
Efficient May Happen in Parallel Analysis for
Async-Finish Parallelism

Jonathan K. Lee, Jens Palsberg, Rupak Majumdar, and Hong Hong

UCLA Computer Science Department, University of California, Los Angeles, USA

Abstract. For concurrent and parallel languages, the may-happen-in-
parallel (MHP) decision problem asks, given two actions in the program,
if there is an execution in which they can execute in parallel. Closely
related, the MHP computation problem asks, given a program, which
pairs of statements may happen in parallel. MHP analysis is the basis
for many program analysis problems, such as data race detection and
determinism checking, and researchers have devised MHP analyses for a
variety of programming models.
We present algorithms for static MHP analysis of a storeless abstraction
of X10-like languages that have async-finish parallelism and procedures.
For a program of size n, our first algorithm solves the MHP decision
problem in O(n) time, via a reduction to constrained dynamic pushdown
networks (CDPNs). Our second algorithm solves the MHP computation
problem in O(n · max(n, k)) time, where k is a statically determined
upper bound on the number of pairs that may happen in parallel. The
second algorithm first runs a type-based analysis that produces a set
of candidate pairs, and then it runs the decision procedure on each of
those pairs. For programs without recursion, the type-based analysis is
exact and gives an output-sensitive algorithm for the MHP computation
problem, while for recursive programs, the type-based analysis may pro-
duce spurious pairs that the decision procedure will then remove. Our
experiments on a large suite of X10 benchmarks suggest that our ap-
proach scales well. Our experiments also show that while k is O(n2) in
the worst case, k is often O(n) in practice.

1 Introduction

For concurrent and parallel languages, the may-happen-in-parallel (MHP) deci-
sion problem asks, given two actions in the program, if there is an execution in
which they can execute in parallel. Closely related, the MHP computation prob-
lem asks, given a program, which pairs of statements may happen in parallel.
MHP analyses are useful as a basis for tools such as data race detectors [6, 14]
and determinism checkers.

In this paper we study MHP analysis of a storeless model of X10-like lan-
guages that have async-finish parallelism and procedures. In X10 [5], the async
statement enables programs to create threads, while the finish statement pro-
vides a form of synchronization. Specifically, a finish statement finish s waits
for termination of all async statement bodies started while executing s.

Researchers have studied static MHP analysis for a variety of storeless pro-
gramming models. Roughly, there are three categories of decidability results.

First, consider models with threads and synchronization mechanisms such
as rendezvous. In case there are no procedures, Taylor proved in his seminal
paper [21] that the MHP decision problem is NP-complete for a set of tasks
that each contains only straight-line code, even when the set of possible ren-
dezvous is known. The decision problem becomes undecidable if, in addition,
procedure calls are allowed [18]. The decision problem is decidable if restricted
synchronization techniques, such as nested locks, are used [9], but the complex-
ity is exponential. The async-finish concurrency constructs of X10-like languages
are different from threads with synchronization idioms such as rendezvous and
locks, so the intractability results above do not immediately apply; indeed, we
demonstrate a linear-time algorithm for the decision problem.

Second, consider models with syntactically specified synchronization, such
as fork-join parallelism (e.g., Cilk). For fork-join parallelism, Seidl and Steffen
[19] showed that the MHP decision problem is decidable in linear time. This
result was extended by Lammich and Müller-Olm [10] in the presence of the
async operator (called spawn in [10]) which can create new threads. Neither
of these results immediately captures the finish construct of X10, in which an
unbounded number of concurrently executing processes must synchronize. In
the Seidl-Steffen paper, the fork-join construct ensures that there is at most
a syntactically bounded number of processes executing and synchronizing in
parallel. In the Lammich-Müller-Olm paper, spawned threads do not synchronize
and synchronization is limited to an additional fork-join construct. Gawlitza et
al. [8] made major progress and showed that MHP analysis is decidable for a
model with nested locking and a join construct that has similarities with the
finish construct in X10.

Finally, decidability results for MHP analysis have so far been mostly of theo-
retical interest. In particular, the decision procedures in [19, 19, 8] weren’t applied
to realistic benchmarks. Instead, most previous papers on practical MHP anal-
ysis present static analyses that give conservative, approximate answers to the
MHP computation problem [7, 13, 15, 16, 12, 3, 1, 11]. The relationship between
the approximate analyses and the theoretically optimal algorithms is unclear;
if the theoretically optimal algorithms are also practically efficient, then that
would make research into approximate analyses moot.

We study MHP analysis of Featherweight X10 [11], which is a core calculus
for async-finish parallelism and procedures, and which is essentially a subset of
X10. We give a store-less abstract semantics of Featherweight X10 and define
the MHP decision problem and the MHP computation problem in terms of this
semantics. The resulting MHP problems are all about control flow.

The challenge. For async-finish parallelism and procedures, is optimal MHP
computation practical?

Our results. For Featherweight X10, we present two new algorithms for the MHP
decision and computation problems, and we show that they scale well in practice.

1 void f () {
2 a1
3 }
4
5 void main () {
6 f in ish {
7 async {
8 a2
9 } ;

10 a3
11 } ;
12 loop {
13 async {
14 f ()
15 }
16 }
17 }

1 void g () {
2 g ()
3 }
4
5 void main () {
6 loop {
7 async { a1 } ;
8 g ()
9 }

10 }

1 void main () {
2 loop {
3 async {
4 chain0 () ;
5 }
6 }
7 }
8
9 void chain0 () {

10 a0 ; chain1 () ;
11 }
12 void chain1 () {
13 a1 ; chain2 () ;
14 } . . .
15 void chainN () {
16 an ; chain0 () ;
17 }

Fig. 1. Three Featherweight X10 programs.

Our first algorithm solves the MHP decision problem in linear time, via a
reduction from Featherweight X10 programs to constrained dynamic pushdown
networks (CDPNs) [4]. We give a careful complexity analysis of a known decision
procedure for CDPNs [4] for when it is applied to the CDPNs produced by our
reduction.

Our second algorithm solves the MHP computation problem inO(n·max(n, k))
time, where k is a statically determined upper bound on the number of pairs that
may happen in parallel. The second algorithm first runs a type-based analysis
that produces a set of candidate pairs, and then it runs the decision procedure on
each of those pairs. Following Lee and Palsberg [11], we recast the type analysis
problem as a constraint solving problem that we can solve in O(n · max(n, k))
time. For programs without recursion, the type-based analysis is exact and gives
an output-sensitive algorithm for the problem, while for recursive programs, the
type-based analysis may produce spurious pairs that the decision procedure will
then remove.

Our experiments on a large suite of X10 benchmarks suggest that our ap-
proach scales well. Our experiments also show that while k is O(n2) in the worst
case, k is often O(n) in practice. Thus, output-sensitivity is often crucial in
getting algorithms to scale.

In summary, our results demonstrate two tractable MHP analyses for a prac-
tical parallel programming language.

In the following section we recall Featherweight X10 and give it an abstract
semantics, and in Section 3 we define the MHP analysis problems. In Section 4
we present our type-based algorithm that produces a set of candidate pairs, in
Section 5 we present our CDPN-based algorithm for the MHP decision problem,
and in Section 6 we present our algorithm for solving the MHP computation

(Statement) s ::= s ; s | loop s | async s | finish s | al | skip | f()

(Context) C ::= C ; s | P ;C | async C | finish C | �
(ParStatement) P ::= P ;P | async s

(Redex) R ::= skip ; s | P ; skip | loop s | async skip

| finish skip | al | f()

[] : Context× Statement→ Statement

(�)[s′] = s′ (C ; s)[s′] = (C[s′]) ; s (P ;C)[s′] = P ; (C[s′])

(async C)[s′] = (async C[s′]) (finish C)[s′] = (finish C[s′])

Fig. 2. Syntax of Featherweight X10

problem. Finally in Section 7 we present experimental results. We have omitted
a large example and most of the proofs of correctness of our two algorithms;
they are given in the appendices of the full version of the paper.

2 Featherweight X10

We now recall Featherweight X10 [11], and provide a store-less abstract se-
mantics. In contrast to [11], we give a semantics based on evaluation contexts.
Figure 1 shows three Featherweight X10 programs.

A program is a collection of procedures of the form

void f() { s }

where f is a procedure name and s is the procedure body. We use body(f) to refer
to the body of the procedure f . The procedure body is a statement generated by
the grammar in Figure 2. We assume there is a procedure with the name main.
The execution of a program begins by executing the body of main.

Syntax. Figure 2 gives the syntax of statements, contexts, parallel statements,
and redexes, as well as a function for plugging a statement into a context. In
the production for Statement , s ; s denotes statement sequence, loop s executes
s zero, one, or more times, async s spawns off s in a separate thread, finish s
waits for termination of all async statement bodies started while executing s, al

is a primitive statement with label l, skip is the empty statement, and f() is a
procedure call.

A context is a statement with a hole into which we can plug a statement. A
parstatement is a statement in which multiple statements can execute in parallel.
A redex is a statement that can execute at least one step of computation.

Featherweight X10 has no conditional statement; however, all the results in
this paper can be extended easily to a conditional statement with nondetermin-
istic branching.

The following theorem, proved by straightforward induction on s, character-
izes statements in terms of contexts and redexes.

Theorem 1. (Statement Characterization) For every statement s, either
s = skip, or there exists a context C and a redex R such that s = C[R].

The characterization in Theorem 1 isn’t necessarily unique. For example,
if s = (async a5); (async skip), we can choose C1 = (async �); (async skip)
and R1 = a5 and get s = C1[R1], and we can choose C2 = (async a5);� and
R2 = async skip and get s = C2[R2]. The non-uniqueness reflects the nature of
parallel computation: more than one statement can execute next, in some cases.

Abstract Semantics. We will define a small-step abstract store-less operational
semantics. First we give some of the intuition behind the semantics by explaining
how the semantics models the finish construct. Consider the statement:

(finish s1); s2 (1)

Notice that the context P ;C does not match (1) because finish s1 is not
a ParStatement . Thus, we cannot execute s2. Rather, the only context that
matches (1) is C; s. Thus, we will have to execute s1 and if s1 eventually becomes
skip, then we will have rules that can bring us from (finish skip); s2 to s2.

We define a relation → ⊆ Redex× Statement:

skip ; s→ s (2)

P ; skip→ P (3)

loop s→ skip (4)

loop s→ s ; loop s (5)

async skip→ skip (6)

finish skip→ skip (7)

al → skip (8)

f() → body(f) (9)

The program is fixed and implicit in the rules. Notice that for every redex R
there exists s such that R→ s.

Intuitively, Rules (2)–Rule (3) say that skip is left unit for all statements and
a right unit for ParStatement’s. Rules (4)–Rule (5) say that a loop executes its
body zero or more times. Rules (6)–(7) say that async and finish have outplayed
their roles when their body is skip. Rule (8) models primitive statements; in our
store-less semantics, we don’t record any effort. Rule (9) replaces a call to a
procedure with the body of that procedure.

Next we define a relation 7−→ ⊆ Statement× Statement:

C[R] 7−→ C[s] ⇐⇒ R→ s

We write 7−→∗ for the reflexive transitive closure of 7−→. The context C ; s ensures
that we can execute the first statement in a sequence, as usual. The contexts

P ;C and async C ensure that in a statement such as (async s1); (async s2),
we can execute either of s1 or s2 next. The context finish C ensures that we
can execute the body a finish statement.

3 The May-Happen-in-Parallel Problems

We now define the May Happen in Parallel decision and computation problems.
We define:

CBE(s, l1, l2) = ∃C1, C2 : C1 6= C2 ∧ s = C1[al1] = C2[al2]

CBE(s) = { (l1, l2) | CBE(s, l1, l2) }
MHPsem(s) =

⋃
s′:s 7−→∗s′

CBE(s′)

Intuitively, CBE(s, l1, l2) holds if statements labeled l1 and l2 can both execute
at s. We use the subscript sem in MHPsem to emphasize that the definition is
semantics-based.

For example, if s = (async a5); a6, we can choose C1 = (async �); a6 and
R1 = a5 and get s = C1[R1], and we can choose C2 = (async a5);� and R2 = a6

and get s = C2[R2]. We conclude CBE(s, 5, 6) and (5, 6) ∈ CBE(s).
We define the MHP decision problem as follows.

May Happen in Parallel (decision problem)
Instance: (s, l1, l2) where s is a statement and l1, l2 are labels.
Problem: (l1, l2) ∈ MHPsem(s) ?

Equivalently, we can phrase the decision problem as: does there exist s′ such
that s 7−→∗ s′ and CBE(s′, l1, l2) ?

We define the MHP computation problem as follows.

May Happen in Parallel (computation problem)
Input: a statement s.
Output: MHPsem(s).

4 A Type System for producing Candidate Pairs

We now present a type system that gives a conservative solution to the MHP
computation problem.

Type Rules. We define

symcross : Set× Set→ PairSet

symcross(S1, S2) = (S1 × S2) ∪ (S2 × S1)

We use symcross to help produce a symmetric set of pairs of labels.

B ` s1 : M1, O1, L1 B ` s2 : M2, O2, L2

B ` s1 ; s2 : M1 ∪M2 ∪ symcross(O1, L2), O1 ∪O2, L1 ∪ L2
(10)

B ` s : M,O,L

B ` loop s : M ∪ symcross(O,L), O, L
(11)

B ` s : M,O,L

B ` async s : M,L,L
(12)

B ` s : M,O,L

B ` finish s : M, ∅, L (13)

B ` al : ∅, ∅, {l} (14)

B ` skip : ∅, ∅, ∅ (15)

B ` f() : M,O,L (if B(f) = (M,O,L)) (16)

B ` si : Mi, Oi, Li B(fi) = (Mi, Oi, Li) i ∈ 1..n

` void f1(){ s1 } . . . void fn(){ sn } : B
(17)

Fig. 3. Type rules.

We will use judgments of the forms B ` s : M,O,L and ` p : B. Here, s is a
statement, p is a program, M is a set of label pairs, O and L are sets of labels,
and B is a type environment that maps procedure names to triples of the form
(M,O,L). The meaning of B ` s : M,O,L is that in type environment B, (1)
the statement s has MHP information M , (2) while s is executing statements
with labels in L will be executed, and (3) when s terminates, statements with
labels in O may still be executing. The meaning of ` p : B is that the program
p has procedures that can be described by B. Figure 3 shows the eight rules for
deriving such judgments.

Notice that if a derivation of ` p : B contains the judgment B ` s : M,O,L,
then O ⊆ L.

Let us now explain the eight rules in Figure 3. Rule (10) says that we can
combine information for s1 and information for s2 into information for s1; s2
mainly by set union and also by adding the term symcross(O1, L2) to the set of
pairs. The role of symcross(O1, L2) is to capture that the statements (with labels
in O1) that may still be executing when s1 terminates may happen in parallel
with the statements (with labels in L2) that will be executed by s2. Rule (11)
has the term symcross(O1, L2) as part of the set of pairs because the loop body
may happen in parallel with itself. Rule (12) says that the body of async may
still be executing when the async statement itself terminates. Note here that the
second piece of derived information is written as L rather than O ∪ L because,
as noted above, O ⊆ L. Rule (13) says that no statements in the body of finish
will still be executing when the finish statement terminates. Rule (14) states
that just the statement al will execute. Rule (15) states no labeled statements
will execute. Rule (16) states that B contains all the information we need about
a procedure. Rule (17) says that if B correctly describes every procedure, then
it correctly describes the entire program.

Example. As an example, let us show a type derivation for the first program in
Figure 1. Let

B = [f 7→ (∅, ∅, {1}), main 7→ ({(1, 1), (2, 3)}, {1}, {1, 2, 3})]

From Rule (17) we have that to show that the entire program has type B, we
must derive the following two judgments:

B ` body(f) : ∅, ∅, {1} (18)

B ` body(main) : {(1, 1), (2, 3)}, {1}, {1, 2, 3}) (19)

Let us consider those judgments in turn.
We have that body(f) = a1 so Rule (14) gives us the judgment (18).
We have that body(main) = s1; s2 where

s1 = finish { async { a2 }; a3 }
s2 = loop { async { f() } }

From Rules (13), (10), (12), (14), we can produce this derivation:

B ` a2 : ∅, ∅, {2}
B ` async { a2 } : ∅, {2}, {2}

B ` a3 : ∅, ∅, {3}

B ` async { a2 }; a3 : {(2, 3)}, {2}, {2, 3}
B ` s1 : {(2, 3)}, ∅, {2, 3}

From Rules (11), (12), (16), we can produce this derivation:

B ` f() : ∅, ∅, {1}
B ` async { f() } : ∅, {1}, {1}
B ` s2 : {(1, 1)}, {1}, {1}

Finally, we can use Rule (10) to produce the judgment (19).

Properties. The following four theorems are standard and have straightforward
proofs.

Theorem 2. (Existence of Typing) For all B, there exists M,O,L such that
B ` s : M,O,L.

Theorem 3. (Unique Typing) If B ` s : M1, O1, L1 and B ` s : M2, O2, L2,
then M1 = M2 and O1 = O2 and L1 = L2.

Theorem 4. (Subject Reduction) For a program p, if ` p : B and B ` R :
M,O,L and R → s′, then there exists M ′, O′, L′ such that B ` s′ : M ′, O′, L′

and M ′ ⊆M and O′ ⊆ O and L′ ⊆ L.

Theorem 5. (Preservation) For a program p, if ` p : B and B ` s : M,O,L
and s 7−→ s′, then there exists M ′, O′, L′ such that B ` s′ : M ′, O′, L′ and
M ′ ⊆M and O′ ⊆ O and L′ ⊆ L.

Proof. From s 7−→ s′ we have that there exist a context C and a redex R such
that s = C[R], and that there exists s′′ such that C[R] 7−→ C[s′′] and R → s′′.
The proof proceeds by straightforward induction on C. ut

For a statement s and a type environment B, we have from Theorem 2 and
Theorem 3 that there exist unique M,O,L such that B ` s : M,O,L, so we
define

MHPBtype(s) = M

We use the subscript type to emphasize that the definition is type based.
The following two theorems say that the type system gives a conservative

approximation to the MHP computation problem, and an exact solution for
programs without recursion.

Theorem 6. (Overapproximation) For a program p, a statement s in p, and
a type environment B such that ` p : B, we have MHPsem(s) ⊆ MHPBtype(s).

We patterned Theorem 6 after [11, Theorem 3]. In the case where s is the
body of the main procedure, Theorem 6 says that MHPBtype(s) is an overapprox-
imation of the MHP information for the entire program.

The next theorem shows that there is no loss of precision in the type-based
approach for programs without recursion. See Appendix B of the full version for
a proof.

Theorem 7. (Equivalence) For a program without recursion, where the body
of main is the statement s, we have that there exists B such that MHPsem(s) =
MHPBtype(s).

Complexity. We can now state the complexity of the type-based approach.

Theorem 8. For a program of size n, we can compute B and MHPBtype(s) in

O(n ·max(n, k)) time, where k = |MHPBtype(s)| is the size of the output produced
by the type system.

Proof. We first note that we can use the approach of Lee and Palsberg [11] to
rephrase the problem of computing B and MHPBtype(s) as the problem of finding
the minimal solution to a collection of set constraints that are generated from
the program text. For our type system, those set constraints are all of the forms:

l ∈ v (20)

v ⊆ v′ (21)

symcross(v, v′) ⊆ w (22)

w ⊆ w′ (23)

Here v, v′ range over sets of labels, while w,w′ range over sets of pairs of labels.
The maximal size of each set of labels is O(n), the maximal size of each set

of pairs of labels is k (by definition), and the number of constraints is O(n).
We proceed by first solving the constraints of the forms (20) and (21) by a
straightforward propagation-based algorithm akin to the one that Palsberg and
Schwartzbach used to solve a related kind of set constraints [17]; this takes
O(n2) time. Then we solve the constraints of the forms (22) and (23) by the
same algorithm but this time we propagate pairs of labels rather than single
labels; this takes O(n · k) time. In total, we spent O(n ·max(n, k)) time. ut

Since k = O(n2) in the worst case, we get a cubic algorithm, but our exper-
iments show that k is O(n) in practice.

When we combine Theorem 7 and Theorem 8, we get that we can solve the
MHP computation problem for programs without recursion in O(n ·max(n, k))
time, while we get a conservative approximation for programs with recursion.

Programs with Recursion. Theorems 6 and 7 indicate that some uses of recursion
cause the type system to produce an approximate result rather than an accu-
rate result. Specifically, our type system may be conservative if recursive calls
introduce non-termination. For example, see the second program in Figure 1.
The program has a loop with the statement async{a1} in the body so one might
think that a1 may happen in parallel with itself. However, the loop body also
calls the procedure g that is non-terminating. So, the program execution will
never get around to executing async{a1} a second time. In summary, for the
second program in Figure 1, the MHP set is empty.

Let us now take a look at how the type system analyzes the second program
in Figure 1. Let

B = [g 7→ (∅, ∅, ∅), main 7→ ({(1, 1)}, {1}, {1})]

From Rule (17) we have that to show that the entire program has type B,
we must derive the following two judgments:

B ` body(g) : ∅, ∅, ∅ (24)

B ` body(main) : {(1, 1)}, {1}, {1} (25)

Let us consider those judgments in turn.
We have that body(g) = g() so Rule (16) gives us the judgment (24).
We have that body(main) = loop { async { a1 }; g() } so from Rules (11),

(12), (14), (16) we can produce this derivation that concludes with judgment (25):

B ` a1 : ∅, ∅, {1}
B ` async { a1 } : ∅, {1}, {1}

B ` g() : ∅, ∅, ∅

B ` async { a1 }; g() : ∅, {1}, {1}
B ` body(main) : {(1, 1)}, {1}, {1}

In conclusion, the type system over-approximates non-termination and therefore
concludes that a1 may happen in parallel with itself.

5 An Algorithm for the MHP Decision Problem

We now give a linear-time algorithm for the MHP decision problem, even in
the presence of recursion and potential non-termination. Our algorithm is based
on constrained dynamic pushdown networks (CDPNs) [4], an infinite model of
computation with nice decidability properties. Informally, CDPNs model collec-
tions of sequential pushdown processes running in parallel, where each process
can “spawn” a new process or, under some conditions, observe the state of its
children. We follow the presentation in [4].

Preliminaries. Let Σ be an alphabet, and let ρ ⊆ Σ × Σ be a binary relation
on Σ. A set S ⊆ Σ is ρ-stable if and only if for each s ∈ S and for each t ∈ Σ,
if (s, t) ∈ ρ then t is also in S. A ρ-stable regular expression over Σ is defined
inductively by the grammar:

e ::= S | e · e | e∗

where S is a ρ-stable set. We derive a ρ-stable regular language from a ρ-stable
regular expression in the obvious way and identify the expression with the lan-
guage it denotes.

CDPNs. A constrained dynamic pushdown network (CDPN) [4] (A,P, Γ,∆) con-
sists of a finite set A of actions, a finite set P of control locations, a finite alphabet
Γ of stack symbols (disjoint from P), and a finite set ∆ of transitions of the fol-
lowing forms:

φ : pγ
a−→ p1w1 or φ : pγ

a−→ p1w1 B p2w2,

where p, p1, p2 ∈ P , γ ∈ Γ , a ∈ A, w1, w2 ∈ Γ ∗, and φ is a ρ∆-stable regular
expression over P with

ρ∆ = { (p, p′) ∈ P × P | ∃ψ : pγ
a−→ p′w in ∆, or ∃ψ : pγ

a−→ p′w B p′′w′ in ∆ }

The ρ-stable property guarantees that whenever a control location p is matched
by an expression φ, all its successors’ control locations are also matched.

Semantics. CDPN configurations model the execution states of CDPN instances.
Intuitively, a configuration of a CDPN is a tree with each node marked with the
configuration of a pushdown process, and the children of a node are configura-
tions of pushdown processes spawned by it, which are ordered by age (the more
recently spawned child is to the right). The configuration of each pushdown
process models a single thread execution state in a parallel program, which in-
cludes control location describing the thread state and stack symbols modeling
the stack storage. Formally, given a set X = {x1, . . . , xn} of variables, define the
set T [X] of M -terms over X ∪ P ∪ Γ as the smallest set satisfying:

(a) X ⊆ T [X];
(b) If t ∈ T [X] and γ ∈ Γ , then γ(t) ∈ T [X];

(c) For each n ≥ 0, if t1, . . . , tn ∈ T [X] and p ∈ P , then p(t1, . . . , tn) ∈ T [X].

Notice that n can be zero in case (c); we often write p for the term p(). A ground
M -term is an M -term without free variables. The set of ground M -terms is
denoted T .

We now define the semantics of CDPNs as a transition system. An M -
configuration is a ground M -term; we write ConfM to denote the set of M -
configurations. We define a context C as a M -term with one free variable, which
moreover appears at most once in the term. If t is a ground M -term, then C[t]
is the ground M -term obtained by substituting the free variable with t.

The M -configuration γm . . . γ1p(t1, . . . , tn), for n,m ≥ 0 represents a process
in control location p and γm . . . γ1 on the stack (with γ1 on top), which has
spawned n child processes. The ith child, along with all its descendants, is given
by ti. The child processes are ordered so that the rightmost child tn is latest
spawned. We call γm . . . γ1p the topmost process in the M -configuration.

The semantics of a CDPN is given as a binary transition relation →M

between M -configurations. Given an M -configuration t of one of the forms
γm . . . γ1p(t1, . . . , tn), n ≥ 1 or γm . . . γ1p, we define root(t) to be the control
location p of the topmost process in t. We define →M as the smallest relation
such that the following hold:

(a) if (φ : pγ
a−→ p1w1) ∈ ∆ and root(t1) . . . root(tn) ∈ φ, then

C[γp(t1, . . . , tn)]→M C[wR1 p1(t1, . . . , tn)]; and

(b) if (φ : pγ
a−→ p1w1 B p2w2) ∈ ∆ and root(t1) . . . root(tn) ∈ φ, then

C[γp(t1, . . . , tn)]→M C[wR1 p1(t1, . . . , tn, w
R
2 p2)].

Intuitively, transitions between M -configurations model parallel program exe-
cution. With a CDPN transition rule φ : pγ

a−→ p1ω1, a process in the M -
configuration steps to its next state and updates its stack; with a CDPN tran-
sition rule φ : pγ

a−→ p1ω1 B p2ω2, a process in the M -configuration spawns a
new pushdown process as its newest child. The constraint φ in a transition rule
provides a simple way to communicate between the parent process and its chil-
dren. For example, given control location \ ∈ P standing for termination state,
a parent process cannot step over a transition rule \∗ : pγ

a−→ p1ω1 until all its
children have terminated.

Given the transition relation →M , we define the operators pre and pre∗ on
sets of M -configurations in the standard way.

Regular Sets of M -configurations. We define M -tree automata that accept a set
of M -configurations. Formally, an M -tree automaton (Q,F, δ) consists in a finite
set Q of states, a set F ⊆ Q of final states, and a set δ of rules of the following
two forms: (a) γ(q) → q′, where γ ∈ Γ , and q, q′ ∈ Q, and (b) p(L) → q where
p ∈ P , q ∈ Q, and L is a regular language over Q. We define the relation →δ

between terms over P ∪Γ ∪Q as: t→δ t
′ if and only if there exists a context C,

statements s, s′, and a rule r ∈ δ such that t = C[s], t′ = C[s′], and (a) either
r = γ(q)→ q′ and s = γ(q) and s′ = q′, or (b) r = p(L)→ q, s = p(q1, . . . , qn),
q1 . . . qn ∈ L, and s′ = q. A term t is accepted by the M -tree automaton AM

denoted as t ∈ L(AM) if t →∗δ q for some q ∈ F , where →∗δ is the reflexive
transitive closure of →δ. The language of an M -tree automaton is the set of all
M -terms accepted by it.

From X10 to CDPNs. We now give a translation from programs in our syntax to
CDPNs. Our translation starts with a control-flow graph (CFG) representation of
a program, in which each procedure f is represented as a labeled, directed graph
Gf = (Vf , Ef , entryf , exitf) where Vf is a set of control nodes, Ef ⊆ Vf×ops×Vf
is a set of labeled directed edges labeled by operations from ops (defined below),
and entryf and exitf are nodes in Vf denoting the entry and exit nodes of a

CFG. Each edge label is either a labeled action al, a call call(g) to a procedure
g, an asynchronous call async(g) to a procedure g, or a finish finish(g) to a
procedure g. A control flow graph representation can be computed from the
program syntax using standard compiler techniques [2].

Additionally, we make the simplifying assumption that each label l is used
at most once, and that if the primitive statement al is translated to the edge
(u, al, v), then the node u has no other outgoing edges. Thus, the node u uniquely
determines the label l which is about to be executed, and we can identify node
u with l.

As usual, we assume Vf ∩ Vg = ∅ for two distinct procedures f, g. Let

V = ∪{ Vf | f is a procedure } E = ∪{ Ef | f is a procedure }.

We now define a CDPN MG from a CFG representation G. The set of ac-
tions consists of all actions a in ops, together with a new “silent” action τ .
The set of control locations P = {#, \}. The set of stack symbols Γ = V ∪
{wait[u, g, v] | (u,finish(g), v) ∈ E} ∪ {$}. Intuitively, we will use the stack to
maintain the program stack, with the topmost symbol being the current pro-
gram point. The control location # is the dummy location used to orchestrate
program steps, and the control location \ is used to indicate the process execu-
tion has terminated. We shall implicitly assume that each stack has a bottom
symbol $.

Now for the transitions in ∆. For each (u, a, v) ∈ E, we have the rule P ∗ :

#u
a−→ # v. For each edge (u, call(g), v), we have the rule P ∗ : #u

τ−→ # entryg v.

For each edge (u, async(g), v), we have the rules P ∗ : #u
τ−→ # vB# entryg. To

model returns from a procedure g, we add the rule P ∗ : # exitg
τ−→ #. For each

edge (u,finish(g), v), we add the rule P ∗ : #u
τ−→ # wait[u, g, v]B# entryg.

Next, we give the rules performing the synchronization at the end of a finish
statement. The first rule, \∗ : # $

τ−→ \, encodes that a process on its last stack
symbol “$” goes to the control state \ when all its children terminated. The
second rule, P ∗\ : # wait[u, p, v]

τ−→ # v, encodes that the “top level” finish call
finishes when the entire finish (spawned as its youngest child) finishes. These
two rules ensure that a process makes progress beyond a finish(g) statement
only when all processes spawned transitively from g terminate.

It is easy to see that for every CFG G, the CDPN MG preserves all the
behaviors of G. Moreover, MG is linear in the size of G.

Solving the MHP decision problem. We solve the MHP decision problem by
performing a reachability test between the initial program M -configuration and
a family of interesting M -configurations. In particular, for the MHP problem
given two labels l and l′, we are interested in the family of M -configurations
ConfMl,l′ in which there exists two processes, one about to execute l and the other
about to execute l′. Formally, for edges l

a−→v, l′
a′−→v′ on G with labels l, l′ and

primitive statements a, a′, we define M -configuration c ∈ ConfMl,l′ if and only if
there exists two processes in c of the form γl(p(t1, . . . , tn)) and γ′l′(p(t′1, . . . , t

′
m))

in c where γ, γ′ ∈ Γ ∗, t1, . . . , tn, t′1, . . . , t
′
m are ground M -terms. Both processes

have program points l, l′ on the top of the stacks, and thus, l and l′ may happen
in parallel.

We now give a M -tree automaton AMl,l′ that can recognize exactly the M -

configurations in ConfMl,l′ . Given CDPN M with two labels l, l′ (program points

on G), we define the M -tree automaton AMl,l′ = (Q,F, δ) as follow. The state set
is defined as

Q = Qp ∪Qr
where two symmetric subsets

Qp = {qp00, qp10, qp01, qp11} Qr = {qr00, qr10, qr01, qr11}

give all states for P -transitions and Γ -transitions. We define qpi as the i-th state
in Qp, and qri as the i-th state in Qr for i = 1, 2, 3, 4. The 4 states in both sets
Qp and Qr with tags 00, 10, 01, 11 on subscripts give the intuitive meanings that
neither stack symbol l nor l′ has been recognized yet, stack symbol l has been
recognized (the first bit is set), stack symbol l′ has been recognized (the second
bit is set), both stack symbol l and stack symbol l′ have been recognized (both
bits are set). The terminal state set is defined as

F = {qr11, qp11}.

The transition rule set is defined as

δ = {p()→ qp00 , l(qp01)→ qr11 , l
′(qp10)→ qr11 , l(qp00)→ qr10 ,

l′(qp00)→ qr01 , p(Q
∗, q10, Q

∗, q01, Q
∗)→ qp11 ,

p(Q∗, q01, Q
∗, q10, Q

∗)→ qp11 , γ(qi)→ qri , p(Q
∗, qi, Q

∗)→ qpi}.

In the transition rule set above, notice that qi is the state in {qri, qpi}, and simi-
larly q00, q10, q01, q11 are states in {qr00, qp00}, {qr10, qp10}, {qr01, qp01}, {qr11, qp11}
respectively; γ ∈ Γ is an arbitrary stack symbol; and p ∈ P is an arbitrary
control location. We will follow this convention in the rest of this paper.

It is easy to perform a bottom up scan on any M -configuration t with M -tree
automaton AMl,l′ . The M -tree automaton AMl,l′ recognizes t if and only if there
are two processes in t running at program points l, l′ in parallel. To be noted
that the M -configuration t is not necessary a valid program configuration to be
recognized by AMl,l′ as long as it belongs to ConfMl,l′ . A valid program configuration
means the configuration is reachable from the initial program configuration by
execution. The following theorem is proved in Appendix C of the full version.

Theorem 9. ConfMl,l′ = L(AMl,l′).

Algorithm and complexity. The key to our decision procedure is the following
main result of [4].

Theorem 10. [4] For every CDPN M , and for every M -tree automaton A,
there is an effective procedure to construct an M -tree automaton A∗ such that
L(A∗) = pre∗(L(A)).

The procedure in [4] applies backward saturation rules to the automaton A.

Given a CFG G, the MHP decision problem is solved by:

(a) Constructing CDPN MG and M -tree automaton AMl,l′ ;
(b) Finding the pre∗-image of L(AMl,l′) using Theorem 10, and checking if the

initial configuration #entrymain is in pre∗(L(AMl,l′)).

Step (a) can be performed in time linear in the size of the input G. The M -tree
automaton AMl,l′ is clearly constant and independent of the input program. A
careful observation of the construction in [4] shows that (b) is also linear. Thus,
we have the following theorem.

Theorem 11. The MHP decision problem can be solved in linear time in the
size of a program.

Appendix A of the full version gives a detailed example of the CDPN-based
approach applied to the first program in Figure 1.

6 Solving the MHP Computation Problem

We can compute all pairs of statements that may happen in parallel with this
two-step algorithm:

1. Run the type-based analysis (Section 4) and produce a set of candidate pairs.

2. For each of the candidate pairs, run the CDPN-based decision procedure
(Section 5), and remove those pairs that cannot happen in parallel.

Theorem 12. For a program of size n, for which the type-based analysis pro-
duces k candidate pairs, the MHP computation problem can be solved in O(n ·
max(n, k)) time.

Proof. Theorem 8 says that Step 1 runs in O(n·max(n, k)) time, and Theorem 11
implies that Step 2 runs in O(n · k) time because we apply an O(n) algorithm k
times. The total run time of the two-step algorithm is O(n ·max(n, k))+O(n ·k)
= O(n ·max(n, k)). ut

Static counts Data-race detection Analysis time (ms)

MHP MHP+Types
Benchmarks LOC #async MHP +Types +Andersen Step:1 Steps:1+2 All-pairs

stream 70 4 160 21 9 7 33 318

sor 185 7 31 8 3 16 21 169

series 290 3 3 3 3 11 13 237

sparsemm 366 4 55 4 2 14 52 2,201

crypt 562 2 366 100 100 54 164 2,289

moldyn 699 14 31882 880 588 43 14,992 57,308

linpack 781 8 67 33 33 14 60 5,618

mg 1,858 57 4884 431 421 69 9,970 114,239

mapreduce 53 3 3 2 2 3 16 78

plasma 4,623 151 8475 2084 760 503 36,491 5,001,310

Fig. 4. Data-race detection.

7 Experimental Results

We now show experimental results that show (1) how to use our MHP analysis for
race detection and (2) how much time is spent on the two parts of the algorithm
in Section 6. We ran our experiments on a Apple iMac with Mac OS X and a
2.16 GHz Intel Core 2 Duo processor and 1 Gigabyte of memory.

Benchmarks. We use 10 benchmarks taken from the HPC challenge benchmarks
(stream), the Java Grande benchmarks in X10 (sor, series, sparsemm, crypt,
moldyn, linpack), the NAS benchmarks (mg), and two benchmarks written by
ourselves (mapreduce, plasma). In Figure 4, columns 2+3 show the number of
lines of code (LOC) and the number of asyncs. The number of asyncs includes
the number of foreach and ateach loops, which are X10 constructs that let all the
loop iterations run in parallel. We can think of foreach and ateach as plain loops
where the body is wrapped in an async. Our own plasma simulation benchmark,
called plasma, is the longest and by far the most complicated benchmark with
151 asyncs and 84 finishes. None of the benchmarks use recursion! In particular,
none of the benchmarks use the problematic programming style illustrated in
the second program in Figure 1.

Measurements. In Figure 4, columns 4–6 show results from doing race detection
on our 10 benchmarks. The column MHP shows the number of pairs of primitive
statements that read or write nonlocal variables that our analysis found may
happen in parallel. Given that none of the benchmarks use recursion, we needed
to use only Step 1 of the algorithm in Section 6.

The MHP analysis problem is all about control flow. We complement the
control-flow analysis with two data flow analyses, one that uses types and one
that uses pointer analysis. The column Type Check refines the MHP column
by allowing only pairs of statements for which the accesses are to variables of
the same type. The column Andersen Algo refines the Type Check column by

0
5
10
15
20
25
30
35
40
45
50

0 100 200 300 400 500

Cu
be

‐R
oo

t T
im

e
(m

s)

Program Size

CDPN Type

Fig. 5. The cubic root of the analysis time for the third program in Figure 1.

allowing only pairs of statements for which Andersen’s pointer analysis algorithm
finds that the statements may access the same variable.

Note that we can give an alternative and slower algorithm for the MHP
computation problem by running the CDPN-based decision procedure on all
possible pairs. In Figure 4, column 7 shows the analysis time for the type-based
Step 1 that is sufficient for our benchmarks, column 8 shows how long it would
take to run Step 1+2 in case we were unable to determine that Step 2 was
unnecessary, and column 9 shows the analysis times for the CDPN-based decision
procedure on all pairs. For all benchmarks, it much faster to run Step 1 only
rather than Step 1+2, which, in turn, is much faster than to run the decision
procedure on all pairs.

Assessment. The combination of the control-flow-oriented MHP analysis and
the data-flow-oriented Type Check and Andersen’s algorithm is powerful. The
final column in Figure 4 contains numbers that are low enough that they are
a good starting point for other analyses or testing techniques that depend on
MHP information. One such approach is the Race Directed Random Testing of
Sen [20] that needs MHP information as a starting point.

Scalability. Our X10 benchmarks form one extreme for the algorithm in Section
6: Step 2 isn’t needed at all for those benchmarks. Let us now consider the other
extreme where Step 1 provides no savings because the program is recursive and
the size of the output is O(n2). Our question is then: how much time is spent
on Step 1 and how much time is spent on Step 2? As our benchmarks, we will
use the family of programs that are shown as the third program in Figure 1. For
each N , we have one such program. The Nth program contains N procedures

that call each other recursively in a closed chain. The main procedure executes
a parallel loop that calls the 0’th procedure.

Our experiments show that the running times for the type-based Step 1 grow
more slowly than the running times for the CDPN-based Step 2. The type-based
Step 1 can handle N = 450 within 100 seconds, while for N = 100, the CDPN-
based Step 2 takes a lot more than 100 seconds. Figure 5 shows the cubic-root
of the analysis time for N up to 500. The near-linear curves in Figure 5 suggest
that both steps use cubic time for the third program in Figure 1. Two linear
regressions on the data in Figure 5 lead to these formulas for the running times:

Type-based Step 1: time(n) = .00109× n3 + . . .
CDPN-based Step 2: time(n) = .06943× n3 + . . .

The constant in front of n3 is more than 63 times bigger for Step 2 than for Step
1 so in the worst case Step 2 dwarfs Step 1.

8 Conclusion

We have presented two algorithms for static may-happen-in-parallel analysis of
X10 programs, including a linear-time algorithm for the MHP decision prob-
lem and a two-step algorithm for the MHP computation problem that runs in
O(n · max(n, k)) time, where k is a statically determined upper bound on the
number of pairs that may happen in parallel. Our results show that the may-
happen-in-parallel analysis problem for languages with async-finish parallelism
is computationally tractable, as opposed to the situation for concurrent lan-
guages with rendezvous or locks. Our results are applicable to various forms of
parallelism and synchronization, including fork-join parallelism.

Acknowledgements. This material is based upon research performed in collab-
orative facilities renovated with funds from the National Science Foundation
under Grant No. 0963183, an award funded under the American Recovery and
Reinvestment Act of 2009 (ARRA).

References

1. Shivali Agarwal, Rajkishore Barik, Vivek Sarkar, and R. K. Shyamasundar. May-
happen-in-parallel analysis of X10 programs. In Katherine A. Yelick and John M.
Mellor-Crummey, editors, PPOPP, pages 183–193. ACM, 2007.

2. Alfred V. Aho, Ravi I. Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, Reading, MA, second edition, 1986.

3. Rajkishore Barik. Efficient computation of may-happen-in-parallel information for
concurrent Java programs. In LCPC, pages 152–169, 2005.

4. Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili. Regular symbolic anal-
ysis of dynamic networks of pushdown systems. In CONCUR, pages 473–487, 2005.

5. Philippe Charles, Christopher Donawa, Kemal Ebcioglu, Christian Grothoff, Al-
lan Kielstra, Vivek Sarkar, and Christoph Von Praun. X10: An object-oriented

approach to non-uniform cluster computing. In Proceedings of the 20th ACM SIG-
PLAN conference on Object-oriented programing, systems, languages, and applica-
tions, pages 519–538. ACM SIGPLAN, 2005.

6. Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar,
and Manu Sridharan. Efficient and precise datarace detection for multithreaded
object-oriented programs. In PLDI, pages 258–269, 2002.

7. Evelyn Duesterwald and Mary Lou Soffa. Concurrency analysis in the presence of
procedures using a data-flow framework. In Symposium on Testing, Analysis, and
Verification, pages 36–48, 1991.

8. Thomas Martin Gawlitza, Peter Lammich, Markus Müller-Olm, Helmut Seidl, and
Alexander Wenner. Join-lock-sensitive forward reachability analysis for concurrent
programs with dynamic process creation. In Proceedings of VMCAI’11, Verifica-
tion, Model Checking, and Abstract Interpretation, pages 199–213, 2011.

9. Vineet Kahlon. Boundedness vs. unboundedness of lock chains: Characterizing
decidability of pairwise CFL-reachability for threads communicating via locks. In
LICS’09, 24th Annual Symposium on Logic in Computer Science, pages 27–36,
2009.

10. Peter Lammich and Markus Müller-Olm. Precise fixpoint-based analysis of pro-
grams with thread-creation and procedures. In Proceedings of CONCUR’07, pages
287–302, 2007.

11. Jonathan K. Lee and Jens Palsberg. Featherweight X10: a core calculus for async-
finish parallelism. In Proceedings of PPOPP’10, 15th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming, Bangalore, India,
January 2010.

12. Lin Li and Clark Verbrugge. A practical MHP information analysis for concurrent
Java programs. In LCPC, pages 194–208, 2004.

13. Stephen P. Masticola and Barbara G. Ryder. Non-concurrency analysis. In
PPOPP, pages 129–138, 1993.

14. Mayur Naik and Alex Aiken. Conditional must not aliasing for static race detec-
tion. In Proceedings of POPL’07, SIGPLAN–SIGACT Symposium on Principles
of Programming Languages, pages 327–338, 2007.

15. Gleb Naumovich and George S. Avrunin. A conservative data flow algorithm for
detecting all pairs of statement that may happen in parallel. In SIGSOFT FSE,
pages 24–34, 1998.

16. Gleb Naumovich, George S. Avrunin, and Lori A. Clarke. An efficient algorithm for
computing HP information for concurrent Java programs. In ESEC / SIGSOFT
FSE, pages 338–354, 1999.

17. Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type Systems. John
Wiley & Sons, 1994.

18. G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Transactions on Programming Languages and Systems, 22(2):416–430,
2000.

19. Helmut Seidl and Bernhard Steffen. Constraint-based inter-procedural analysis of
parallel programs. In Proceedings of ESOP’00, European Symposium on Program-
ming, pages 351–365. Springer-Verlag (LNCS 1782), 2000.

20. Koushik Sen. Race directed random testing of concurrent programs. In Proceedings
of PLDI’08, ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 11–21, Tucson, Arizona, June 2008.

21. Richard N. Taylor. Complexity of analyzing the synchronization structure of con-
current programs. Acta Inf., 19:57–84, 1983.

Appendix A: CDPN Example

5

12

6

15

main() f()

finish

9

7

10

8

11

13

14

async

async

a3

a2

2

3

16

a1

call

return

Fig. 6. Control flow graph for the first program in Figure 1.

In this example, we will walk though the CDPN method to solve the MHP
decision problem for the first program in Figure 1.

Figure 6 gives the control flow graph G for first program in Figure 1. Each
node in the graph represents one unique program point between two statements.
We use the line number of the direct following statement in the sample code as
the unique ID of that program point, which is labeled on the node. Edges on the
graph represent statements (or actions) in the program. There are some special
3-way edges, representing statements async, and finish, since these statements
will have side effects of spawning new threads. One ending point of the 3-way
edge will connect to the next program point in the parent control flow, and the
other one will point to the starting point of the new spawned control flow. We
use dash lines to describe control flows of procedure call, and the calling path
and returning path are explicitly put on the graph.

Following the instructions in Section 5, it is straightforward to translate the
control flow graph G in Figure 6, into CDPN MG . Program point IDs are used
as CDPN stack symbols, which provide execution location information for push-
down processes in CDPN. Figure 7 gives all the MG transition rules translated
from G. Noticed that, an extra stack symbol wait[5, 6, 11] is inserted in tran-

1. P∗ : # 2
a1−→ # 3

2. P∗ : # 3
τ−→ #

3. P∗ : # 5
τ−→ #wait[5, 6, 11]B# 6

4. P∗ : # 6
τ−→ # 9B# 7

5. P∗ : # 7
a2−→ # 8

6. \∗ : # 8
τ−→ \

7. P∗ : # 9
a3−→ # 10

8. \∗ : # 10
τ−→ \

9. P∗ : # 11
τ−→ # 12

10. P∗ : # 12
τ−→ # 15B# 13

11. P∗ : # 13
τ−→ # 2 14

12. \∗ : # 14
τ−→ \

13. P∗ : # 15
τ−→ # 16

14. P ∗ \ : #wait[5, 6, 11]
τ−→ # 11

15. \∗ : # 16
τ−→ \

Fig. 7. CDPN transitions for the first program in Figure 1.

P

9

P

7

(a) (a2, a3)

P

wait

P

P

14

15

(b) (a1, a1)

2

14 13

P

2

P

15

(c) (a1, a2)

7

14

P

P

2

9

P

P

Fig. 8. M -configurations for the first program in Figure 1.

Row
CDPN
Rule in
Fig. 7

Pre-conditions M -Tree Automaton Transitions

1 Ø Ø

2(qpp00)→ qpr10 (26)

7(qpp00)→ qpr01 (27)

2(qpp01)→ qpr11 (28)

7(qpp10)→ qpr11 (29)

p()→ qpp00 (30)

p′(Q∗, qP10, Q∗, qP01, Q∗)→ qp
′

p11 (31)

p′(Q∗, qP01, Q∗, qP10, Q∗)→ qp
′

p11 (32)

γ(qpi)→ qpri (33)

p′(Q∗, qpi , Q∗)→ qp
′

pi (34)

2 Rule 6
(30): \()→ q\p00,

(33): (q\p00)→ q\r00
8(#())→∗ q\r00 (35)

3 Rule 5 (35): 8(#())→∗ q\r00 7(#())→∗ q\r00 (36)

4 Rule 8
(30): \()→ q\p00,

(33): (q\p00)→ q\r00
10(#(Q\∗))→∗ q\r00 (37)

5 Rule 7 (37): 10(#(Q\∗))→∗ q\r00 9(#(Q\∗))→∗ q\r00 (38)

6 Rule 4

(30): #()→ q#p00
(27): 7(q#p00)→ qpr01
(34): #(qPr01)→ q#p01
(33): 9(q#p01)→ q#r01

6(#(Qp∗))→∗ q#r01 (39)

7 Rule 4
(36): 7(#())→∗ q\r00
(38): 9(#(Q\∗))→∗ q\r00

6(#(Q\∗))→∗ q\r00 (40)

8
Rule
11

(30): #()→ q#p00
(26): 2(q#p00)→ q#r10
(33): 14(q#p10)→ q#r10

13(#())→∗ q#r10 (41)

9
Rule
10

(41): 13(#())→∗ q#r10
(34): #(qPr10)→ q#p10
(33): 15(q#p10)→ q#r10

12(#(Qp∗))→∗ q#r10 (42)

10
Rules
9, 14

(42): 12(#(QP ∗))→∗ q#r10 wait[5, 6, 11](#(QP ∗ q\))→∗ q#r10 (43)

11 Rule 3
(40): 6(#(Q\∗))→∗ q\r00
(43): wait[5, 6, 11](#(QP ∗ q\))

→∗ q#r10
5(#(Q\∗))→∗ q#r10 (44)

12 Rule 3

(39): 6(#(Qp∗))→∗ q#r01
(34): #(qPr01)→ q#p01
(33): wait[5, 6, 11](q#p01)→ q#r01

5(#(QP ∗))→∗ q#r01 (45)

Fig. 9. Automaton for MHP(a1, a2).

sition rules 3 and 13 as synchronization point for finish statement. There are
non-trivial constraints Φ in front of transition rules 6, 8, 12, 14, 15. Particularly,
constraints \∗ for transition rules 6, 8, 12, 15 are used to suspend process tran-
sitions from last statement to terminated state until all children have already
fully terminated. Constraint P ∗\ for rule 14 will pause the finish statement until
its most recent spawned child terminated. Each process in this model will not
enter terminated state until all its children do, though it may have semantically
terminated.

Figure 8 gives 3 examples of visualized M -configurations for CDPN MG given
above. M -configurations on the graph are trees with box and circle nodes. Box
node represents control location, and circle node represents stack symbol in M -
configuration. All the arrows on the control location nodes point to their top most
stack symbol node, and the arrows on the stack symbol nodes point to lower stack
symbol nodes or control location nodes in their parent processes. We use dash-
line boxes to isolate configurations different processes in M -configurations. Sub-
graphs (a), (b), (c) respectively depicted one of the M -configurations for actions
(a2, a3), (a1, a1), (a1, a2) running in parallel. For example in the Sub-graph (a),
the given M -configuration describes configurations of three processes. These
configurations, from top to bottom, are wait[5, 6, 11](p()), 9(p()) and 7(p()),
and they indicate that top most process is running at synchronization point
wait[5,6,11], the process spawned by top most process is about to execute action
a3 (at point 9), and the leaf process spawned by 9(p()) is about to execute a2

(at point 7).

To be noted that not all of the M -configurations can be reached from the
initial M -configuration. Here we select action points (a1, a2) for demonstrat-
ing how to solve MHP decision problem by backward reachability test on M -
configurations.

We will construct an M -tree automaton AMa1,a2 for recognizing the family of

M -configurations ConfMa1,a2 with (a1, a2) two points running in parallel for the
first program in Figure 1. Following that, we expend it into the M -tree automa-
ton A′Ma1,a2 = pre∗(AMa1,a2) which recognizes the pre∗-images of ConfMa1,a2 . We will

show that pair (a1, a2) do not MHP since the M -tree automaton A′Ma1,a2 cannot

recognize the initial M -configuration confMinit and the family of M -configurations
with (a1, a2) running in parallel will never be reached.

In Figure 6, a1, a2 are on the program points 2 and 7 respectively. We instan-
tiate M -tree automaton transition rules δ in AMa,a′ by substituting stack symbol

a, a′ with 2 and 7 for recognizing (a1, a2). M -configuration (c) in Figure 8 is one
example of the M -configurations with (a1, a2) running in parallel, which can be

recognized by following transition rules:

#()→ qp00 (46)

2(qp00)→ qr10 (47)

7(qp00)→ qr01 (48)

14(qr10)→ qr10 (49)

#(q01)→ qp01 (50)

9(q01)→ qr01 (51)

#(qr01, qr10)→ qp11 (52)

where rule (47), (48) discovering symbols a and a′ are on the stack and (52)
generates the terminal state by reading its two children threads with a1 and a2

running in parallel.
Before applying backward saturation rules, we propagate all control loca-

tions in automaton transition rules into their states so that automaton states
will reflect control locations of the M -terms they recognized. Particularly, the
automaton state with control q ∈ Q location p ∈ P is denoted as qp and we
transform automaton transition rule set from Γ to ΓP by following 2 rules.

(a) If p(Q∗)→ q in Γ then p(Q)→ qp in ΓP .
(b) If γ(Qp)→ q in Γ then γ(Qp)→ qp in ΓP .

As we mentioned before, there is a special control location \ in CDPN de-
noting process termination, and all M -configurations with their children pro-
cesses terminated will be recognized by the automaton state q\. Transition rule
p(Q\∗)→ qp intuitively will recognize M -terms with all their children processes
terminated.

Figure 9 shows the automaton for MHP(a1, a2). Let us explain the details of
the construction. We denote state q with propagated control location p ∈ P as
qp. Action a1 has stack symbol a = 2, and action a2 has stack symbol a′ = 7.
All control locations have been propagated into automaton states.

Row 1 in Figure 9 shows the initial M -tree automaton transition rules for
recognizing (a1, a2) running in parallel. Rule (26) to rule (29) recognize stack
symbols 2 and 7 for actions a1 and a2; rule (30) generate a trivial state qpp00 for
all leaf nodes in the M -configuration; rule (31) and rule (32) recognize config-
urations with children processes having a1 and a2 running in parallel; rule (33)
and rule (34) propagate recognized states from bottom to top.

Row 2 in Figure 9 shows the inverse of the terminate operation at program
point 8. Row 3 shows the inverse of the a2 action for the control flow with \
control location. Row 4 shows the inverse of the terminate operation at program
point 10. The new generated transition rule requires that all its children are in
the \ control location. Row 5 shows the inverse of the a3 action for the control
flow with \ control location. Row 6 shows the inverse of the async statement at
program point 6 for the control flow with # control location. Row 7 shows the
inverse of the async statement at program point 6 for the control flow with \

control location. Row 8 shows the inverse of the call f() statement which includes
action a1. Row 9 shows the inverse of the async statement at program point 12
for the control flow with # control location. Row 10 shows the inverse of the
wait operation at program point wait[5, 6, 11], which requires that all its newest
child has \ control location. Row 11 shows the inverse of the finish statement at
program point 5 for the control flow; requires \ control location. Row 12 shows
the inverse of the finish statement at program point 5 for the control flow NOT
require \ control location. This concludes our explanation of Figure 9.

The initial M -configuration confMinit for the first program in Figure 1 is 5(#)
as listed in the beginning of the G in Figure 6. We will determine whether
M -configurations with (a1, a2) running in parallel are reachable from the M -
configuration 5(#) by using pre∗-image of the M -tree automaton constructed
above to recognize 5(#).

We construct the pre∗-image of the M -tree automaton by applying backward
saturation rules given in [4] on CDPN transition rules in (7) and M -tree automa-
ton transition rules given in Row 1 in Figure 9. This process intuitively is exe-
cuting the program backward and find all reachable previous M -configurations.
The pre∗-image of the M -tree automaton will be built iteratively, and in each
step, one CDPN transition rule will be selected, and constant number of new
automaton transition rules will be inserted based on some existing automaton
transition rules.

To simplify the notation we use γ(p(qp
′

1 , . . . , q
p′

n))→∗ qp for automaton tran-

sition rules γ(qLp) → qp and p(qp
′

1 , . . . , q
p′

n) → qLp where qLp is the new created
state in the follow illustration.

For CDPN transition rule 6: \∗ : # 8 → \ in Figure 7, we will add M -
automaton transition rules

8(#())→∗ q\r00 (53)

8(#(Q\∗, q\i , Q
\))→∗ q\pi (54)

8(#(Q\∗, q\10, Q
\∗, q\01, Q

\∗))→∗ q\p11 (55)

8(#(Q\∗, q\01, Q
\∗, q\10, Q

\∗))→∗ q\p11 (56)

based on the backward saturation rule R1 and M -tree automaton transitions
(30),(34), (31), (32), (33) in Row 1 of Figure 9.

New M -tree automaton transition rules (53) to (56) will enable automaton
state q\ with terminate control location recognize running processes with stack
symbol 8 due to the inverse execution of CDPN rule \∗ : # 8→ \ . We continue
applying backward saturation rules for all CDPN transition rules in Figure (7),
and the union set of all generated M -tree automaton transition rules will be the
transition rule set for the M -tree automaton A′Ma1,a2 .

From Row 2 to 12 in Figure 9 lists the key steps of applying backward
saturation rules on CDPN transition rules, and they give two main clues of
going backward from points a1 and a2 along with the G in Figure 6.

We start with the clue for action point a2 with stack symbol 7, which in-
cludes automaton transition rules from (35) to (40). The transition rules from

(35) to (38) enable automaton state q\00 with terminal control location recognize
processes with stack symbol 7 and 9. Rule (39) and (40) generated by inversing
the async statement will derive two automaton states with different control lo-
cations. The one with dummy # control location has recognized a2 action while
the other one with \ control location has not recognized anything.

On the other side, the clue for point a1 with stack symbol 2 includes au-
tomaton transition rules (41) to (43). Rules (41) and (42) enable the automaton

state q#10 recognize processes with stack symbol 12. Rule (43) requires the newest
child process (spawned by finish statement) be recognized by a state with \ con-
trol location before synchronization point wait[5, 6, 11] being recognized by state

q#r10. It gives the semantic meaning that all children processes in the finish clo-
sure must have been terminated before the parent process execute across the
synchronization point.

The M -tree automaton rules (44) and (45) will inverse the finish statement
and merge the two clues given above. At this point, we can only get either the
configuration of parent process be recognized by state q#10 and child be recognized

by q\r00 or parent process be recognized by state q#00 and child be recognized by

q#01 The child process 6(#) recognized by state q#01 can not be merged with rule

wait[5, 6, 11](#(QP ∗ q\)) →∗ q#r10 in parent process since it requires control

location \ on its child’s state. Hence for the initial M -configuration confMinit =

5(#) can either be recognized by automaton state q#10 or q#01 which will not be
accepted by M -tree automaton A′Ma1,a2 .

Appendix B: Proofs of Theorems 6 and 7

We will now prove that our type system characterizes the MHP analysis problem
for statements without procedure calls.

8.1 A Characterization of CBE

Let us define sCBE(s) and the helper function runnable(s) as shown in Fig-
ure 10.

Lemma 1. There exists C such that C[al] = s if and only if l ∈ runnable(s).

Proof. ←) We must show that if l ∈ runnable(s) then there exists C such that
C[al] = s.

Let us perform induction on s and examine the seven cases.
If s ≡ s′ ; s′′ we have two cases to consider when l ∈ runnable(s) from

Rule (65).
Suppose s′ = P ′. From this premise we must consider the cases of l ∈

runnable(P ′) and l ∈ runnable(s′′).
Suppose l ∈ runnable(P ′). Then from the induction hypothesis we have

C ′[al] = P ′. We choose C = C ′ ; s′′ and since C ′[al] = P ′ we have C[al] = s as
desired.

sCBE(s1 ; s2) =


sCBE(s1) ∪ sCBE(s2) ∪
symcross(runnable(s1), runnable(s2))

if s1 = P

sCBE(s1) otherwise
(57)

sCBE(loop s) = ∅ (58)

sCBE(async s) = sCBE(s) (59)

sCBE(finish s) = sCBE(s) (60)

sCBE(al) = ∅ (61)

sCBE(skip) = ∅ (62)

sCBE(f()) = ∅ (63)

(64)

runnable(s1 ; s2) =

{
runnable(s1) ∪ runnable(s2) if s1 = P
runnable(s1) otherwise

(65)

runnable(loop s) = ∅ (66)

runnable(async s) = runnable(s) (67)

runnable(finish s) = runnable(s) (68)

runnable(al) = {l} (69)

runnable(skip) = ∅ (70)

runnable(f()) = ∅ (71)

Fig. 10. Two helper functions.

Suppose l ∈ runnable(s′′). Then from the induction hypothesis we have
C ′′[al] = s′′. We choose C = P ′ ;C ′′ and since C ′′[al] = s′′ have C[al] = s as
desired.

Suppose s′ 6= P ′. Then from this premise we have 1) l ∈ runnable(s′). Using
the induction hypothesis we have that there exists C ′ such that 2) C ′[al] = s′.
We choose C = C ′ ; s′′ and from 2) we have C[al] = s as desired.

If s ≡ loop s′ then runnable(s) = ∅ which contradicts our premise which
makes this case vacuously true.

If s ≡ async s′ then from Rule (67) we have 1) l ∈ runnable(s′). We then
use the induction hypothesis with 1) to get that there exists C ′ such that 2)
C ′[al] = s′. We choose C = async C ′ and with 2) we have C[al] = s as desired.

If s ≡ finish s′ then we use similar reasoning as the previous case.

If s ≡ al then we choose C = � and thus have C[al] = s as desired.

If s ≡ skip then runnable(s) = ∅ which contradicts our premise which makes
this case vacuously true.

If s ≡ f() then runnable(s) = ∅ which contradicts our premise which makes
this case vacuously true.

→) We must show that if there exists C such that C[al] = s then l ∈
runnable(s).

Let us perform induction on s and examine the seven cases.

If s ≡ s′ ; s′′ then there are two productions of C that conform to our premise:
C = C ′ ; s′′ and C ′[al] = s′ or C = P ′ ;C ′′ and C ′′[al] = s′′.

Suppose C = C ′ ; s′′ and C ′[al] = s′. Then Rules (65) and (65) may apply
and we must show l ∈ runnable(s) from both rules. From this premise we use the
induction hypothesis to get l ∈ runnable(s′). In either case of s′ = P ′ or s′ 6= P ′,
combining this with Rule (65) give us the desired conclusion of l ∈ runnable(s).

Suppose C = P ′ ;C ′′ and C ′[al] = s′′. Then the first case of Rule (65) only
applies to this case as s′ = P . Using the induction hypothesis with this premise
gives us l ∈ runnable(s′′). Using this with Rule (65) gives us l ∈ runnable(s) as
desired.

If s ≡ loop s′ then we see that there is no C such that C[al] = s which
contradicts our premise and makes this case vacuously true.

If s ≡ async s′ then we see that our premise is true only if there exists C ′

such that C = async C ′ and C ′[al] = s′. We use our induction hypothesis to get
that l ∈ runnable(s′). Combining this with Rule (67) gives use l ∈ runnable(s)
as desired.

If s ≡ finish s′ then we use similar reasoning as the previous case.
If s ≡ al then from Rule (69) we see our conclusion is true.
If s ≡ skip then we see that there is no C such that C[al] = s which contra-

dicts our premise and makes this case vacuously true.
If s ≡ f() then we see that there is no C such that C[al] = s which contradicts

our premise and makes this case vacuously true. ut

Lemma 2. CBE(s, l1, l2) if and only if (l1, l2) ∈ sCBE(s).

Proof. ←) We must show if (l1, l2) ∈ sCBE(s) then CBE(s, l1, l2).
Let us perform induction on s. There are seven cases to examine.
If s ≡ s′ ; s′′ then there are two cases from Rule (57) to consider on how

(l1, l2) ∈ sCBE(s).
Suppose s′ = P ′ from Rule (57). Then either (l1, l2) ∈ sCBE(P ′), (l1, l2) ∈

sCBE(s′′), or
(l1, l2) ∈ symcross(runnable(P ′), runnable(s′′)).

Suppose (l1, l2) ∈ sCBE(P ′). Then using the induction hypothesis with this
premise gives us 1) CBE(P ′, l1, l2). From the definition of CBE we have that the
exists C ′1 and C ′2 such that 2) P ′ = C ′1[al1], 3) P ′ = C ′2[al2] and 4) C ′1 6= C ′2. Let
5) C1 = C ′1 ; s′′ and 6) C2 = C ′2 ; s′′. From 4),5) and 6) we have 7) C1 6= C2.
We combine 2) with 5) and 3) with 6) to get 8) s = C1[al1] and 9) s = C2[al2].
From the definition of CBE and 7),8) and 9) we have CBE(s, l1, l2) as desired.

Suppose (l1, l2) ∈ sCBE(s′′). Then using the induction hypothesis with this
premise gives us 1) CBE(s′′, l1, l2). From the definition of CBE we have that the
exists C ′′1 and C ′′2 such that 2) s′′ = C ′′1 [al1], 3) s′′ = C ′′2 [al2] and 4) C ′′1 6= C ′′2 .
Let 5) C1 = P ′ ;C ′′1 and 6) C2 = P ′ ;C ′′2 . From 4),5) and 6) we have 7) C1 6= C2.
We combine 2) with 5) and 3) with 6) to get 8) s = C1[al1] and 9) s = C2[al2].
From the definition of CBE and 7),8) and 9) we have CBE(s, l1, l2) as desired.

Suppose (l1, l2) ∈ symcross(runnable(P ′), runnable(s′′)). Then from the
definition of symcross() we have either 1) l1 ∈ runnable(P ′) and 2) l2 ∈

runnable(s′′) or vice versa. In either case we proceed using similar reasoning.
Using Lemma (13) with 1) and 2) gives us that there exists C ′1 and C ′2 such that
3) C ′1[al1] = P ′ and 4) C ′2[al2] = s′′. Let 5) C1 = C ′1 s

′′ and 6) C2 = P ′ C2. From
5) and 6) we immediately see 7) C1 6= C2. Combining 3) with 5) and 4) with 6)
gives us 8) C1[al1] = s and 9) C2[al2] = s. From the definition of CBE with 7),8)
and 9) we have CBE(s, l1, l2) as desired.

Suppose s′ 6= P ′. Then we use similar reasoning as the case where (l1, l2) ∈
sCBE(P ′).

If s ≡ loop s′ then from Rule (58) we have sCBE(s) = ∅ which contradicts
our premise making this case vacuously true.

If s ≡ async s′ then from Rule (59) we have 1) CBE(s′, l1, l2). From the
definition of CBE we have that there exists C ′1; and C ′2 such that 2) s′ = C ′1[al1],
3) s′ = C ′2[al2] and 4) C1 6= C2. Let 5) C1 = async C ′1 and 6) C2 = async C ′2.
From 4),5) and 6) we have 7) C1 6= C2. We combine 2) with 5) and 3) with 6)
to get 8) s = C1[al1] and 9) s = C2[al2]. From the definition of CBE and 7),8)
and 9) we have CBE(s, l1, l2) as desired.

If s ≡ finish s′ then we proceed using similar reasoning as the previous case.

If s ≡ al then from Rule (61) we have sCBE(s) = ∅ which contradicts our
premise making this case vacuously true.

If s ≡ skip then we use similar reasoning as the previous case.

If s ≡ f() then we use similar reasoning as case for al.

→) We must show if CBE(s, l1, l2) then (l1, l2) ∈ sCBE(s).

Let us perform induction on s. There are seven cases to examine.

If s ≡ s′ ; s′′ then from the definition of CBE we have that there exists C1

and C2 such that a) s = C1[al1], b) s = C2[al2] and c) C1 6= C2. Let us perform
case analysis on C1 and C2 observing that the C ; s and P ;C productions are
the only ones that may satisfy a) and b).

Suppose C1 = C ′1 ; s′′ and C2 = C ′2 ; s′′. Since Rule (57) has two cases,
we must consider if s′ = P ′ or s′ 6= P ′. Combining this premise with c) gives
us 1) C ′1 6= C ′2. Additionally from this premise and a) and b) we obtain 2)
s′ = C ′1[al1] and 3) s′ = C ′2[al2]. Using the definition of CBE with 1),2) and
3) we have 4) CBE(s′, l1, l2). We use the induction hypothesis with 4) to get 5)
(l1, l2) ∈ sCBE(s′). From the Rule (57) with 5) in either case of s′ = P ′ or
s′ 6= P ′ we have (l1, l2) ∈ sCBE(s′ ; s′′).

Suppose C1 = P ′ ;C ′′1 and C2 = P ′ ;C ′′2 . Then combining this premise with
c) gives us 1) C ′′1 6= C ′′2 . Additionally from our this premise and a) and b) we
obtain 2) s′′ = C ′′1 [al1] and 3) s′′ = C ′′2 [al2]. Using the definition of CBE with
1),2) and 3) we have 4) CBE(s′′, l1, l2). We use the induction hypothesis with 4)
to get 5) (l1, l2) ∈ sCBE(s′′). From the Rule (57) combined with 5) we have
(l1, l2) ∈ sCBE(s) as desired.

Suppose C1 = C ′1 ; s′′ and C2 = P ′ ;C ′′2 . Combining this premise with a) and
b) gives us 1) P ′ = C ′1[al1] and 2) s′′ = C ′′2 [al2]. From applying Lemma (1) with
1) and 2) we obtain 3) l1 ∈ runnable(P ′) and 4) l2 ∈ runnable(s′′). From the
definition of symcross() we have

5) (l1, l2) ∈ symcross(runnable(P ′), runnable(s′′)). Using Rule (57) with 5)
gives us (l1, l2) ∈ sCBE(s) as desired.

Suppose C1 = P ;C ′′1 and C2 = C ′2 ; s′′. We proceed using similar reasoning
as the previous case.

If s ≡ loop s′ we see that there is no C such that C[al1] = s and thus from
its definition, we have CBE(s, l1, l2) = false which contradicts our premise and
making this case vacuously true.

If s ≡ async s′ then from the definition of CBE we have that there exists C1

and C2 such that 1) s = C1[al1], 2) s = C2[al2] and 3) C1 6= C2. We observe
that there is only context production that we may use with 1) and 2) to get 4)
s = (async C ′1)[al1] and 5) s = (async C ′2)[al2]. We see from 3),4) and 5) that
6) C ′1 6= C ′2. From 4) and 5) we may obtain 7) s′ = C ′1[al1] and 8) s′ = C ′2[al2].
From the definition of CBE and 6),7) and 8) we have 9) CBE(s′, l1, l2). Using the
induction hypothesis and 9) we have 10) (l1, l2) ∈ sCBE(s′). Using Rule (59)
we have (l1, l2) ∈ sCBE(s) as desired.

If s ≡ finish s′ then we use similar reasoning as the previous case.
If s ≡ al then we see that there is exactly one C such that C[al] = s where

C = �. From its definition then we see that CBE(s) = false and contradicts
our premise making this case vacuously true.

If s ≡ skip then we use similar reasoning as the loop case.
If s ≡ f() then we use similar reasoning as the loop case. ut

Theorem 13. (CBE Characterization) CBE(s) = sCBE(s).

Proof. Follows from Lemma (2) and the definition of CBE(). ut

8.2 Equivalence of MHP and Types

We will give a type-based characterization of the May Happen in Parallel prob-
lem. We will show that for all statements s without procedure calls, we have
MHPsem(s) = MHP∅type(s) (Lemma 17).

Lemma 3. If B ` s : M,O,L and runnable(s) ⊆ L.

Proof. Let us perform induction on s and examine the seven cases.
If s ≡ s1 ; s2 then from the definition of runnable() we have two cases to

consider from Rule (65): either runnable(s) = runnable(s1)∪ runnable(s1) and
s = P or runnable(s) = runnable(s1).

Suppose runnable(s) = runnable(s1) ∪ runnable(s1) and s = P . From
Rule (10) 1) B ` s1 : M1, O1, L1, 2) B ` s2 : M2, O2, L2 and 3) L = L1 ∪ L2.
Using the induction hypothesis on 1) and 2) gives us 4) runnable(s1) ⊆ L1

and 5) runnable(s2) ⊆ L2. Combining this premise with 3),4) and 5) gives us
runnable(s) ⊆ L as desired.

Suppose runnable(s) = runnable(s1). From Rule (10) we have 1) B ` s1 :
M1, O1, L1, 2) B ` s2 : M2, O2, L2 and 3) L = L1 ∪ L2. Using the induction
hypothesis with this premise and 2) gives us 4) runnable(s1) ∈ L2. Combining
this premise with 3) and 4) gives us runnable(s) ⊆ L as desired.

If s ≡ loop s1 then from the definition of runnable() we have runnable(s) = ∅
which we allows us to easily see that runnable(s) ⊆ L.

If s ≡ async s1 then from the definition of runnable() we have that 1)
runnable(s) = runnable(s1). Substituting 1) in to the premise gives us 2) l0 ∈
runnable(s1). From Rule (12) we have 3) B ` s1 : M1, O1, L1 and 4) L = L1.
Using the induction hypothesis with 2) and 3) we obtain 5) l0 ∈ L1 We substitute
4) in 5) to get l ∈ L as desired.

If s ≡ finish s1 then we proceed using similar reasoning as the previous
case.

If s ≡ al then from the definition of runnable() we have 1) runnable(s) =
{l}. From Rule (14) we have 2) L = {l} Substituting 2) in 1) gives us 3)
runnable(s) = L. From 3) we see that runnable(s) ⊆ L is true.

If s ≡ skip then from the definition of runnable() we have runnable(s) = ∅
which we allows us to easily see that runnable(s) ⊆ L.

If s ≡ f() then from the definition of runnable() we have runnable(s) = ∅
which we allows us to easily see that runnable(s) ⊆ L. ut

Lemma 4. If B ` P : M,O,L then runnable(P) ⊆ O.

Proof. Let us perform induction on P there are two cases to consider.
If P = P1 ;P2 then from the definition of runnable() we have 1) runnable(s) =

runnable(P1) ∪ runnable(P2). From Rule (10) we have 2) B ` P1 : M1, O1, L1,
3) B ` P2 : M2, O2, L2 and 4) O = O1∪O2. Using the induction hypothesis with
2) and 3) premise gives us 5) runnable(P1) ⊆ O1 and 6) runnable(P2) ⊆ O2

Combining 1),4),5) and 6) gives us runnable(P) ⊆ O as desired.
If P = async s1 then from Rule (12) we have 1) B ` s1 : M1, O1, L1

and 2) O = L1. From the definition of runnable() we have 3) runnable(P) =
runnable(s1). Using Lemma (3) with 1) and 4) we have 4) runnable(s1) ⊆ L1.
Substituting 2) and 3) in 4) gives us runnable(P) ⊆ O as desired. ut

Theorem 14. If B ` s : M,O,L, then CBE(s) ⊆M .

Proof. Let us perform induction on s and examine the seven cases.
If s ≡ s1 ; s2 then from Theorem (1) and Rule (57) we have either

CBE(s) = CBE(s1) ∪ CBE(s2) ∪
symcross(runnable(s1), runnable(s2))

where s1 = P or CBE(s) = CBE(s1).
Suppose

CBE(s) = CBE(s1) ∪ CBE(s2) ∪
symcross(runnable(s1), runnable(s2))

where s1 = P . From Rule (10) we have 1) B ` s1 : M1, O1, L1, 2) B ` s2 :
M2, O2, L2 and 3) M = M1 ∪M2 ∪ symcross(O1, L2). Using the induction hy-
pothesis with 1) and 2) we obtain 4) CBE(s1) ⊆ M1 and 5) CBE(s2) ⊆ M2.

Using Lemma (4) this premise and 1) gives us 6) runnable(s1) ⊆ O1. We use
Lemma (3) with 2) to get 7) runnable(s2) ⊆ L2. From 6) and 7) and the defi-
nition of symcross() we have that 8) symcross(runnable(s1), runnable(s2)) ⊆
symcross(O1, L2). Combining 3),4),5) and 8) we obtain CBE(s) ⊆ M as de-
sired.

Suppose CBE(s) = CBE(s1). From Rule (10) we have 1)B ` s1 : M1, O1, L1,
2) B ` s2 : M2, O2, L2 and 3) M = M1 ∪M2 ∪ symcross(O1, L2). Using the in-
duction hypothesis with 1) we get 4) CBE(s1) ⊆M1. Substituting this premise
with 4) gives us 5) CBE(s) ⊆M1. Combining 3) and 5) gives us CBE(s) ⊆M
as desired.

If s ≡ loop s1 then from Theorem (1) and Rule (58) we have CBE(s) = ∅.
From this we immediately may see that our conclusion is true.

If s ≡ async s1 then from Theorem (1) and Rule (59) we have 1) CBE(s) =
CBE(s1). From Rule (12) we have 2) B ` s1 : M1, O1, L1 and 3) M = M1. Using
the induction hypothesis with 2) we obtain 4) CBE(s1) ⊆ M1. Substituting 1)
and 3) in 4) gives us CBE(s) ⊆M as desired.

If s ≡ finish s1 then we proceed using reasoning similar to the previous
case.

If s ≡ al then we proceed using similar reasoning as the loop case.
If s ≡ skip then we proceed using similar reasoning as the loop case.
If s ≡ f() then we proceed using similar reasoning as the loop case.

ut

The following theorem can be proved with the technique used by Lee and
Palsberg [11] to prove a similar result.

Theorem 6 (Overapproximation) For a program p, a statement s in p, and
a type environment B such that ` p : B, we have MHPsem(s) ⊆ MHPBtype(s).

Proof. From the definition of MHPBtype(s) we have MHPBtype(s) = M , where
B ` s : M,O,L. From the definition of MHPsem(s) we have MHPsem(s) =⋃
s′:s7−→∗s′ CBE(s′). Suppose s 7−→∗ s′. It is sufficient to show CBE(s′) ⊆ M .

From Theorem 5 and induction on the number of steps in s 7−→∗ s′, we have
M ′, O′, L′ such that B ` s′ : M ′, O′, L′ and M ′ ⊆ M and O′ ⊆ O and L′ ⊆ L.
From Theorem 14 we have CBE(s′) ⊆ M ′. From CBE(s′) ⊆ M ′ and M ′ ⊆ M ,
we conclude CBE(s′) ⊆M . ut

We now embark on proving the dual of Theorem 6 for the special case of
statements without procedure calls. We begin with three lemmas that can be
proved easily by induction.

Lemma 5. If s1 7−→∗ s′1 then s1 ; s2 7−→∗ s′1 ; s2.

Proof. It is sufficient to prove this by showing if s1 7−→n s′1 then s1 ; s2 7−→n

s′1 ; s2.
We will now show that if s1 7−→n s′1 then s1 ; s2 7−→n s′1 ; s2.

We perform induction on n. If n = 0 then s′1 = s′1 and s1 ; s2 7−→0 s1 ; s2 is
immediately obvious.

If n = i + 1 and we have 1) s1 7−→ s′′1 and 2) s′′1 7−→i s′1. From 1) we
have that there exists a context C1 and redex R such that 3) s1 = C1[R1], 4)
s′′1 = C1[s′′] and 5) R1 → s′′. Let 6) C = C1 ; s2. Then from the definition of
7−→ and 5) we have 7) C[R1] 7−→ C[s′′]. Using 3) and 4) with 6) and 7) gives
us 8) s1 ; s2 7−→ s′′1 ; s2. Using the induction hypothesis with 2) we have 9)
s′′1 ; s2 7−→i s′1 ; s2 which we combine with 8) to get s1 ; s2 7−→i+1 s′1 ; s2 as
desired. ut

Lemma 6. If s 7−→∗ s′ then async s 7−→∗ async s′.

Proof. We use similar reasoning as Lemma (5). ut

Lemma 7. If s 7−→∗ s′ then finish s 7−→∗ finish s′.

Proof. We use similar reasoning as Lemma (5). ut

Lemma 8. For all s without procedure calls, s 7−→∗ skip.

Proof. We perform induction on s and examine the six cases. Notice that we
have six cases rather than seven because s contains no procedure calls.

If s ≡ s1 ; s2 then using the induction hypothesis we have 1) s1 7−→∗ skip
and 2) s2 7−→∗ skip. Using Lemma (5) with 1) gives us 3) s1 ; s2 7−→∗ skip ; s2.
We use C = � and R = skip ; s2 with Rule (2) to get 4) skip ; s2 7−→ s2. We
combine 3), 4), and 2) to get s1 ; s2 7−→∗ skip as desired.

If s ≡ loop s1 then using C = � and R = loop s1 with Rule (4) we arrive at
our conclusion.

If s ≡ async s1 then using the induction hypothesis we have 1) s1 7−→∗ skip.
Using Lemma (6) with 1) yields 2) async s1 7−→∗ async skip. We use C = �
and R = async skip with Rule (6) to get 3) async skip 7−→ skip. We combine
2) and 3) to obtain async s1 7−→∗ skip as desired.

If s ≡ finish s1 then we proceed using similar reasoning as the previous
case.

If s ≡ al then we use C = � and R = al with Rule (8) to obtain our
conclusion.

If s ≡ skip the conclusion is immediate. ut

Lemma 9. If s2 7−→∗ s′2 then s1 ; s2 7−→∗ s′2.

Proof. From Lemma (8) we have 1) s1 7−→∗ skip. Using Lemma (5) with 1) gives
us 2) s1 ; s2 7−→∗ skip ; s2. Using C = � and R = skip ; s2 with Rule (2) we have
3) skip ; s2 7−→ s2. Combining our premise with 2) and 3) gives us s1 ; s2 7−→∗ s′2
as desired. ut

Lemma 10. If s 7−→∗ s′ then P ; s 7−→∗ P ; s′.

Proof. It is sufficient to prove this by showing if s 7−→n s′ then P ; s 7−→n P ; s′.
We will now show that if s 7−→n s′ then P ; s 7−→n P ; s.
We perform induction on n. If n = 0 then s = s′ and P ; s 7−→0 P ; s is

immediately obvious.
If n = i+ 1 and we have 1) s 7−→ s′′ and 2) s′′ 7−→i s′. From 1) we have that

there exists a context C1 and redex R such that 3) s = C[R], 4) s′′ = C[s′′′] and
5) R→ s′′′. Let 6) C ′ = P ;C. Then from the definition of 7−→ and 5) we have
7) C ′[R] 7−→ C ′[s′′′]. Using 3) and 4) with 6) and 7) gives us 8) P ; s 7−→ P ; s′′.
Using the induction hypothesis with 2) we have 9) P ; s′′ 7−→i P ; s′ which we
combine with 8) to get P ; s 7−→i+1 P ; s′ as desired. ut

Lemma 11. If s1 7−→∗ P1 and s2 7−→∗ s′2 then s1 ; s2 7−→∗ P1 ; s′2.

Proof. Using Lemma (5) with our premise gives us 1) s1 ; s2 7−→∗ P1 ; s2. Using
the premise with Lemma (10) yields 2) P1 ; s2 7−→∗ P1 ; s′2. Combining 1) and
2) results in s1 ; s2 7−→∗ P1 ; s′2 as desired. ut

Lemma 12. If s1 7−→∗ P1 then s1 ; s2 7−→∗ P1.

Proof. From Lemma (8) we have 1) s2 7−→∗ skip. Using the premise and 1) with
Lemma (11) gives us 2) s1 ; s2 7−→∗ P1 ; skip. Using C = � and R = P1 ; skip
with Rule (3) gives us 3) P1 ; skip 7−→ P1. Combining 2) and 3) results in
s1 ; s2 7−→∗ P1 as desired. ut

Lemma 13. If ∅ ` s : M,O,L and l ∈ L then there exists s′ such that s 7−→∗ s′
and l ∈ runnable(s′).

Proof. Let us perform induction on s and examine the six cases. Notice that
we have six cases rather than seven because ∅ ` s : M,O,L so s contains no
procedure calls.

If s ≡ s1 ; s2 then from Rule (10) we have a) ∅ ` s1 : M1, O1, L1, b) ∅ ` s2 :
M2, O2, L2 and c) L = L1 ∪ L2. We must consider the cases where l ∈ L1 or
l ∈ L2.

Suppose l ∈ L1. Then we use the induction hypothesis with a) and this
premise to get that there exists s′1 such that 1) s1 7−→∗ s′1 and 2) l ∈ runnable(s′1).
Applying Lemma (5) with 1) gives us 3) s1 ; s2 7−→∗ s′1 ; s2. Using either Rule (65)
or (65) both give 4) l ∈ runnable(s′1 ; s2). We choose s′ = s′1 ; s2 and from 3)
and 4) we have our conclusion.

Suppose l ∈ L2. Then we use the induction hypothesis with b) and this
premise to get that there exists s′2 such that 1) s2 7−→∗ s′2 and 2) l ∈ runnable(s′2).
Using Lemma (9) with 1) gives us 3) s1 ; s2 7−→∗ s′2. We choose s′ = s′2 and from
2) and 3) we have our conclusion.

If s ≡ loop s1 then from Rule (11) we have 1) ∅ ` s1 : M1, O1, L1 and 2)
L = L1. Combining 2) with the premise gives us 3) l ∈ L1. We use the induction
hypothesis with 1) and 3) to get that there exists s′1 such that 4) s1 7−→∗ s′1
and 5) l ∈ runnable(s′1). From Lemma (5) with 4) gives us 6) s1 ; loop s1 7−→∗
s′1 ; loop s1. Using C = � and R = loop s1 with Rule (5) we have 7) loop s1 7−→

s1 ; loop s1. Combining 6) with 7) results in 8) loop s1 7−→∗ s′1 ; loop s1. Using
Rule (65) or (65) with 5) gives us 9) l ∈ runnable(s′1 ; loop s1). We choose
s′ = s′1 ; loop s1 and from 8) and 9) we reach our conclusion.

If s ≡ async s1 then from Rule (12) we have 1) ∅ ` s1 : M1, O1, L1 and 2)
L = L1. Combining 2) with the premise gives us 3) l ∈ L1. We use the induction
hypothesis with 1) and 3) to get that there exists s′1 such that 4) s1 7−→∗ s′1
and 5) l ∈ runnable(s′1). From Lemma (6) and 4) we obtain 6) async s1 7−→∗
async s′1. Using Rule (67) with 5) gives us 7) l ∈ runnable(async s′1). We choose
s′ = async s′1 and with 6) and 7) we have our conclusion.

If s ≡ finish s1 then from Rule (13) we have 1) ∅ ` s1 : M1, O1, L1 and 2)
L = L1. Combining 2) with the premise gives us 3) l ∈ L1. We use the induction
hypothesis with 1) and 3) to get that there exists s′1 such that 4) s1 7−→∗ s′1
and 5) l ∈ runnable(s′1). From Lemma (7) and 4) we obtain 6) finish s1 7−→∗
finish s′1. Using Rule (68) with 5) gives us 7) l ∈ runnable(finish s′1). We
choose s′ = finish s′1 and with 6) and 7) we have our conclusion.

If s ≡ al
′

then from Rule (14) we have L = {l′}. We combine this with our
premise and we have that l = l′. From the Rule (69) we have runnable(s) = {l′}
and since l = l′ we have l ∈ runnable(s). We choose s′ = s and our conclusion
easily follows.

If s ≡ skip then from Rule (15) we have L = ∅ which contradicts our premise
and makes this case vacuously true. ut

Lemma 14. If ∅ ` s : M,O,L and l ∈ O then there exists P such that s 7−→∗ P
and l ∈ runnable(P)

Proof. Let us perform induction on s. There are six cases. Notice that we have
six cases rather than seven because ∅ ` s : M,O,L so s contains no procedure
calls.

If s ≡ s1 ; s2 then from Rule (10) we have a) ∅ ` s1 : M1, O1, L1, b) ∅ ` s2 :
M2, O2, L2 and c) O = O1∪O2. We must consider the case when l ∈ O1 or when
l ∈ O2.

Suppose l ∈ O1. Then we use our induction hypothesis with this premise and
a) to get that there exists P1 such that 1) s1 7−→∗ P1 and 2) l ∈ runnable(P1).
Applying Lemma (12) with 1) gives us 3) s1 ; s2 7−→∗ P1. We choose P = P1

and with 2) and 3) we have our conclusion.
Suppose l ∈ O2. Then we use the induction hypothesis with this premise and

b) to get that there exists P2 such that 1) s2 7−→∗ P2 and 2) l ∈ runnable(P2).
We use Lemma (9) with 1) to get 3) s1 ; s2 7−→∗ P2. We choose P = P2 and
from 2) and 3) we have our conclusion.

If s ≡ loop s1 then from Rule (11) we have 1) ∅ ` s1 : M1, O1, L1 and 2) O =
O1. Combining 2) with our premise results in 3) l ∈ O1. We use the induction
hypothesis with 1) and 3) to get that there exists P1 such that 4) s1 7−→∗ P1 and
5) l ∈ runnable(P1). Using Lemma (12) with 4) gives us 6) s1 ; loop s1 7−→∗ P1.
We choose P = P1 and with 5) and 6) we have our conclusion.

If s ≡ async s1 then from Rule (12) we have 1) ∅ ` s1 : M1, O1, L1 and 2)
O = L1. Combining 2) with our premise gives us 3) l ∈ L1. Using Lemma (13)

with 1) and 3) yields that there exists s′1 such that 4) s1 7−→∗ s′1 and 5) l ∈
runnable(s′1). We use Lemma (6) with 4) to get 6) async s1 7−→∗ async s′1.
Combining Rule (67) with 5) gives us 7) l ∈ runnable(async s′1). We choose
P = async s′1 and from 6) and 7) we have our conclusion.

If s ≡ finish s1 then from Rule (13) we have O = ∅ which contradicts our
premise. This case is vacuously true.

If s ≡ al′ then we use similar reasoning as the previous case.
If s ≡ skip then we use similar reasoning as the previous case. ut

Lemma 15. If ∅ ` s : M,O,L and (l1, l2) ∈ M then there exists s′ such that
s 7−→∗ s′ and (l1, l2) ∈ sCBE(s′).

Proof. Let use perform induction on s. This gives us six cases to examine. Notice
that we have six cases rather than seven because ∅ ` s : M,O,L so s contains
no procedure calls.

If s ≡ s1 ; s2 then from Rule (10) we have a) ∅ ` s1 : M1, O1, L1, b) ∅ ` s2 :
M2, O2, L2 and c) M = M1 ∪M2 ∪ symcross(O1, L2).

Suppose (l1, l2) ∈ M1. Then we may use the induction hypothesis with a)
and this premise to get that there exists s′1 such that 1) s1 7−→∗ s′1 and 2)
(l1, l2) ∈ sCBE(s′1). Using 2) with Rules (57) and (57) both give us 3) (l1, l2) ∈
sCBE(s′1 ; s2). Using Lemma (5) with 1) we have 4) s1 ; s2 7−→∗ s′1 ; s2. We
choose s′ = s′1 ; s2 and 3) and 4) we have our conclusion.

Suppose (l1, l2) ∈ M2. Then we may use the induction hypothesis with b)
and this premise to get that there exists s′2 such that 1) s2 7−→∗ s′2 and 2)
(l1, l2) ∈ sCBE(s′2). Using Lemma (9) with 1) gives us 3) s1 ; s2 7−→∗ s′2. We
choose s′ = s′2 and from 2) and 3) we have our conclusion.

Suppose (l1, l2) ∈ symcross(O1, L2). Then from the definition of symcross()
and our premise we have either 1) l1 ∈ O1 and 2) l2 ∈ L2 or vice versa. In
either case, we proceed using similar reasoning. We will show for the listed
cases. Using Lemma (14) with 1) and a) gives us that there exists P1 such
that 3) s1 7−→∗ P1 and 4) l1 ∈ runnable(P). Using Lemma (13) with 2)
and b) gives us that there exists s′2 such that 5) s2 7−→∗ s′2 and 6) l2 ∈
runnable(s′2). From the definition of symcross() with 4) and 6) we have 7)
(l1, l2) ∈ symcross(runnable(P1), runnable(s′2)). From Rule (57) we have 8)
(l1, l2) ∈ sCBE(P1 ; s′2). We use Lemma (11) with 3) and 5) gives us that 9)
s1 ; s2 7−→∗ P1 ; s′2. We choose s′ = P1 ; s′2 and from 8) and 9) we obtain our
conclusion.

If s ≡ loop s1 then from Rule (11) we have a) ∅ ` s1 : M1, O1, L1, b)
M = M1 ∪ symcross(O1, L1) and c) L = L1.

Suppose (l1, l2) ∈ M1. Then using the induction hypothesis with a) and
this premise gives us that there exists s′1 such that 1) s1 7−→∗ s′1 and 2)
(l1, l2) ∈ sCBE(s′1). Using 2) with Rules (57) and (57) both gives us 3) (l1, l2) ∈
sCBE(s′1 ; loop s1). We use Lemma (5) with 1) to get 4) s1 ; loop s1 7−→∗
s′1 ; loop s1. Using C = � and R = loop s1 with Rule (5) gives us 5) loop s1 7−→
s1 ; loop s1 Combining 4) and 5) gives us 6) loop s1 7−→∗ s′1 ; loop s1. We choose
s′ = s′1 ; loop s1 and from 3) and 6) we obtain our conclusion.

Suppose (l1, l2) ∈ symcross(O1, L1). Then from the definition of symcross()
and our premise we have either 1) l1 ∈ O1 and 2) l2 ∈ L1 or vice versa. In
either case, we proceed using similar reasoning. Substituting c) in 2) gives us
3) l2 ∈ L. Using Lemma (14) with a) and 1) gives us that there exists P1 such
that 4) s1 7−→∗ P1 and 5) l1 ∈ runnable(P1). Using Lemma (13) with our
original premise of ∅ ` s : M,O,L gives us that there exists s′′ such that 6)
loop s 7−→∗ s′′ and 7) l2 ∈ runnable(s′′). From the definition of symcross() with
5) and 7) we have 8) (l1, l2) ∈ symcross(runnable(P1), runnable(s′′)). Using
Rule (57) with 8) gives us 9) (l1, l2) ∈ sCBE(P1 ; s′′). Using Lemma (11) with
4) and 6) gives us 10) s1 ; loop s1 7−→∗ P1 ; s′′. Using C = � and R = loop s1
with Rule (5) gives us 11) loop s1 7−→ s1 ; loop s1. We combine 10) and 11) to
get 12) loop s1 7−→∗ P1 ; s′′. We choose s′ = P1 ; s′′ and from 9) and 12) we have
our conclusion.

If s ≡ async s1 then from Rule (12) we have 1) ∅ ` s1 : M1, O1, L1, 2) M =
M1. We combine the premise with 2) to get 3) (l1, l2) ∈M1. Using the induction
hypothesis with 3) we get that there exists s′1 such that 4) s1 7−→∗ s′1 and 5)
(l1, l2) ∈ sCBE(s′1). From Rule (59) and 5) we get 6) (l1, l2) ∈ sCBE(async s′1).
We use Lemma (6) with 4) to get 7) async s1 7−→∗ async s′1. We choose s′ =
async s′1 and from 6) and 7) we have our conclusion.

If s ≡ finish s1 then from Rule (13) we have 1) ∅ ` s1 : M1, O1, L1, 2) M =
M1. We combine the premise with 2) to get 3) (l1, l2) ∈M1. Using the induction
hypothesis with 3) we get that there exists s′1 such that 4) s1 7−→∗ s′1 and 5)
(l1, l2) ∈ sCBE(s′1). From Rule (60) and 5) we get 6) (l1, l2) ∈ sCBE(finish s′1).
We use Lemma (7) with 4) to get 7) finish s1 7−→∗ finish s′1. We choose
s′ = finish s′1 and from 6) and 7) we have our conclusion.

If s ≡ al then from Rule (14) we have M = ∅. This contradicts our premise
and makes this case vacuously true.

If s ≡ skip then we use similar reasoning as the previous case. ut

Lemma 16. (Underapproximation) MHP∅type(s) ⊆ MHPsem(s).

Proof. From Lemma (2) we have that there exists M ,O and L such that ∅ `
s : M,O,L. Using this with Lemma (15) gives us M ⊆

⋃
s′:s7−→∗s′ sCBE(s′).

From Theorem (13) we have M ⊆
⋃
s′:s7−→∗s′ CBE(s′). From the definition

of MHP∅type(s) and MHPsem(s) =
⋃
s′:s7−→∗s′ CBE(s′) we have MHP∅type(s) ⊆

MHPsem(s) as desired. ut

Lemma 17. (Equivalence) For a statement s without procedure calls, we have

MHPsem(s) = MHP∅type(s).

Proof. Combine Lemmas 6 and 16. ut

Theorem 7. (Equivalence) For a program without recursion, where the body
of main is the statement s, we have that there exists B such that MHPsem(s) =
MHPBtype(s).

Proof. Let p be a program without recursion and let p′ be a program in which
a call to procedure f has been replaced with body(f). Additionally, let s be the
body of main in p, and let s′ be the body of main in p′. It is straightforward
to see that 1) MHPsem(s) = MHPsem(s′), and it is easy to prove by induction
on s that for any type environment B, we have 2) MHPBtype(s) = MHPBtype(s

′).
We can iteratively inline each procedure call in p until we reach a program p′′

without procedure calls. Let s′′ be the body of main in p′′. The observations
1) and 2), and the transitivity of =, imply that 3) MHPsem(s) = MHPsem(s′′),
and that for any type environment B, we have 4) MHPBtype(s) = MHPBtype(s

′′).
Additionally, since p′′ has no procedure calls, the type derivation for s′′ does not
use B, so 5) MHPBtype(s

′′) = MHP∅type(s
′′). We can now use 3), Lemma 17, 5),

and 4) to prove the theorem. ut

Appendix C: Proof of Theorem 9

We will give the proof showing the M -tree automaton AMl,l′ can only recognize all
M -configurations with labels (program points) l, l′ that may happen in parallel.

We define a context C as a M -term in set T [X] with one free variable,
which only appears once in the M -term. After inserting a ground M -term (M -
configuration) t = γ ∗ p(t1, . . . , tn) for n ≥ 0, into C, we get another ground
M -term C[t], which also is a M -configuration.

Following the definition of ground M -term T , M -configurations are trees in
forms of γm . . . γ1p(t1, . . . , tn) for m,n ≥ 0, where t1, . . . , tn are sub-trees with
same structure. Particularly, all leaf nodes are single p nodes without sub-trees.

To simplify the notation, we define M -tree automaton AMl,l′ [F
′] as the M -

tree automaton AMl,l′ with terminal set being replaced with F ′. It shares the

same state set Q, and transition rule set δ with AMl,l′ .

Lemma 18. For all l, l′, we have ConfM = L(AMl,l′ [{qp00, qr00}]).

Proof. Notice that proving ConfM = L(AMl,l′ [{qp00, qr00}]) is equivalent to prov-

ing (a) L(AMl,l′ [{qp00, qr00}]) ⊆ ConfM , and (b) ConfM ⊆ L(AMl,l′ [{qp00, qr00}]).
Because AMl,l′ [{qp00, qr00}] is the automaton over M -terms, we always have that

L(AMl,l′ [{qp00, qr00}]) ⊆ ConfM ; proving the second condition is equal to prov-

ing for any M -configuration t we have t ∈ L(AMl,l′ [{qp00, qr00}]). We prove it by
induction on t. There are two cases we need to analyze.

If t is the form of p(t1, . . . , tn) where n ≥ 0. For n > 0, by induction hypoth-
esis ti ∈ L(AMl,l′ [{qp00, qr00}]), and ti →∗ q00, we will get p(t1, . . . , tn) →∗ qp00
by applying transition rule p(Q∗, qi, Q

∗) → qpi; for n = 0, we will directly get
p() → qp00 by transition rule. In both cases, M -configuration t is accepted by
AMl,l′ [{qp00, qr00}].

If t is the form of γ(t1) where t1 is the sub-term of t. By induction hypoth-
esis, we have t1 ∈ L(AMl,l′ [{qp00, qr00}]), which gives t1 →∗ q00. After applying
transition rule γ(qi)→ qri , we get t = γ(t1), γ(t1)→∗ q00 and the configuration
t is accepted by AMl,l′ [{qp00, qr00}]. ut

Lemma 19. For all l, l′, if F qi is one of {qp00, qr00}, {qp10, qr10}, {qp01, qr01},
{qp11, qr11}, for c ∈ ConfM , t ∈ L(AMl,l′ [F

qi]) and a context C such that c = C[t],

we have c ∈ L(AMl,l′ [F
qi]).

Proof. If context C is empty, and c = t. we have c ∈ L(AMl,l′ [F
qi]) by equality.

If context C is not empty, we prove it by induction on M -configuration c,
and there are two cases.

If c is in form of p(t1, . . . , tn). t is either tj where 1 ≤ j ≤ n or sub-term of
tj . If t is tj , tj →∗ qi where qi ∈ F qi by condition t ∈ L(AMl,l′ [F

qi]), else if t is

sub-term of tj , we still have tj →∗ qi where qi ∈ F qi by induction hypothesis on
term tj . Based on Lemma 18, for tk in t1, . . . , tn where k 6= j, we have tk →∗ q00.
We apply transition rule p(Q∗, qi, Q

∗) → qpi on term p(t1, . . . , tn) with tj → qi
and tk → q00, we have p(t1, . . . , tn) →∗ qpi. If qi ∈ F qi, we have qpi ∈ F qi by
examining the definition, thus c ∈ L(AMl,l′ [F

qi]).
If c is in form of γ(t1). t is either t1 or sub-term of t1. If t is t1, t1 →∗ qi where

qi ∈ F qi by condition t ∈ L(AMl,l′ [F
qi]), else if t is sub-term of t1, we still have

t1 →∗ qi where qi ∈ F qi by induction hypothesis on term t1. We apply transition
rule γ(qi) → qri on term γ(t1) with t1 → qi, we have γ(t1) →∗ qri. If qi ∈ F qi,
we have qri ∈ F qi by examining the definition, thus c ∈ L(AMl,l′ [F

qi]). ut

Lemma 20. For all l, l′, if F qi is one of {qp00, qr00}, {qp10, qr10}, {qp01, qr01},
{qp11, qr11}, and c ∈ L(AMl,l′ [F

qi]), then either there exists a ground term t =

p(t1, . . . , tn), n ≥ 0, a context C such that c = C[t] and t ∈ L(AMl,l′ [F
qi]) but

t1, . . . , tn /∈ L(AMl,l′ [F
qi]); or there exists a ground term t = γ(t′), a context C

such that c = C[t] and t ∈ L(AMl,l′ [F
qi]) but t′ /∈ L(AMl,l′ [F

qi]).

Proof. We prove it by induction on M -configuration c, and examine 2 cases:
If c is the term of γ(t1). In this case, if t1 ∈ L(AMl,l′ [F

qi]), based on the
induction hypothesis, we can apply the lemma on t1 and find a ground term t′

and its relative context C ′ where C ′[t′] = t1 satisfying the lemma on t1. We thus
find t = t′ and C = γ(C ′), will satisfy the lemma on c. If t1 /∈ L(AMl,l′ [F

qi]) we

can find a term t = c, t = c ∈ L(AMl,l′ [F
qi]), but t1 /∈ L(AMl,l′ [F

qi]), satisfy the
lemma.

If c is the term of p(t1, . . . , tn) for n ≥ 0. In this case, if there exists one tj for
1 ≤ j ≤ n in t1 . . . tn, that tj ∈ L(AMl,l′ [F

qi]), based on the induction hypothesis
we can find a ground term t′ and its relative context C ′ where C ′[t′] = tj that
satisfy the lemma on term tj . We find t = t′, C = p(t1, . . . , C

′, . . . , tn), will satisfy
the lemma on term c. However, if for all tj in t1, . . . , tn having tj /∈ L(AMl,l′ [F

qi]),

we find term t = c ∈ L(AMl,l′ [F
qi]) and all its children tj /∈ L(AMl,l′ [F

qi]) satisfy
the lemma. ut

Lemma 21. For all l, l′, and for every M -configuration c, we have that c ∈
L(AMl,l′ [{qp10, qr10}]) if and only if there exists a process in c with stack symbol l

on top of the stack. Similarly, for all l, l′, we have c ∈ L(AMl,l′ [{qp01, qr01}]) if and
only if there exists a process in c with stack symbol l′ on top of the stack.

Proof. Notice the two symmetric cases for tree-automaton AMl,l′ [{qp10, qr10}] and

AMl,l′ [{qp01, qr01}]; so we only show the proof for AMl,l′ [{qp10, qr10}]; the other case
is similar.

Proving this lemma is equal to proving the following two assertions. For any
M -configuration c,

(a) if c ∈ L(AMl,l′ [{qp10, qr10}]), then there exists a process in c with stack symbol
l on top of the stack

(b) if there exists a process in c with stack symbol l on the top of the stack,
then c ∈ L(AMl,l′ [{qp10, qr10}])

Proof for case (a): Based on Lemma 20, we know there exists an ground
M -term t ∈ L(AMl,l′ [{qp10, qr10}]) and a context C where C[t] = c, so that either

t = p(t1, . . . , tn), n ≥ 0 and t1, . . . , tn /∈ L(AMl,l′ [F
qi]), or t = γ(t′) and t′ /∈

L(AMl,l′ [F
qi]). We apply pattern match analysis on transition rules applied on

term t so that t→∗ q10, and there are 3 matched cases.
If rule a(qp00) → qr10 is matched. In this case, we have t is in form of γ(t′),

γ = l, t′ →∗ qp00. Again, we apply pattern match on t′ →∗ qp00, we have 2
cases matched. If p(Q∗, qi, Q

∗) → qpi matched, we have t′ →∗ p(Q∗, q00, Q∗),
and γ(t′) →∗ l(p(Q∗, q00, Q∗)) that give stack symbol l on top of the control
location p. Else if p() → qp00 is matched, we get t′ = p(), and γ(t′) = l(p()),
which has symbol l on top of the control location p.

If rule γ(qi) → qri is matched. In this case, we have t in the form of γ(t′),
t′ →∗ q10. Because we have t′ /∈ L(AMl,l′ [{qp10, qr10}]) in the hypothesis, this rule
match failed.

If rule p(Q∗, qi, Q
∗) → qpi is matched. In this case, we have t is in the

form of p(t1, . . . , tn) where tj →∗ q10 for tj ∈ t1 . . . tn. Because we have tj /∈
L(AMl,l′ [{qp10, qr10}]) in the hypothesis, this rule match failed.

All matched cases above indicate there exists a process in c with stack symbol
l on top of stack.

Proof for case (b): In this case we have a ground term t which is a process
in form of γp(t1, . . . , tn) where n ≥ 0, and γ = l. If n > 0, based on Lemma 18,
we have all tj →∗ q00 for tj ∈ t1 . . . tn, and p(t1, . . . , tn) →∗ qp00 by applying
transition rule p(Q∗, qi, Q

∗) → qpi. Else if n = 0, we have p(t1, . . . , tn) →∗ qp00
by applying transition rule p() → qp00, then we get γp(t1, . . . , tn) →∗ q10 by
applying transition rule a(qp00)→ q10. We can find a context C where C[t] = c,
based on Lemma 19, so that c = C[t] ∈ L(AMl,l′ [{qp10, qr10}]). ut

Theorem 9. ConfMl,l′ = L(AMl,l′).

Proof. To prove this theorem, we show

(a) For any M -configuration c ∈ L(AMl,l′), we have c ∈ ConfMl,l′ ;

(b) For any M -configuration c ∈ ConfMl,l′ , we have c ∈ L(AMl,l′).

Proof for (a): In this case, we have c ∈ L(AMl,l′), and based on Lemma 20

we can find a ground M -term t ∈ L(AMl,l′) and a context C where C[t] = c, so

that either t = p(t1, . . . , tn), n ≥ 0 and t1, . . . , tn /∈ L(AMl,l′), or t = γ(t′) and

t′ /∈ L(AMl,l′). We apply pattern match analysis on transition rules applied on
term t so that t→∗ q11 there are 6 matched cases.

If rule l(qp01)→ qr11 is matched, we have t in form of γ(t′), γ = l and t′ →∗
qp01. Again we apply pattern match on t′ →∗ qp01, and there is 1 matched rule
p(Q∗, qi, Q

∗)→ qpi. We have t′ = p(t1, . . . , tn), where ti →∗ q01 for ti ∈ t1 . . . tn.
Then we get term γ(t′) has a stack symbol l on top of a control location p, which
indicates stack symbol l on the top of stack in a process with control location p.
Because sub-term ti is recognized by M -tree automaton AMl,l′ [{qp01, qr01}], based
on Lemma 21, we have another process in sub term ti with symbol l′ on the top
of the stack.

If rule l′(qp10) → qr11 is matched, we get the same result as previous case,
since they are symmetric.

If rule p(Q∗, q10, Q
∗, q01, Q

∗) → qp11 is matched, we have sub term ti, tj
where i 6= j that ti ∈ L(AMl,l′ [{qp10, qr10}]) and tj ∈ L(AMl,l′ [{qp01, qr01}]). Based
on Lemma 21, we will get two processes in subterms ti and tj with symbol l,
and symbol l′ on top of the stacks respectively.

If rule p(Q∗, q01, Q
∗, q10, Q

∗) → qp11 is matched, it gives the same result as
previous rule.

If rule γ(qi)→ qri is matched, t = γ(t′), where t′ →∗ q11. This is conflicting
with condition that t′ /∈ L(AMl,l′), so the rule match fails.

If rule p(Q∗, qi, Q
∗) → qpi is matched, t = p(t1, . . . , tn), where tj →∗ q11 for

tj ∈ t1 . . . tn. This is conflicting with condition that tj /∈ L(AMl,l′), so the rule
match failed.

All matched patterns above identify ground M -term t that has two processes
with stack symbol l and l′ on top of their stacks respectively, so that configuration
c = C[t] belongs to the family of ConfMl,l′ .

Proof for (b): in this case, for any M -configuration c in family ConfMl,l′ , there
will be 2 processes with stack symbol l and l′ on top of stacks. Thus, we get two
ground M -terms tl = l(p(t1, . . . , tn)), n ≥ 0, tl′ = l′(p(t′1, . . . , t

′
m)),m ≥ 0. We

apply transition rules p(Q∗, qi, Q
∗)→ qpi, l(qp00)→ qr10 and l′(qp00)→ qr01 onto

tl and tl′ with ti →∗ q00 and t′i →∗ q00 for ti ∈ t1 . . . tn, t′i ∈ t′1 . . . t′m given by
Lemma 18, then get tl →∗ q10, tl′ →∗ q01. Because M -configuration c is a tree,
we do case analysis on positions of M -terms tl and tl′ on the tree. There are 3
cases.

If tl is in one of the sub-term t′i in tl′ . In this case, based on Lemma 21, we
will get t′i →∗ q10, since there is a process in t′i with symbol l on top of the stack.
Next we apply transition rule p(Q∗, qi, Q

∗) → qpi and get p(t′1, . . . , t
′
n) →∗ qp10.

Finally apply rule l′(qp10) → qr11, we get tl′ = l′(p(t′1, . . . , t
′
n)) →∗ q11. Because

we can find a context C where C[tl′] = c, based on Lemma 19 we have c ∈ L(AMl,l′)

since tl′ ∈ L(AMl,l′).

If tl′ is in one of the sub-term ti in ta. In this symmetric case, we get the
same result as previous proof.

If tl and tl′ are two separator terms on the tree. In this case, they must have
a closest common ancestor term tc = q(t1, . . . , ti, . . . , tj , . . . , tn) where tl is in

the sub term of ti and tl′ is in the sub term of tj (or the symmetric case that tl′

is in the sub term of ti and tl is in the sub term of tj) . Based on Lemma 21, we
have ti ∈ L(AMl,l′ [{qp10, qr10}]) and tj ∈ L(AMl,l′ [{qp01, qr01}]) which is equivalent to
ti →∗ q10, tj →∗ q01. By applying transition rule p(Q∗, q10, Q

∗, q01, Q
∗) → qp11,

(or p(Q∗, q01, Q
∗, q10, Q

∗)→ qp11 in the symmetric case) we derive that we have
p(t1, . . . , ti, . . . , tj , . . . , tn) →∗ qp11, and term tc is recognized by AMl,l′ . We can
find a context C for term tc so that C[tc] = c, then by Lemma 19 we will get
c ∈ L(AMl,l′), since tc ∈ L(AMl,l′).

All cases above give the result that c ∈ L(AMl,l′). ut

