Skip to main content

Evolving Variants of Neuro-Control Using Constraint Masks

  • Conference paper
  • 1451 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7426))

Abstract

The search for variants of effective neural behavior is a major requirement for the identification of novel neuro-dynamical control principles. Evolutionary algorithms are successfully used to search for such controllers. But neuro-evolution tends to find similar, well performing solutions when run multiple times, instead of many, perhaps also weaker performing, but neuro-dynamically highly interesting variants. Furthermore, variants only develop by chance, so that a systematic exploration of different neural control strategies is difficult. With the ICONE method the search space can be shaped by so-called constraint masks (CM) to bias the evolving networks towards specific configurations. On the basis of an animat experiment we demonstrate that the number of evolved distinct variants can be significantly increased using different CMs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D’Ambrosio, D.B., Stanley, K.O.: A novel generative encoding for exploiting neural network sensor and output geometry. In: Lipson, H. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007), pp. 974–981 (2007)

    Google Scholar 

  2. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evolutionary Intelligence 1(1), 47–62 (2008)

    Article  Google Scholar 

  3. Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1423–1451. Springer (2008)

    Google Scholar 

  4. Gomez, F.J.: Robust Non-Linear Control through Neuroevolution. PhD thesis, The University of Texas at Austin (2003)

    Google Scholar 

  5. Hornby, G., Lipson, H., Pollack, J.: Generative representations for the automated design of modular physical robots. IEEE Transactions on Robotics and Automation 19, 703–719 (2003)

    Article  Google Scholar 

  6. Hülse, M., Wischmann, S., Pasemann, F.: Structure and function of evolved neuro-controllers for autonomous robots. Connection Science 16(4), 249–266 (2004)

    Article  Google Scholar 

  7. Inden, B., Jin, Y., Haschke, R., Ritter, H.: Evolving neural fields for problems with large input and output spaces. Neural Networks 28, 24–39 (2012)

    Article  Google Scholar 

  8. Kodjabachian, J., Meyer, J.: Evolution and development of neural controllers for locomotion, gradient-following, and obstacle-avoidance in artificial insects. IEEE Transactions on Neural Networks 9(5), 796–812 (1998)

    Article  Google Scholar 

  9. Lehman, J., Stanley, K.: Abandoning objectives: Evolution through the search for novelty alone. Evolutionary Computation 19(2), 189–223 (2011)

    Article  Google Scholar 

  10. Mahfoud, S.W.: Niching methods for genetic algorithms. PhD Thesis. Department of Computer Science, University of Illinois at Urbana-Champaign (1995)

    Google Scholar 

  11. Meyer, J., Guillot, A.: Simulation of adaptive behavior in animats: Review and prospect. In: Meyer, J., Wilson, S. (eds.) From Animals to Animats 1, pp. 2–14 (1991)

    Google Scholar 

  12. Mouret, J., Doncieux, S.: Overcoming the bootstrap problem in evolutionary robotics using behavioral diversity. In: Proceedings of the Eleventh Congress on Evolutionary Computation (CEC 2009), pp. 1161–1168 (2009)

    Google Scholar 

  13. Nolfi, S., Parisi, D.: Growing neural networks. Tech. Rep. PCIA-91-15, Institute of Psychology (1991)

    Google Scholar 

  14. Rempis, C.: Evolving Complex Neuro-Controllers with Interactively Constrained Neuro-Evolution. PhD thesis, to appear: University of Osnabrueck (2012)

    Google Scholar 

  15. Rempis, C., Pasemann, F.: An Interactively Constrained Neuro-Evolution Approach for Behavior Control of Complex Robots. In: Chiong, R., Weise, T., Michalewicz, Z. (eds.) Variants of Evolutionary Algorithms for Real-World Applications, vol. 87, pp. 305–341. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Rempis, C., Thomas, V., Bachmann, F., Pasemann, F.: NERD Neurodynamics and Evolutionary Robotics Development Kit. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS (LNAI), vol. 6472, pp. 121–132. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Sareni, B., Krahenbuhl, L.: Fitness sharing and niching methods revisited. IEEE Transactions on Evolutionary Computation 2(3), 97–106 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rempis, C., Pasemann, F. (2012). Evolving Variants of Neuro-Control Using Constraint Masks. In: Ziemke, T., Balkenius, C., Hallam, J. (eds) From Animals to Animats 12. SAB 2012. Lecture Notes in Computer Science(), vol 7426. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33093-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33093-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33092-6

  • Online ISBN: 978-3-642-33093-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics