaded machineSirhas a load of at
most(c — 1)L;. If this were not the case, then immediately after the asségn of J; the total load on the
m machines would be greater tham/2|(3 — ¢)L; + [m/2](c — 1)Ly +p; > (m/2 —1/2)(3 — ¢)L; +
(m/24+1/2)(¢c —1)L; + (2¢ —3)L; = mL; + (3¢ — 5)L;. The inequality holds becauge- ¢ > ¢ — 1. Since
¢ > 5/3 itfollows |m/2|(3 — ¢)L; + [m/2](c — 1)Ly + p; > mL; > Zﬁ-:lpi, which is a contradiction.
Hencel(j,n + 1) = £(4,0) +p1 < (c— 1)Ly +p; < (¢ — 1)L + p.

Next assume thaf; is small at timel. This impliest(j,1) > (¢ — 1)Ly, for all M; € A. In particular,
ls(5%,1) > (¢ — 1)L;. Sincels(5*,1) < ls(j*,n+1) < (2 —¢)Litfollows L; < (2 —¢)/(c — 1) - L.

12

By Lemma6,/(j,l + 1) < (3 —¢)L; + p; and we concludé(j,n + 1) = £(j,1 +1) < B3 —¢c)L;+p <
(3—c¢)(2—c¢)/(c—1)-L+p; < (¢c—1)L+p;. The last inequality holds becauge—-c)(2—c)/(c—1) < c¢—1
holds since: > 5/3. O

We next analyze the job migration phase assuming that theejoloval step has already taken place, i.e.
each machine ofl has a load of at most — 1)L and the largest job was removed from each maching.of
We show that given such a machine configuration each ja® cén be assigned to a machine so that a load
bound ofcL is preserved. For the analysis of the reassignment stepud st0 cases depending on whether
or not at timen + 1 all machinesM; € A have aloads(j,n + 1) > (2 —¢)L.

Lemma8 If 4,(j,n+1) > (2—c)L, forall M; € A, then in the reassignment step all jobstofire scheduled
so that the resulting load on any of the machines is at mbst

Proof. By assumption, at the end of the job arrival phésg,» + 1) > (2 — ¢)L, for all M; € A. We
first show that this property is maintained throughout thergmoval step. Suppose that a jéfthat is small

at timen + 1 is removed from a maching/; € A. SinceALG(c) always removes the largest jobs from a
machine,M; currently contains no jobs that are large at time 1. HencelM;’s current load/(;) is equal to
its current load’s(j) consisting of jobs that are small at time-1. Since aJob removal needs to be performed,
ls(5) = £(j) > (¢ — 1)L. Sincep; < (2¢ — 3)L, the removal ofJ; leads to a load consisting of small jobs of
atleastls(j) —pr > (c—1)L — (2¢—3)L = (2 —¢)L.

After the job removal step each maching, € A has a load of at moge — 1)L. By Lemma[6 each
machine ofB has a load of at mos83 — ¢)L < cL after ALG(c) has removed the largest job from any of
these machines. We show that eaghe R can be scheduled on a machine such that the resulting load is
at mostcL. Consider any/, € R. There holdg, < L. Suppose thaf, cannot be feasibly scheduled on
any of the machines. Lé{;j) denote)/;'s load immediately before the assignment/pf 1 < j < m. If Jj
cannot be placed on a machinednthen each maching/; € A must have a load greater than— 1)L: If
0(j) < (e—1)L, thenl(j) +p < cL and the assignment dL to M, would be feasible. Hence since the start
of the reassignment step each machide € A must have recelved at least one jéb and its current load
is(j) > (2 — ¢)L + p;;- WhenJ;; was reassigned, it could not be scheduled on any machifevithout
exceeding a load ofL. This implies, in particular, that(|m /2] + j) + p;; > cL. Recall that the machines
of A are numbered, ..., |[m/2] and those oB are numberedm/2] + 1,...,m. Finally, sinceJ; cannot
be placed on a machine I8, we have/(m) + py > cL.

It follows that whenJj, has to be scheduled the total processing time of the jobdessit

m [m/2] m
DG +pe = m/2l2 =L+ Y pi+ Y. L)+ pre
j=1 j=1 j=|m/2]+1

If mis even, therp T | o) 4 £(j) = Z;”:/f ¢(m/2 + 7). In this case we have

m m/2
> LG +pe=m/2- (2=)L+ > (Lm/2+§) +pi,) + i >m/2- (2=)L +m/2-cL = mL.
j=1 Jj=1

If m is odd, themd 7L\ 51,1 £(4) = ZLZL{?J ((m/2] +j) + £(m) and

m [m/2]

ST+ > m/2)- 2—cL+Z (Lm/2] + 4) + pi,) + £(m) + pi
j=1

> |m/2]- (2—c)L+Lm/2J cL +cL
= (m/2—-1/2)2L+cL > mL.

13

In both cases with obtaidi_; p; > >, £(j) + px > mL, which contradicts the definition df. 0

Lemma9 If 4,(j*,n+ 1) < (2 — ¢)L, for somelM ;- € A, then in the reassignment step all jobsifre
scheduled so that the resulting load on any of the machinasnsstcL..

Proof. In the removal step\LG(c) removes the largest job from each machide € B. Hence, if¢(j*,n +
1) < (2 — ¢)L for somel; € A, then by Lemma&]7 each machine Bfhas a load of at mogt: — 1)L after
the removal step. Moreover, each machineldias a load of at mosgt — 1)L after the job removal.

Hence when the reassignment step starts, all machines head af at mos{c — 1) L. By the definition
of L each job has a processing time of at mbstHence in the reassignment step the firsjobs can be
scheduled without exceeding a loadddf on any of the machinesALG(c) sorts the jobs oRR in order of
non-increasing processing times. Thus wheljobs of R have been scheduled, each of the remaining jobs
has a processing time of at mdg L. This holds true because by the definitionZothere cannot exist + 1
jobs of processing time greater thafR L. Each job of processing time at mdst2. can be scheduled on a
least loaded machine without exceeding a loadlokinceL + 1/2L < cL. Hence every remaining job can
be scheduled on a machine Bfand A. O

Lemmag 8 and]9 imply Theorem 3.

4.2.2 Analysisof thejob migrations

It remains to evaluate the number of job removals in the jogration phase. We first considatG(5/3).
Lemma 10 In the removal step ALG/3) removes at most seven jobs from each machines A.

Proof. We show that, for any/; € A, it suffices to remove at most seven jobs frém such that the resulting
load is upper bounded b¥/3L. The lemma then follows because in each removal operatioB(5/3)
removes the largest job.

First assume that;(j,n + 1) < 2/3L. In this case it suffices to remove all jobs that are largenag ti
n + 1. Each such job has a processing time greater thai. and was large at the time it was assigned to
M;. Consider the last time when such a job was assignéd;toAt that time\/; had a load of at most/3L
and hence could contain no more than three jobs of procetisieggreater than/3L. Thus at timen + 1
machine)M; contains at most four of these large jobs.

Next assumé,(j,n + 1) > 2/3L. If {5(j,n) < 2/3L,, thenJ, is assigned td\/; becausel = L,,.
Hence it suffices to remové, and, as shown in the last paragraph, four additional jobs@fgssing time
greater thai /3L,, = 1/3L.

In the following we concentrate on the case thay,n + 1) > 2/3L and/,(j,n) > 2/3L,. Lett* be the
earliest time such that,(j,¢) > 2/3L, holds for all times > ¢*. We havet* > 1 becausé;(j,0) = 0. We
partition the jobs that reside ai; at timen + 1 into three sets. Sdf; (set7’) contains those jobs that were
assigned ta\/; at or before timeg* — 1 are small (large) at tim¢" — 1. Set73 contains the remaining jobs,
which have arrived at or after tiné.

Claim[I0.1. Each job ofT; U T3 is large at the time it is assigned Ad;.
Claim[10.2. There holdszJieTl\{Jl} pi < 2/3L4_1, whereJ; is the job ofT} that was assigned last id;.
Claim[d10.3. There holdg75| < 4.

Claim[I0.4. ForanyJ; € T3, M;’s load immediately before the assignment/pfs at most!/3L;.

14

Claim[I05. Let J; € T3 be the last job assigned fd;. If M; contains at least four jobs, different frody,
each having a processing time of at leg&i L, then it suffices to remove these four jobs ahd
such that)/;’s resulting load is upper bounded By3L.

Claim[I06. If there exists aJ; € T3 with p; < 1/6L, then);'s load immediately before the assignment of
Jyisatmost2/3L.

Claim[d07. If there exists aJy, € T, with p;, < 1/6L, th(—:‘nz(]ieT1 pi + pr < 2/3L.

Proof of Claim 10.1L.The jobs ofT; are large at time¢* — 1 and hence at the time they were assigned to
M;. By the definition oft*, £5(j,t) > 2/3L,, for anyt* <t < n, and hencALG(5/3) does not assign small
jobs to M.

Proof of Claim10.2.By the choice oft*, all jobs of 7} \ {J;} are small at timg* — 1 and their total
processing time is at mos§(j,t* — 1) < 2/3L_;.

Proof of Claim_10.B Each job of7; has a processing time greater thHai3 L, _,. Consider the last time
[when a jobJ; € T» was assigned td/;. Immediately before the assignment;; had a load of at most
4/3L~_1 and hence could contain not more than three jobs of progetisie greater tham/3L; .

Proof of Clain{IlL.A Consider any/; € Ts. By Claim[10L1.J; is large at timd and hencel/;’s load prior
to the assignment of; is at mostt/3L;.

Proof of ClainTIl.bBy Claim[10L41/;’s load immediately before the assignment/pfs at most4/3L;.
Removing four jobs of processing time at leagéL each as well ag; reducesl/;’s load to a value of at
most2/3L.

Proof of Clain{10.6By Claim[I0[1.J; is large at timd and hence, > 1/3L;. Sincep; < 1/6L, we have
L; < 1/2L. By Claim[10.4,M;’s load immediately before the assignment/pis at most4/3L; and hence
atmost2/3L.

Proof of Claim[10.F.Job J; is large at timet* — 1 and hencep, > 1/3Ls«_1. Sincep, < 1/6L it
follows L« < 1/2L. By Claim[10.2, we hav{j(,ieT1 pi < 2/3L_1 + p;, whereJ; is the last job
of T} assigned tal/;. Sincep; is small at timet* — 1 we havep; < 1/3Ly_; < 1/6L. In summary
> gery Pi+ e <1/3L+1/6L +1/6L = 2/3L.

We proceed with the actual proof and distinguish two cases.

Case 1: If |T, U T3| < 4, then by Claini I0J2 it suffices to remove the jobsIofU T3 and the last job of
T, assigned ta\/;.

Case 2: Assume|T, U T3| > 5. Then by Claini_1DJ3 there hold$,| < 4 and thusl; # (). Let J; be the
last job of T3 assigned ta\/;. If T, U T3 \ {J;} contains at least four jobs of processing time at le#8t,
then by Clain_ 105 it suffices to remove these four jobs #ndSo suppose that this is not the case. Then
T» U T3\ {J;} must contain a job of processing time smaller th&6._.

Assume there exists a job i \ {.J; } with this property. Then lef, be the last job assigned id; having
a processing time smaller thari6 L. By Claim[10.6, immediately before the assignment/eimachine)/;
has a load of at mo&t/3L. Therefore it suffices to remov&: and the jobs ofl; subsequently scheduled on
M;. In addition to.J;, this sequence consists of at most three j@ps# J;, becausds \ {.J;} contains less
than four jobs of processing time at leag6 L.

Finally consider the case that all jobsBf \ {J;} have a processing time of at ledg6L and there is a
job Jy € T having a processing time smaller thgf6 L. By Claim[10LY it suffices to removk, \ {J; } U T5.
By Claim[10.3 we havéls \ {J }| < 3. SinceTs\ {J;} contains less than four jobs, each having a processing
time of at leastl /6L, we have{T;| < 4. We conclude that at most seven jobs have to be removed. O

Lemmd.T ensures that in the job removal stdyi5(5/3) removes at most jobs from any machine ial.
For any machine if?, one job is removed. Hence the total number of migrationsrisost? | m /2 |+[m /2] <
4m. This concludes the proof of Theorém 4. We next turn to therélym ALG(1.75).

15

Lemma 11 In the job removal step ALG.75) removes at most four jobs from each machidgc A.

Proof. We show that, for any/; € A, it suffices to remove at most four jobs frabd; such that the resulting
load is upper bounded iy 75L.

Firstassume thdt (j,n+1) < 0.75L. Then it suffices to remove all jobs that are large at tirtrel. Each
such job has a processing time greater thad and was large at the time it was assigned/fp. Consider
the last time when such a job was assigned£p At that time M; had a load of at most.25L and hence
could contain no more than two jobs of processing time greatn0.5L. Thus at timen + 1 machine)M;;
contains at most three of these large jobs.

Next assumé;(j,n + 1) > 0.75L. If £,(j,n) < 0.75L,, thenJ, is assigned td/; becausel = L,,.
Hence it suffices to remové, and, as shown in the last paragraph, three additional jopsoakssing time
greater tha®.5L,, = 0.5L.

We concentrate on the case tligtj,n + 1) > 0.75L and/s(j,n) > 0.75L,,. Lett* be the earliest time
such that/s(j,¢) > 0.75L; holds for all timest > t*. We partition the jobs that reside dd; at timen + 1
into three sets. Séf; (set7>) contains those jobs that were assigned£pat or before time* — 1 are small
(large) at time* — 1. SetT3 contains the remaining jobs, which have arrived at or aiftee t*.

Claim[111. Each job off; U T3 is large at the time it is assigned id;.

Claim[I12. There hOIdSZJZ-eTl\{JL}pi < 0.75Ly 1, where J; is the job of T} that was assigned last to
M.

Claim[113. There holdg75| < 3.
Claim[114. ForanyJ, € T3, M;'s load immediately before the assignmentjpfs at mostl.25L;.

Claim[115. LetJ; € T3 be the last job assigned fd;. If M/, contains at least three jobs, different frofn
each having a processing time of at lea&i L, then it suffices to remove these three jobs and
J; such that)/;’s resulting load is upper bounded byr5L.

Claim[11.6. If there exists a/; € T3 with p; < 1/6L, then);’s load immediately after the assignmentipf
is at most).75L.

Clam[ILl7. If Ty C Ty is a subset with < |73 < 2 andp; < 1/6L, for all J; € Ty, theny” ; ;. pi +
> ety Pi < 0.75L.

Proof of Clain[11.1L.The jobs ofT; are large at time¢* — 1 and hence at the time they were assigned to
M;. By the definition oft*, /,(j,t) > 0.75L;, for anyt* < t < n, and hencéALG(1.75) does not assign
small jobs to)M; at timest > t*.

Proof of Claim IIL.R.All jobs of 77 \ {.J;} are small at time* — 1 and their total processing time is at
most/,(j,t* — 1) < 0.75L4+_1, by the choice of*.

Proof of Claim11.B.Each job ofT; has a processing time greater tahL,«_;. Consider the last time
I when a jobJ; € T, was assigned td/;. Immediately before the assignment,; had a load of at most
1.25L;-_1 and hence could contain not more than two jobs of processmeydreater thaf.5L ;.

Proof of Clain{IIL# Consider any/; € T3. By Claim[11[1; is large at timd and hencel;’s load prior
to the assignment af; is at mostl.257;.

Proof of ClainCIX.bBy Claim[11.4);’s load immediately before the assignment/pfs at mostl.25L;.
Removing three jobs of processing time at leg&tl each as well ag; reduces);’s load to a value of at
most0.75L.

16

Proof of ClainTIL.6By Claim[11[1J; is large at tim€ and hence; > 0.5L;. Sincep; < 1/6L, we have
L; < 1/3L. Using Claim 1iL# we obtain thalt/;'s load immediately after the assignment.bfis at most
1.25L; +p; < 5/12L + 1/6L < 0.75L.

Proof of ClaimI)J7 Any job J; € Ty is large at time* — 1 and hence; > 0.5L+_;. Sincep; < 1/6L
it follows L« < 1/3L. By Claim[11.2, we han:JZ_ET1 pi <0.75L_1 +p; < 0.25L 4+ 1/6L, whereJ,
is the last job off; assigned td\/;. Thus}_ ; p, pi + ZJieTé pi <0.25L+3-1/6L <0.75L.

We finish the proof of the lemma using a case distinction orsibe ofT3.

e |T3| = 0: Then by ClainTIILR it suffices to remow® and the last job of/; assigned tal/;. By
Claim[11[3,75 contains no more than three jobs.

e |T3| = 1: We may assume that the only jo € T3 has a processing time of at ledst6 L since
otherwise by Claini If[l6 no job has to be removed. Moreovermag assume thdff;| = 3 since
otherwise, by Clain I]2 it suffices to rema¥g U T3 and the last job of; assigned ta\/;. If all the
jobs of Ty have a processing time of at ledst® L, then Clain1IL5 ensures that it suffices to remove
T», UTs. If one job inT;, has a processing time of at mdgi6 L, then Claini IILl7 ensures that it suffices
to remove the other two jobs @} and75;.

e |T3| = 2: We assume that both jobs 3 have a processing time of at ledg6 L since otherwise, by
Claim[11L6, we can just remove one jobBf andT5. If |T3| = 1, then by ClainiIIL]2 it suffices to
removeT; U T3 and the last job of’; assigned tal/;. It remains to consider the cagg| > 2. If none
of the jobs inT3 has a processing time smaller thf6 L, then Clain_1ILb applies. If one of the jobs
has a processing time smaller thgf6 L, then Clain_1ILJ7 applies and it suffices to remove the at most
two other jobs ofl; and the jobs of’3.

e |T3| = 3: Again we assume that all jobs # have a processing time of at leds6 L since otherwise
the desired statement follows from Cldim[11.6, MoreoverasgmumeTs| > 0; otherwise we can apply
again Clainl IIL2. If there is one job T} having a processing time of at ledst6 L, the desired number
of job removals follows from Clairh 3.5. If this is not the eashen Claini II[]7 ensures that it suffices
to remove the last job df;, assigned td\/; as well asl’.

e |T3| > 4: If four jobs in T3 have a processing time of at ledst L, then by ClainiLIILI5 it is sufficient
to remove three out of these in addition to the last job assign A/;. If at most three jobs have a
processing time of at lea$y6L, then letJ; € T3 be last jobs assigned f/; having a processing time
smaller tharl /6L. By Claim[11L.6 it suffices to remove the jobsBf subsequently assigned id;, and
there exist at most three of these.

This concludes the proof. O
Recall thatALG(1.75) migrates|m /2] jobs from machines il3. Hence, using the above Lemind 11, we

obtain that the total number of migrations is at mést/2| + [m/2] < 2.5m. This finishes the proof of
Theorenib.

References

[1] G. Aggarwal, R. Motwani and A. Zhu. The load rebalancimglgem.Journal of Algorithms60(1):42—
59, 2006.
[2] S. Albers. Better bounds for online schedulii®AM Journal on Computing9:459-473, 1999.

17

[3] Y. Bartal, H. Karloff and Y. Rabani. A better lower bounarfon-line schedulinginfomation Processing
Letters 50:113-116, 1994.
[4] Y. Bartal, A. Fiat, H. Karloff and R. Vohra. New algorithsxfor an ancient scheduling probleduurnal
of Computer and System Sciencek.359-366, 1995.
[5] E. Cesaro. Sur la série harmonigidopuvelles Annales de Mdhatiques 3e&ie, 4:295-296, 1885.
[6] B. Chen, A. van Vliet and G.J. Woeginger. A lower boundfandomized on-line scheduling algorithms.
Information Processing Letter§1:219-222, 1994.
[7] B. Chen, A. van Vliet and G.J. Woeginger. A optimal alglonh for preemptive online schedulin@p-
erations Research Letter§8:127-131, 1995.
[8] M. Englert, D.Ozmen and M. Westermann. The power of reordering for onlifr@mum makespan
scheduling Proc. 49th Annual IEEE Symposium on Foundations of Comg@&tiEmce603—612, 2008.
[9] U. Faigle, W. Kern and G. Turan. On the performance ofiae-blgorithms for partition problemswcta
Cybernetica9:107-119, 1989.
[10] R. Fleischer and M. Wahl. Online scheduling revisitéalrnal of Scheduling3:343—-353, 2000.
[11] G. Galambos and G. Woeginger. An on-line schedulingibga with better worst case ratio than Gra-
ham'’s list schedulingSIAM Journal on Computing22:349-355, 1993.
[12] R.L. Graham. Bounds for certain multi-processing aabes.Bell System Technical Journa5:1563—
1581, 1966.
[13] R.L. Graham. Bounds on multiprocessing timing anoeglSIAM Journal of Applied Mathematics
17(2):416-429, 1969.
[14] T. Gormley, N. Reingold, E. Torng and J. Westbrook. Gatieg adversaries for request-answer games.
Proc. 11th ACM-SIAM Symposium on Discrete Algorith&1-565, 2000.
[15] D.S. Hochbaum and D.B. Shmoys. Using dual approximiadilgorithms for scheduling problems theo-
retical and practical resultdournal of the ACM34:144-162, 1987.
[16] D.R. Karger, S.J. Phillips and E. Torng. A better algan for an ancient scheduling probledaurnal
of Algorithms 20:400-430, 1996.
[17] X.Min, J. Liu and Y. Wang. Optimal semi-online algonitis for scheduling problems with reassignment
on two identical machines$nformation Processing Letterd11(9):423-428, 2011.
[18] J.F. Rudin Ill. Improved bounds for the on-line scheéadglproblem. Ph.D. Thesis. The University of
Texas at Dallas, May 2001.
[19] J.F. Rudin Il and R. Chandrasekaran. Improved bouad#t online scheduling problei@lAM Journal
on Computing32:717-735, 2003.
[20] P. Sanders, N. Sivadasan and M. Skutella. Online sdimgowith bounded migrationMathematics of
Operations Resea¢34(2):481-498, 2009.
[21] J. Sgall. A lower bound for randomized on-line multipessor schedulingnformation Processing Let-
ters 63:51-55, 1997.
[22] Z. Tan and S. Yu. Online scheduling with reassignm@nerations Research Lettgr36(2):250-254,
2008.
[23] D.D. Sleator and R.E. Tarjan. Amortized efficiency at lupdate and paging rulesSommunications of
the ACM 28:202-208, 1985.

Appendix
Proof of Lemmafl Fix m > 2. We first evaluatef,,,(2) and f,,,(1 + 1/(3m)). Fora = 2, we have

[(1—1/a)m]| > m/2. Hence[(1 — 1/a)m]a/m > 1 andf,,(2) > 1. Fora = 1+ 1/(3m), there holds
[(1—1/a)m] = 1. Thusf,,(1+1/(3m)) = 1/(3m)H,—1 +1/m +1/(3m?) < 1/3 +1/2+1/12 < 1.

18

It remains to show thaf,,,(«) is continuous and strictly increasing. To this end we shaat, thor anya > 1
and smalk > 0, f,(a + €) — fn(«) is strictly positive and converges to 0@as- 0.

First consider amv > 1 such thatl — 1/a)m ¢ N. In this case we choose> 0 such that{ (1 — 1/(a +
e))m] = [(1 —1/a)m]. We have

fm(a) = (a@—=1)(Hn-1— Hia-1/aym)-1) + [(1 = 1/a)m]a/m
fulat€) = (@t e—1)(Hur — Hig-1jaymi-1) + [(1— 1/a)m](a + ¢) fm
Thus fo(a + €) — fm(a) = e(Hm-1 — Hia—1/aym)-1) + [(1 — 1/a)m]e/m. Sincea > 1 there holds
[(1—1/a)m] > 1and thusf,,(a+¢€) — fm(a) > 0. Moreover,f,,(a + €) — f(a) tends to 0 ag — 0.

Next letar > 1 such thatl — 1/a)m € N. In this case we choose> 0 such thatf (1 — 1/(a +¢€))m] =
[(1—1/a)m] + 1. There holds

fm(a) = (@ =1)(Hpn-1 - Hia-1/a)m)-1) + [(1 = 1/a)m]a/m
fmlat+e) = (a+e—1)(Hn-1— Hia-1jam)) + ([(1 —1/a)m] +1)(a+e€)/m

Taking into account thatl — 1/a)m € N we obtain

fm(a+e€) = fm(la) = —(a—=1)-1/((1 = 1/a)m) + e(Hm-1 — Hf(1-1/a)m])
+([(1 = 1/a)m] + L)e/m + a/m
= e(Hm-1— Hia-1/a)ym1) + ([(1 = 1/a)m] + 1)e/m.

Again, fo,(a + €) — f,(«) is strictly positive and tends to 0 as— 0. O

Proof of Lemmal2 We first prove that{w,,).,>2 is non-decreasing. A first observation is thgf < m
becausef,,(m) > 1. We will show that, for anyn > 3 and1 < o < m, there holdsf,,—1(a) > fn(«a).
This impliesl = f,,—1(am-1) > fm(am—1). By Lemmdl,f,, is strictly increasing and thus,,, > a,,_1.
Consider a fixedr with 1 < o« < m. We study two cases depending on whether orf(ibt- 1/«)(m —1)] =

[(1—1/a)m].
If [(1—1/a)(m —1)] =[(1 —1/a)m], then

fm(@) = (a—=1)(Hmno1— Hra—1/a)ym)-1) + [(1 = 1/a)m]a/m
fm—1(e) = (@ =1)(Hn-2— H{a-1/a)m)-1) + [(1 = 1/a)m]a/(m — 1).

We obtainfm 1 (@) — fm(a) = —(a=1)/(m —1) + [(1 = 1/a)m]a/(m(m = 1)) = —=(a—=1)/(m —1) +
(a - 1)/(m - 1) = 0and thusfm—l(a) > fm(a)'
If [(1—1/a)(m — 1)] < [(1 — 1/a)m], then[(1 — 1/a)(m — 1)] = [(1 — 1/a)m] — 1 and

fm(a) = (a—=1)(Hpu-1— Hra-1/aym)-1) + [(1 = 1/a)m]a/m
fm-1(a) = (@ =1 (Hpn-2 — Hig-1/aym)-2) + ([(1 = 1/a)m] = 1)a/(m — 1),

Sincea > 1there holdg(1—1/«)(m—1)] > 1. Hence inour casg1—1/a)m| > 2and[(1-1/a)m]|—1 >
0. We obtain

fn-1(@) = fn(@) = =532k + rr=fmrr + (1 - Va)mlamey — 725

Chooser, with0 < z < 1, such thaf (1 — 1/a)m] = (1 — 1/a)m + z. Then

+
+

fr-1(@) = fn(e) = —2=1 + = 1/3)%% p+ (1= Ye)merliay + ooy — o
a—1 azx a
(1-1/a)ym+ + m(m—1) m—1

19

In order to establistf,,_1(a) — fm(a) > 0 is suffices to show

T 2 :1((7:1—?)-

This is equivalent tdoe — 1)m(m — 1) > (m — z)((a — 1)m + ax — «). Standard algebraic manipulation
yield that this is equivalent tor > max — ax? + ax. Letg(x) = ma — ax? + ax, for any real numbet. This
function is increasing for any < (m + «)/(2a). Sincea < m, the function is increasing for any < 1.
As g(0) = 0 andg(1) = m, it follows thatm > mz — ax? + az holds for all0 < x < 1. We conclude
Frne1(@) = fnl@) > 0.

It is easy to verify thaf2(4/3) = 1. We show thatim,,, . o, is upper bounded bW _;(—1/¢e?)/(1 +
W_1(—1/e?)). Cesarol[5] proved

1 1

wherevy =~ 0.577 is the Euler-Mascheroni constant. Using this inequalityfind, for anyc with0 < ¢ < 1
and[em| —2 >0,

Hp1 = Higmy s > %mwmamm+v—§mGWM—%Umﬂ—U*”“nqmﬂ—SGmﬂ—w
> % (In(m — 1) +Inm — In(em — 1) — n(em)) — m
- gmm_m+mm_mum—v@wnmm»—g@%t3
- % (In(m — 1) —In(m — 1/¢) — 2In(c)) — m
> 3@/ - g
> In(1/c) — m

where the second to last inequality holds sihgen — 1/¢) < In(m —1). for 0 < ¢ < 1 and sufficiently large
m. We obtain

fml@) = (@ = D(Hnor = Hio 1jagm1 1) + ([(1 = 1/a)m]) =
« 1 1 o
> (a=1) <1“(a—1)_ (A —Taym—1) [=1/a)m] —1> + (L= 1/a)m])
> (a—1) <ln(a(i1)— (1_1/;)7%_1) +a—1=:F(m).

Obviously,lim, o F(m) = (o — 1)In(5%5) + o — 1. We show thata — 1)In(z%5) + a — 1 = 1, for
o = 115, whered = —1/W_;(—1/€?).
Equation(ce — 1) In(2%5) + o — 1 = 1 is equivalent tdn(-2;) + 1 = —L-, which in turn is equivalent to

[0 1
e =ea-1,

a—1
Substitutingr = 1/(a—1), which is equivalent te« = 1/x2+1, we find that the above is equivalentite+e =
e®. Applying the Lambertd function we find that: = —W_(—1/¢?)—1 is a solution of the former equality.
Substituting we conclude that in fast= W_;(—1/¢?)/(1 + W_1(—1/¢?)) satisfies the equality. Using the
same techniques we can show that,, . a,, is lower bounded byV_;(—1/e?)/(1 + W_1(—1/€?)). In
the calculations[(1) yields th&f,, 1 — H[c,,) < In(1/c) +1/(2m). O

20

	1 Introduction
	2 An optimal algorithm
	2.1 Description of the algorithm
	2.2 Analysis of the algorithm

	3 A lower bound
	4 Algorithms using fewer migrations
	4.1 Description of ALG(c)
	4.2 Analysis of ALG(c)
	4.2.1 Analysis of the competitive ratio
	4.2.2 Analysis of the job migrations

