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Multimodal integration of visual place cells and
grid cells for navigation tasks of a real robot
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LIMSI laboratory, CNRS(UPR3251)
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Abstract. In the present study, we propose a model of multimodal place
cells merging visual and proprioceptive primitives. First we will briefly
present our previous sensory-motor architecture, highlighting limitations
of a visual-only based system. Then we will introduce a new model of
proprioceptive localization, giving rise to the so-called grid cells, wich
are congruent with neurobiological studies made on rodent.

Finally we will show how a simple conditionning rule between both
modalities can outperform visual-only driven models by producing ro-
bust multimodal place cells. Experiments show that this model enhances
robot localization and also allows to solve some benchmark problems for
real life robotics applications.

Keywords: Grid cells; Bio-inspired robotics; Multimodal integration;
Sensory-motor navigation & mapping; Neural networks.

1 Introduction

Ethological studies of animal navigation show that a wide variety of sensory
modalities can be used by animals to navigate and self localize in an unknown
and complex environment. Since the startling discovery by OKeefe and Dostro-
vsky [1] of the spatial correlates of neural activity in the hippocampal system
(HS) of rodents, some work has been done to investigate the neural bases of an-
imals spatial learning (see [2] for a short review). Originally found in HS, place
cells are pyramidal neurons exhibiting high firing rates at a particular location in
the environment (place field). Cells with similar properties but with larger place
field have also been found in the Enthorinal Cortex (EC). As firing of place cells
persists in the dark it has also been suggested that other senses (proprioception,
touch, smell) might contribute as well [3-8].

Later in 2005, Hafting and Moser discorvered grid cells in the dorso-lateral band
of the medial EC (dAMEC) [9]. These cells present spatial firing fields forming
regular triangle-pattern (grid) that tiled the environment. They could be the ba-
sis of a cognitive map of Euclidean space. Each grid is defined by 3 parameters:
frequency (distance between two vertex), phase (spatial shift) and orientation.
Grid cell activity does not require visual input, since it remains unchanged in
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absence of any visual cue (dark) even if the bumps of activity tend to spread
due to accumulation of errors by the integration process [9].

Three main classes of models have been proposed: recurrent network models
based on continuous attractor dynamics [10,11], independent-neuron models
based on oscillatory interference [12] and models using a residue number sys-
tem [13].

Following our previous work [14] based on a residue number model, we first
present a robotic implementation of this model able to exhibit grid cells like
firing pattern. Results underline the key role played by visual inputs. We show
that without visual recalibration, grid cells firing seems scrambled, according to
biological results [9]. Next we present a model, based on a pavlovian conditioning
rule, that merges signals coming from visual cells and grid cells into multimodal
place cells. Experiments on a real robot show how grid cells information can be
enough to self-localize in the dark on short distances. We also show how grid
cells activity help to greatly reduce visual ambiguity, giving robust multimodal
place fields. Finally, we will briefly discuss how this model behaves when the
robot is kidnapped and shifted to another location.

2 Modeling Place Cells from visual information

In previous works, we developped a model of the hippocampus in order to obtain
visual place cells (VPCs) [15] that allowed controlling mobile robots for visual
navigation tasks [16,17]. The embedded pan-tilt camera allows the capture of
several images (actually 15) corresponding to a 360 degrees panorama. A gradi-
ent image convolved with a DoG (difference of gaussian) filter allows to highlight
a set of salient points in the scene (curvature points at a low resolution). A log
polar transform of a small circular image centered on each focus point (local
view of 16*16 pixels) is computed in order to improve the pattern recognition
against small rotations and scale variations.
Then, a neural network learns place cells that code information about a constel-
lation of landmarks in the scene (5 landmarks per images) (figure 1). Activities
of the different place cells depend on the recognition level of landmarks. Robust-
ness comes from the large number of local views extracted (75 per panorama)
and the only use of a competition between place cells (see [18] for detailed pa-
rameters). In our model, local views correspond to the ”what” information coded
in the perirhinal cortex or in other areas of the ventral visual pathway of the
rat temporal cortex [19]. The absolute position of these local views (the ”where”
information) is provided by the parietal cortex through the parahippocampal
region. The merging of ”"what” and ”where” information may be performed in
the superficial layer of the enthorinal cortex or in the postrhinal cortex [20, 21].
A neural network learns to associate a particular PCs with an action (a
direction to follow in our case). This sensory-motor architecture is named Per-
Ac [22] and allows the robot to learn simple but robust behaviors.
Even if our architecture has been succesfully tested in small sized environments
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Fig. 1. Sensorimotor model relying on vision. The gradient image is convolved with a difference of
gaussian filter. Local maxima of the resulting image correspond to points of interest on which the
system focuses on to extract local views. A Place Cell (PC) learns to recognize a specific landmarks-
azitmuths constellation. An action is associated with this PC. This association is learned by a least
mean square algorithm (LMS), after what the system is able to move in the learned direction when
the associated PC wins.

(typically one room), a visual-only based mechanism shows limitations when
trying to scale to larger and more complex ones (multi-room, outdoors). First
the large number of PCs needed to cover this kind of environment introduces a
computational problem that highly decreases the robustness of the localization.
Then a lot of mistakes are due to the ambiguous nature of the visual modality.
Indeed the activity of a PC can highly responds for different locations with
identical visual panorama (corridor for instance). We propose to overcome these
issues by adding a bio-inspired localization mechanism based on proprioception,
following our hypothesis of the way grid cells work.

3 Modeling Grid Cells from extra hippocampal path
integration

3.1 A plausible model of grid cells

Here we present a model for generating grid cells from path integration. Our
simplest model of grid cells (GCs) is based on various modulo’s operator applied
on path integration [14] (figure 2). The path integrator is supposed to be stored
outside the hippocampal system. The activity D; of a neuron belonging the path
integration field (associated with direction 6;) is discretized over a new field of
neurons E; = round( %mjz f) where D,,q, is the maximum value of the distance
that can be computed by the neural field, Ng is the number of neurons on each
field used to discretized each analog activity on the path integration field. Then

a modulo operator is used to compress the field E; by projection.

(1)

k=0 otherwise

un {1 if k = ArgMax(E;) mod A"
with A" the value of the modulo used to build grid n.
A recalibration mechanism, using a Widrow and Hoff learning rule [24, 26], as-
sociate each new VPC with the current path integration field activity (one-shot
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learning), so that it can be recalibrated when that VPC is later well recognized,
like [27,10,28-30] (actually when the winning cell activity reach an absolute
threshold of 0.9 and a difference relative to VPCs mean activity of 0.4).

Angle

Elementar T - v /
movementy Integration field el .

Fig. 2. Linear speed and absolute orientation are used to characterize movement unit and so gen-
erate global path integration on a neural field. A recalibration mechanism associate a VPC with
the argmax of the neural field (distance and orientation are stored). It allows the system to limit
cumulative error on this field when it later well recognizes the corresponding VPC. Path integration
field is then used to build grid cell activity without any cartesian map. Activities of randomly chosen
pairs of neurons D; in that field are discretized on other fields Ef Those fields are compressed by
simple modulo projections M;'. The conjonction of 2 codes of 2 projections is sufficient to obtain
grid cells.

3.2 Recreating grid cells activity on 3 experiments with a real robot

Typical experiments made on rodent consist in recording the activity of grid cells
in dAMEC while the rat (around 20cm large) freely moves in a circular enclosure
(2m of diameter) during 30 minutes. Our experiments run in almost similar con-
ditions since a real robot (around 40cm large) randomly moves in an hexagonal
park (4m of diameter) during the same period of time. Position and simulated
grid cells are simultaneously recorded. Ultrasound sensors are used by the robot
to avoid obstacles and stay inside the hexagonal playground.

In a first experiment, no recalibration is allowed. We note a fast drift of grid
cells activity induced by cumulative errors on path integration. All cells present
a blurred activity without grid-like pattern because of a 30 minutes errors cu-
mulation (figure 3).

In a second experiment, a VPC is learned at the center of the hexagon and visual
calibration is allowed. We obtain coherent grid-like pattern but error remains too
high to correctly visualize small grids. Error’s amplitude is directly linked with
the recalibration area (figure 3).

To avoid this problem, we made a third experiment with a touch-like reset cue
at the corner of 2 walls. The origin of the path integration is set in this corner
and a visual attraction field is learned around it by a few sensory-motor asso-
ciations. It allows the robot to autonomously converges into the reset area by
visual recognition (homing behavior). The reset cue is a red paper sticked on the
floor and a color detector is used by the robot to perceive this goal. A simple
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counter triggers a periodic drive allowing an homing behavior every minute. The
drive is reset each time the goal is reached, allowing the robot to switch back
to a random exploration strategy. This solution avoids errors accumulation over
more than one minute and so gives us the precision needed to display small grid.
But it introduces a static error directly linked with the size of the reset field.
Results show well-defined pattern for the different modulo factors. Those grid
activities are congruent with neurobiological records in rodents EC [9]. Grid
shared the same spacing for the same modulo and the same orientation for the
same discretization factor. Nevertheless, each cell produces a grid of different
phase.

Cue-based calibration setup : Cue-based calibration

No recalibration

Y
attraction field recalibration map
o Sem— (=

>

e A 452

Smin  10min  15min  20min  25min  30min Cell 1

Fig. 3. Experiments made with a real robot (around 40cm large) randomly moving in an hexagonal
enclosure (4m of diameter) during 30 minutes (trajectory in black, neural activity in red). Left :
Experimental setup: for the cue-based calibration experiment, path integration is set in one corner of
the park and an attraction field is learned around it allowing the robot to autonomously go recalibrate
itself every minute. Right : Results of the third experiment show coherent regular hexagonal pattern
of different phases and modulos. Those patterns are quite similar to thus obtained with rodents.

4 Building robust multimodal place cells from visual and
grid cells

4.1 A pavlovian model of merging

In this section, we propose a simple merging mechanism which can take ad-
vantage of allothetic and idiothetic information. This mechanism pops up the
synergy between both modalities.

There are many ways of merging different information sources, and it is known
as a difficult problem, especially when the nature of the sources are highly dif-
ferent. Sensory modalities must be recoded into a common format before they
can be combined. The task is described as the recoding problem by Pouget and
Deneve [23].

Our model is based on the learning of associations between VPCs and the whole
GCs pattern. The system associates a particular GCs state (conditional stimulus)
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with the current winning VPC (inconditional stimulus) by a classical condition-
ning rule [24,26], as for the recalibration mechanism (one-shot learning), like
[27]. We test it with a normalized least mean square algorithm (NLMS) [25]
trying to predict the visual state from GCs activities. A simple weighted sum
allows the merging of VPCs and odometric place cells from GCs.

The activity of a multimodal place cell M PC} is given by a simple linear
combination of VPC and PredV PC activities:

MPCy = a.VPC), + (1 — a).PredV PCy,

with V PC}, the activity of the corresponding visual place cell, PredV PC}, the
activity of the corresponding place cell predicted by the grids (NLMS output),
a € [0;1] a ponderation factor (0.5 in our case) and k € [0;K] the indice of the cell.

The activity of a place cell predicted by grid cells is given by:
K-1
PT@dVPCk = Ek:o wk.Gk

where wy, is the weight of the synapse coming from the corresponding grid
cell Gy.

4.2 Results obtained during a multi-room indoors experiment

In order to test the robustness and the generalization capabilities of our architec-
ture, we made several indoor navigation experiments in a 25x15m environment
(our laboratory). For analysis purpose, we supervized the robot learning to rec-
ognize 19 places (each 1.5m) on a multi-room trajectory. The trajectory starts in
one room, pass through a corridor and ends in a second room (mostly similar to
the first one). Next, the robot followed 5 different parallel trajectories, imposed
by a remote control. Visual recalibration is allowed (calibration driven by well
recognized VPCs only, no periodic homing behavior).

Those five trajectories permit to cover a large space near the learned path, in
order to test generalization capability (figure 4).

The visual recognition system allows great generalization capability (large
place field) but present small perception mistakes due to cue redundancy. On
contrary, the proprioceptive recognition system presents well-defined place fields
without any ambiguity, but is subject to the classical cumulative error of odom-
etry. This induces a very precise discrimination for small scales but a shifted lo-
calization for larger one. Results show interesting emergent characteristics since
the merging mechanism keep a correct localization even if errors simultaneously
happen on the 2 modalities. Merging modalities hightlights contingencies and
reduces non-contingent activities. Two low-level activities at the same time are
more coherent than a singural high-leveled one.

Finally, MPCs are robust to ambiguity and keep large generalization properties.
To show the deterministic nature of the results, we repeated the experiment a
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Fig. 4. Long range navigation in an indoor environment: A - Experimental setup: The robot learns
19 regularly-spaced places (each 1.5m), starting from a room, passing through a corridor and ending
on a second room. B - Visual recognition obtained for 5 different trajectories. Each color is associated
to one visual place cell. Results show great generalization capabilities but present ambiguities (dotted
circles. Numbers correspond to perceived places.). C - Grid recognition for the same trajectories.
Grid fields are smaller but without any ambiguities. A place is not recognized if the robot is too
far away from the learned place. D - Multimodal recognition obtained by merging visual and grid
place cells. The synergy of both modalities shows well defined areas even if the robot is far from the
learned trajectory.

dozen of times in a changing environment (ambiant light and furnitures chang-
ing, persons moving). We also studied what happen when the robot is lifted,
blindfolded, then transported to another place. If this place is already known
and highly recognized, the robot recalibrates its path integration field to a pre-
viously learned value. We made several kidnapping events in order to test the
robustness of this mechanism. Each times, the robot typically runs 5 meters be-
fore to recalibrate its odometry. Thanks to the merging mechanism, the perceived
location never stays wrong for more than 2 meters. This recalibration mechanism
allows the robot to always keep consistancy between vision and proprioception
and never getting lost near learned locations.

4.3 Topology matters : On the need for convolving grid cells

In our model, all grids present binary fields (activated or not) so that the pattern
generated by the conjunction of 3 grids is a three-steps stair shaped. Moreover
the 3 differents modulo factors are relatively prime so that the activity of the
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conjunction pattern is often completely different of the previous one for only few
movements. Narrow place cells are treated like there is no proximity distance
between them. Each grid cell is considered as an orthogonal input so that grid
networks doesn’t benefit from any topology. That is the reason why we propose to
convolve each grid network with a pyramidal-shaped mask, giving to the system
more generalization capabilities. This technics allows to spread field activities
over neighboring cells by using a natural torus topology [11], and so generates
continuity. In return, it looses the ability to distinguish between 2 near places
if the distance between them is smaller than the mask size (figure 5). We used
this convolution method in the multi-room experiment presented in section 4.2.
Without that convolution, the system can’t work.

A - Activity of place cell 6
from rude grid cells

\l

Activity

B - Activity of place cell 6

from convolved grid cells
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C - Places WTA from rude grid cells
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Fig. 5. Example of the diffusion mechanism used to generates topology. A - Activity of motor place
cell 6 from binary grid cells, in space and time on a multi-room trajectory (before to be convolved).
The place field is a thin three-steps stair shaped. B - Activity of motor place cell 6 from convolved
grid cells. The convolution act as a diffusion mechanism spreading activity on neighboring grid cells.
Motor place cells show gaussian shaped activity allowing generalization capabilities. C - Results
obtained for winning motor place cells from binary grid cells (no diffusion) during the previous
indoor experiment. It shows a lot of errors that can be easily removed by adding the diffusion

mechanism.

Such method confront us with its biological plausibility since experiments
made on rodent only show binary activities. It questions about how is it possible
for mammals to correctly navigate using grid cells binary fields. We argue that
the topology needed can naturally emerge from the large number of grid cells in

rodent’s brain.

5 Discussion

In this incremental design approach, one objective of our robotic experiments
is to show the limitations of models (proof by failure). Hence, highligting the
need to take into account new cerebral structures or interactions between them
allows us to propose a more coherent model for a better understanding of ex-
plored brain structures.
Our experiments emphasized some issues while trying to scale our architectures
to larger environment: ambiguities coming from the visual modality have been
identified as the major problem. Consequently, we extended our architecture by
modelling grid cells networks and we presented a robotic experiment that can
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account for their firing properties. Then, we present a simple merging mecha-
nism exploiting these grid cells to desambiguate visual perception and generate
robust multimodal place cells. We show that it succesfully overcome the per-
ception ambiguity problem and it stay robust even if the system is blindfolded
or kidnapped, then lifted to another place. Moreover, results show an emergent
characteristic hightlighting contingency and reducing singular activities since the
merging mechanism keeps a coherent localization even if errors simultaneously
happen on both modalities.

We also underline the need to spread grid cells binary activity to neighboring
cells to create a topology inducing interesting generalization properties. It ques-
tions about the biological plausibility of such ad-hoc method. We claim that such
topology can naturally emerge from the large number of grid cells in rodent’s
brain.

Our current work focuses on switching navigation strategies according to an
emotional metacontroller based on bayesian inferences. In the same time, we
are performing long range (several kilometers) outdoor navigation experiments
based on these models.
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