
Modular Static Analysis with Zonotopes

Eric Goubault, Sylvie Putot, and Franck Védrine

CEA Saclay Nano-INNOV, CEA LIST, Laboratory for the Modelling and Analysis of
Interacting Systems, Point Courrier 174, 91191 Gif sur Yvette CEDEX,

Firstname.Lastname@cea.fr

Abstract. Being able to analyze programs function by function, or
module by module is a key ingredient to scalable static analyses. The
main difficulty for modular static analysis is to be able to do so while
not losing too much precision. In this paper, we present a new summary-
based approach that builds on previous work of the authors, a zonotopic
functional abstraction, that is economical both in space and time com-
plexity. This approach has been implemented, and experiments on nu-
merical programs, reported here, show that this approach is very efficient,
and that we still obtain precise analyses in realistic cases.

1 Introduction

In this paper, we use the particular properties that the zonotopic abstract do-
main [GP06,GGP09,GGP10] exhibits, to design a new modular static analysis
of numeric properties. This domain has some advantages over the other sub-
polyhedric abstract domains such as [Min01,SSM05,CH78], namely that its ab-
stract transfer functions are of low complexity, while being more precise for
instance for non-linear computations. This makes it a good candidate for scal-
able analyses of numeric properties. It has been the basis for the static analyzer
FLUCTUAT, that extends this domain to deal with finite-precision arithmetic
semantics (e.g. floating-point numbers) as in [GP11]. Experiments with FLUC-
TUAT [DGP+09] have proved the usefulness of this domain for analysing mid-
sized programs (up to 50KLoCs typically, on standard laptop computers). As we
are dealing with precise numerical invariants (ranges of variables or functional
properties, numerical errors and their provenance), the standard global interpre-
tation of programs, re-analysing every function at each call site, may still prove
too costly for analysing large programs of over 100KLoCs to several MLoCs.

But this zonotopic domain exhibits other properties that make it a perfect
candidate for being used in modular static analyses: as shown in [GP09], our
domain is a functional abstraction, meaning that the transfer functions we define
abstract input/output relationships. This paper builds on this property, to design
a precise and fast modular static analysis for numerical programs.

The program of Figure 1 will be used to exemplify the basic constructs in
our modular analysis. Let us quickly sketch on this example, the behavior of the
zonotopic modular abstraction that will be detailed in the rest of the paper. Intu-
itively, affine sets abstract a program variable x by a form x̂ =

∑
i c
x
i εi+

∑
j p

x
j ηj ,

real mult(real a, real b)

{ return a*(b-2); }

compute(x ∈ [-1,1]);

real compute(real x)

{ real y1 = mult(x+1, x);

real y2 = mult(x, 2*x);

return y2-y1;

}

Fig. 1. Running example

where cxi and pxj are real coefficients that define the abstract value, εi are sym-
bolic variables with values in [−1, 1] that abstract uncertain inputs and parame-
ters, and ηj are symbolic variables with values in [−1, 1] that abstract uncertainty
on the value of x due to the analysis (i.e. to non-affine operations). The symbolic
variables εi and ηj are shared by program variables, which implicitly expresses
correlation. An affine form x̂ is thus a function of the inputs of the program: it is
a linear form of the noise symbols εi, which are directly related to these inputs.

Here, function compute is called with x̂ = ε1 (input in [-1,1]). We build
a summary for function mult after its first call (y1 = mult(x+1, x);). Using
the semantics on affine sets to abstract the body of the function, we get as
summary the ordered pair of affine sets (I,O) such that I = (ε1 + 1, ε1), O =
(−1.5− ε1 + 0.5η1), where I abstracts the calling context and O the output.

At the next call (y1 = mult(x, 2*x);), we try to see if the previous sum-
mary can be used, that is if the calling context is contained in the input I of the
summary: it is not the case as (ε1, 2ε1) ≤ (ε1 + 1, ε1) does not hold (with the
order on affine sets defined by Equation 3).

We merge the two calling contexts with the join operator of Definition 4, and
analyze again the body of the function: this gives a new (larger) summary for
function mult: I = (0.5+ε1+0.5η2, 1.5ε1+0.5η3), O = (− 1

4−
5
4ε1−η2+ 1

4η3+ 9
4η4).

Then, this new summary can be instantiated to the two calls (or any other call
with calling context contained in affine set I = (0.5 + ε1 + 0.5η2, 1.5ε1 + 0.5η3)).
Without instantiation, the output value of the summary ranges in [−5, 4.5], using
concretization of Definition 3. But the summary is a function defined over input
ε1 of the program, and over the symbols η2 and η3 that allow expressing the
inputs of function mult: we will thus get a tighter range for the output, as well
as a function of input ε1, by instantiating η2 and η3 and substituting them in
the output of the summary. For instance, for the second call of function mult,
with (ε1, 2ε1), we identify ε1 with 0.5+ε1 +0.5η2 and 2ε1 with 1.5ε1 +0.5η3, and
deduce η2 = −1 and η3 = ε1, which yields for the output 3

4 − ε1 + 9
4η4 ∈ [− 5

2 , 4].
Direct computation gives 1− 2ε1 + η4 ∈ [−2, 4], which is just slightly tighter.

We illustrate this in Figure 2: we represent on the left picture, the calling
contexts (a, b) for the two calls (I1 is first call, I2 is second call), and the zonotopic
concretization of the calling context after merge, I1tI2. On the right part of the
figure, the parabola is the exact results of the second call, ExM(I2). The dashed
zonotope is the result of the abstraction with the semantics of affine sets of the
second call, Mult(I2). The zonotope in plain lines is the output of the summary,
Mult(I1 t I2). The zonotope in dotted lines is the summary instantiated to the
second call.

I1 t I2

I1

I2

−2 −1 0 1 2

−2

−1

0

1

2

a

b

Mult(I1 t I2)

Mult(I2)

ExM(I2)

−1 −0.5 0 0.5 1

−5

−4

−3

−2

−1
0

1

2

3

4

5

ε1

Output

Fig. 2. Summary and instantiation (left is input, right output)

The performances of this modular analysis with our prototype implementation
are demonstrated in Section 5.2.

Related work and contributions. Finding efficient ways to analyze inter procedu-
ral code is a long standing problem. A first class of methods consists in analyzing
the whole control flow graph, re-analysing every procedure for each context. This
may prove to be rather inefficient, as this may impose to analyze several times the
same functions in very similar contexts. A second class considers separate analy-
ses of procedures in a context-insensitive way. The same abstract return value is
used for each call site. The advantage is that functions are only analyzed once,
but the drawback is that the results that are used at each call site of a function
may be a gross over-approximation of the correct result. This might lead to both
imprecise and even time inefficient analyses, since imprecise abstractions might
lead to lengthy imprecise least fixed point computations. Another approach is
based on call strings abstractions [SP81]: the results of different calls to the same
function are joined when the abstraction of the call stack (without considering
environments, just the string of functions called) is the same. Among the classic
abstractions of the call stack is the k-limiting abstraction, that considers equal
all patterns of calls to functions that have their last k names of functions called,
in order, equal. A way to improve on this is to use summary-based analyses. One
creates an abstract value for each procedure, that summarizes its abstract trans-
fer function, and which is instantiated for each call site. Most approaches use
tabulation-based procedure summaries, see [SP81,CC77,RHS95,SRH96]. These
tabulation-based approaches may be time and memory consuming while not
always precise.

We develop here a context sensitive, summary-based approach, that corre-
sponds to a symbolic relational separate analysis in the sense of [CC02], which
is a relational function-abstraction in the sense of [JGR05]. The main origi-
nality of our work lies in the fact that we use a particular zonotopic domain
[GP06,GP09], which abstracts functions (somewhat similarly, but in a much

more efficient way, than the classic augmentation process with the polyhedric
abstract domain [CC02]), and can thus be naturally instantiated. We will also
briefly elaborate on improvements of our method, using a dynamic partitioning
approach, as introduced in [Bou92]: one uses several summaries for a function,
controlling their number by joining the closest (in a semantic sense) ones.

As already mentioned, the subject of modular analyses is huge, we mention
here the closest work to ours. Some linear invariants are also found in a modular
way in [MOS04]. Procedure summaries are inferred, but this time by using a
backward analysis, in [GT07]. In the realm of pointer and shape analysis, which is
orthogonal to our work, numerous techniques have been tried and implemented.
See for instance [RC11,YYC08] for alias analysis, to mention but a few recent
ones. Some complementary approaches can be found for instance in [Log07] for
object-oriented features, and in [QR04] for dealing with concurrent programs.

Contents. We first state some of the basics of our zonotopic (or affine sets)
functional abstract domain in Section 2. We describe in Section 3 how we create
summaries, which associate to a given input context I, encoded as a zonotope,
a zonotope O abstracting the input/output relationship, valid for all inputs that
are included in I. We demonstrate how the input-output relationship abstracted
in our zonotopic domain makes it very convenient to retrieve precise information
on smaller contexts, through an instantiation process of the summary. We end
up by presenting benchmarks in Section 5.

2 Functional Abstraction with Zonotopes

In this section, we quickly describe the abstract domain based on affine sets
which is the basis for our modular analysis. Affine sets define an abstract do-
main for static analysis of numerical programs, based on affine arithmetic. The
geometric concretization of an abstract value of affine sets is a zonotope, but
the order we define on affine sets is stronger than the inclusion of the geomet-
ric concretization: it is equivalent to the inclusion of the zonotopes describing
the abstract value and the inputs of the program. We thus get an input/output
abstraction, which is naturally well suited for modular abstraction. The intersec-
tion, and thus the interpretation of tests, is a problematic operation: we partially
by-pass this difficulty by enhancing our affine sets with constraints on the noise
symbols [GGP10] used to define the affine sets. For a lighter presentation, the
modular analysis will be presented here on affine sets without these constraints,
but it can of course be used in the same manner with constrained affine sets.

2.1 Basics: Affine Sets and Zonotopes

Affine arithmetic is an extension of interval arithmetic on affine forms, first in-
troduced in [CS93], that takes into account affine correlations between variables.
An affine form is a formal sum over a set of noise symbols εi

x̂
def= αx0 +

n∑
i=1

αxi εi, (1)

with αxi ∈ R for all i. Each noise symbol εi stands for an independent component
of the total uncertainty on the quantity x̂, its value is unknown but bounded
in [-1,1]; the corresponding coefficient αxi is a known real value, which gives the
magnitude of that component. The same noise symbol can be shared by several
quantities, indicating correlations among them.

The semantics of affine operations is straightforward, they are exact in affine
arithmetic. Non-affine operations are linearized, and new noise symbols are in-
troduced to handle the approximation term. In our analysis, we indicate these
new noise symbols as ηj noise symbols, thus introducing two kinds of symbols
in affine forms of Equation 1: the εi noise symbols model uncertainty in data or
parameters, while the ηj noise symbols model uncertainty coming from the anal-
ysis. For instance, the multiplication of two affine forms, defined, for simplicity
of presentation, on εi only, writes

x̂ŷ = αx0α
y
0 +

n∑
i=1

(αxi α
y
0 + αyi α

x
0) εi +

 n∑
i=1

|αxi α
y
i |+

n∑
i<j

|αxi α
y
j + αxjα

y
i |

 η1.

More generally, non-affine operations are abstracted by an approximate affine
form obtained for instance by a first-order Taylor expansion, plus an approx-
imation term attached to a new noise symbol. Affine operations have linear
complexity in the number of noise symbols, whereas non-affine operations can
be defined with quadratic cost.

Example 1. Let us demonstrate the abstraction on the following program:
a = [-2,0]; b = [1,3]; x = a + b; y = -a; z = x * y;
The assignments of a and b create new noise symbols ε1, ε2: â = −1 + ε1,
b̂ = 2+ε2. Affine expressions are handled exactly, we get x̂ = 1+ε1+ε2, ŷ = 1−ε1.
The multiplication produces a new η1 symbol, we get ẑ = 0.5 + ε2 + 1.5η1. The
range of z given by ẑ is [−2, 3] while the exact range is [−2, 2.25].

In what follows, we introduce matrix notations to handle tuples of affine
forms. We note M(n, p) the space of matrices with n lines and p columns of
real coefficients. A tuple of affine forms expressing the set of values taken by p
variables over n noise symbols εi, 1 ≤ i ≤ n, can be represented by a matrix A ∈
M(n+ 1, p). Let tA denote the transpose of matrix A. We define the zonotopic
concretization of such tuples by :

Definition 1. Let a tuple of affine forms with p variables over n noise symbols,
defined by a matrix A ∈M(n+ 1, p). Its concretization is the zonotope

γ(A) =
{
tA

(
1
ε

)
| ε ∈ [−1, 1]n

}
⊆ Rp .

x

y

10 15 20 25 30
5

10

15 For instance, for n = 4 and p = 2,
the gray zonotope is the con-
cretization of the affine set (x̂, ŷ),
with x̂ = 20 − 4ε1 + 2ε3 + 3ε4,
ŷ = 10 − 2ε1 + ε2 − ε4, and
tA =

(
20 −4 0 2 3
10 −2 1 0 −1

)
.

Now, we saw in the Definition of non-linear arithmetic operations, that our
affine forms are defined over two kind of noise symbols, the εi and ηj . We thus
define affine sets as Minkowski sums of a central zonotope, γ(CX) and of a per-
turbation zonotope centered on 0, γ(PX). Central zonotopes depend on central
noise symbols εi, that represent the uncertainty on input values to the program,
with which we want to keep as many relations as possible. Perturbation zono-
topes depend on perturbation symbols ηj which are created along the interpre-
tation of the program and represent the uncertainty of values due to operations
that are not interpreted exactly: for instance the control-flow abstraction while
computing the join of two abstract values, or non-affine arithmetic operations.

Definition 2. We define an affine set by the pair of matrices
X = (CX , PX) ∈M(n+ 1, p)×M(m, p).
The affine form Xk = cX0k +

∑n
i=1 c

X
ikεi +

∑m
j=1 p

X
jkηj describes its kth variable.

2.2 Geometric and Functional Orders

Definition 3. Let X = (CX , PX) be an affine set in M(n + 1, p) ×M(m, p).
Its concretization in P(Rp) is

γ(X) =
{
tCX

(
1
ε

)
+ tPXη | (ε, η) ∈ [−1, 1]n+m

}
.

If we were only interested in abstractions of current values of variables, the
partial order to consider would be the subset inclusion of their concretization,
as formalized in Definition 3. But we are interested in abstracting input/output
relations, this will be instrumental in our modular analysis.

Let X be a set of functions of the form x : Rq → Rp. We write x1, . . . , xp its p
components. Our goal is to abstract the input/output relationship of functions in
X using an affine set X, i.e. to automatically determine an over-approximation X
of the set of values that e1, . . . , eq, x1, . . . , xp can take, conjointly, where e1, . . . , eq
are slack variables representing the initial values of the q input variables of
functions x ∈ X : to one particular run of the program, corresponds exactly one
fixed tuple of values e1, . . . , eq. This fits in the relational function-abstraction of
[JGR05]. Let γ(X̃) be such an augmented zonotope, X̃ ∈M(r, p+ q), where the
set of symbols is decomposed in r = n+m symbols ε1, . . . , εn, the central noise
symbols, and η1, . . . , ηm, the perturbation symbols, as introduced in Definition
2. From now on, we will consider the augmented affine set X̃:

X̃ =
(
E CX

0 PX

)
(2)

where E ∈ M(n + 1, q) is the affine set describing the inputs to the functions
in X . The concretization γf of such augmented affine sets in terms of sets of
functions from Rq to Rp is as follows:

γf (X̃) =

f : Rq → Rp |
∀ε ∈ [−1, 1]n,∃η ∈ [−1, 1]m,

f(tE
(

1
ε

)
) = tCX

(
1
ε

)
+ tPXη


The (partial) order relation on augmented affine sets X̃, Ỹ , is given by: X̃ ≤f Ỹ
if γf (X̃) ⊆ γf (Ỹ), which in turn is equivalent to γ(X̃) ⊆ γ(Ỹ), hence correctness
of our functional abstraction is given naturally as for any concretization-based
abstract interpretation [CC92]: X̃ is a correct abstraction of a set X of functions
if X ⊆ γf (X̃). Then, similarly for the interpretation of an abstraction F of a
function F on augmented affine sets: ∀X ∈ Rn+p, F(X) ⊆ γ(F (X̃)).

Now, the order relation on augmented affine sets can be reformulated in
terms of the current parameterization of abstract values for variables x1, . . . , xp,
without having to consider the extra n variables e1, . . . , en: let X and Y be two
affine sets. We say that X ≤ Y iff for all t ∈ Rp,

‖(CY − CX)t‖1 ≤ ‖PY t‖1 − ‖PXt‖1 . (3)

This functional (pre-)order ≤ always implies ≤f , and is equivalent in most in-
teresting situations, for instance when matrix E of equation 2, without its first
line, is invertible: this covers in particular the case when the inputs are given in
intervals and have unknown dependency. We do not prove this property here as
this is not central to the rest of the paper, some hints about it can be found in
[GP09].

Example 2. Take X : (X1 = ε1, X2 = ε2) and Y : (Y1 = ε2, Y2 = ε1). We have
γ(X) = γ(Y) = [−1, 1]2. But X and Y are incomparable for the functional
ordering of Equation 3. Indeed, X and Y represent two very different functions
from the inputs (ε1, ε2) to the values of the variables (x1, x2).

2.3 Join Operation

In general, there exists no least upper bound for affine sets. We define a join
operator over affine sets which gives a minimal upper bound in some cases, can
always be computed efficiently, and presents some nice properties: for instance,
the range of the joined value on each variable is equal to the union of the interval
ranges on the variable. We refer the reader to [GP09] for details.

Let us first introduce some notations. For two real numbers α and β, let α∧β
denote their minimum and α ∨ β their maximum. We define

argmin|.|(α, β) = γ such that γ ∈ [α ∧ β, α ∨ β] and |γ| is minimal

Let x and y be two intervals. We say that x and y are in generic positions if,
whenever x ⊆ y, inf x = inf y or sup x = sup y. And for an interval x, we note
mid(x) its center.

Definition 4. Let two affine sets X and Y where (CX , PX) and (CY , PY) are
in M(n + 1, p) ×M(m, p), we define Z = X t Y such that for all k, l ∈ [1, p],
i ∈ [1, n], j ∈ [1,m]:
If γ(Xk) and γ(Yk) are in generic position:

cZ0,k = mid (γ(Xk) ∪ γ(Yk))

cZi,k = argmin|.|(c
X
i,k, c

Y
i,k), pZj,k = argmin|.|(p

X
j,k, p

Y
j,k)

pZm+k,k = sup(γ(Xk) ∪ γ(Yk))− cZ0,k −

 n∑
i=1

| cZi,k | +
m∑
j=1

| pZj,k |



Else: cZ0,k =
cX0,k + cY0,k

2
, cZi,k =

cXi,k + cYi,k
2

, pZj,k =
pXj,k + pYj,k

2

pZm+k,k =
1
2

n∑
i=0

∣∣cYi,k − cXi,k∣∣+
1
2

m∑
j=1

∣∣pYj,k − pXj,k∣∣
And in both cases: pZm+l,k = 0 for l 6= k

Intuitively, by using the argmin operator, this join operator keeps the depen-
dencies to the inputs that are common to both form joined.

We then have the following result (whose second item is proved in [GP09]):

Lemma 1. Z = X t Y is an upper bound of X and Y such that:

– for all k ∈ [1, p], Zk is a minimal upper bound of Xk and Yk
– if Xk and Yk are in generic positions, then k ∈ [1, p], γ(Zk) = γ(Xk)∪γ(Yk)

where ∪ is here the union in the lattice of intervals.

Example 3. Take X : (X1 = 1 + ε1, X2 = ε1) and Y : (Y1 = 2ε1, Y2 = ε1). We
have γ(X1) = [0, 2], γ(Y1) = [−2, 2], so that X1 and Y1 are in generic positions.
Then Z = X ∪ Y : (Z1 = ε1 + η1, Z2 = ε1) is a minimal upper bound of X, Y .

3 Affine Sets Summary and Specialization

We will now define function summaries as pairs (I,O) of input and output zono-
topes, I and O being defined as introduced in Section 2. These zonotopes I and
O are parametrized by the same central noise symbols ε1, . . . , εn representing
the inputs of the program, and thus each represent a function of these inputs.
But the pair also represents functions from γ(I) to γ(O), and we will introduce
a new functional concretization γf (I,O) that extends the γf of Section 2.

Pairs (I,O) abstract sets of functions from γ(I) to γ(O), deduced from I and
O seen as sets of functions of the inputs of the program (the noise symbols εi),
and of uncertainties introduced by the analysis (the noise symbols ηj). Indeed,
as O represents some computation on entries I, O contains the perturbation
symbols of I: say η1, . . . , ηm1 for I, ηm1+1, . . . , ηm for the symbols only appearing

in O. More formally, the concretization of a pair (I,O) of input and output
zonotopes, in terms of functions F from γ(I) to γ(O), is as follows:

γf (I,O) =

F : γ(I)→ γ(O) | ∀ε1, . . . , εn, η1, . . . , ηm1

∃ηm1+1, . . . , ηm with (ε, η) ∈ [−1, 1]n+m

and F (tIt(1, ε, η1, . . . , ηm1)) = tOt(1, ε, η)


As outputs are defined over these same noise symbols, the summaries can be

instantiated to a given calling context, by substituting some of these perturbation
noise symbols by their expression for the particular calling context.

Consider a current calling context C, and a current function summary Sf =
(I,O) for f , the interpretation of the function call f(C) in our inter-procedural
analysis is given in Algorithm 1. Its different steps are detailed in the sections
that follow.

Algorithm 1 Interpretation of function call f(C), given calling context C, and
function summary Sf = (I,O)

if !(C ≤ I) // test if calling context C matches summary input I then
I ← I t C // join calling context and summary input (Definition 4)
Sf ← (I, [[f]](I)) // new summary creation (Section 3.2)

end if
return [[I == C]]O // summary instantiation (Section 3.3)

3.1 Program Syntax and Semantics

Programs Prog we are considering in what follows are sets of functions f ∈ Prog,
acting on an environment made up of variables Vf local to function f , and global
variables G. We suppose that the Vf , f ∈ Prog, and G, form a partition of the set
of program variables V. There is a unique data type: the real numbers. Function
definitions are as follows:

funct = function f(v1, . . . , vp) {
instr; return r } v1, . . . , vp ∈ Vf , r ∈ Vf

Function calls f(expr1, . . . , exprp), where expr1 to exprp are p expressions, have
the call by value semantics: their evaluation correspond to computing the value
of each expression expr1 to exprp in that order, and assigning each local vari-
able vi with the corresponding value of expri (i = 1, . . . , p) in the environment
of the call. The body of the functions is standard, it is made of a classic set of in-
structions instr for imperative languages: assignment of expressions to variables,
tests, loops. The return at the end of the definition of f just returns the value
of one of the local variables, r, of f , to the caller. We consider global variables as
part of the calling context and output of functions. A function f is thus defined
from Rp to Rq, for some q ≤ card(G) + 1.

We suppose given a set of control points attached to instructions of our lan-
guage, including (callif) just before executing the ith call to f : f(expr, . . . , expr)
in an expression, and (returnif), right after the ith call to function f has returned
the flow of execution to the calling expression.

The concrete collecting semantics is given in terms of concrete environments
e ∈ Env = V → R, and a semantics function, partitioned over the control points
d ∈ D, [[instr]]c : Env → Env, such that [[E]]dce (E ∈ instr, e ∈ Env) gives
the change of concrete environment when interpreting instruction E in context
e, at control point d. The concrete collecting semantics [[P]]ce, partitioned over
d ∈ D as [[P]]dce, of a program P , is obtained as the least solution in ℘(Env)
(with subset ordering), over some set of initial environments e ∈ ℘(Env), of the
semantic equations given by [[E]]dc lifted from Env to ℘(Env), at each control
point of P .

For the abstract collecting semantics, we use the abstract domain of affine
sets Z for all instructions, except for calls to functions. In order to define a
modular static analysis, we suppose now abstract environments in Enva are
made of bindings of variables to affine sets, as well as bindings of function names
to summaries, i.e. pairs of affine sets: Enva = Z × (Prog → Z ×Z). We call
[[instr]]da : Enva → Enva the corresponding semantics functions (forward ab-
stract transformers). The correctness of the abstract semantics with respect to
the concrete one is formalized as follows. For all initial possible sets of environ-
ments e ∈ ℘(Env), we form e] = (e]V ,⊥) where e]V is any abstract environment
in Z, dealing only with program variables, such that e ∈ γ(e]V), and ⊥ in the
second component of e] means that for all functions f of Prog, we start in an
environment where we do not have any summary of f , then we must have, for
all control points d ∈ D:

[[P]]dce ⊆ γ
(
π1([[P]]dae

])
)

(4)

where π1 : Enva → Z is the projection on the first component of environments.

3.2 Summary Creation

The operations involved, order≤ and join, have already been described in Section
2. Let us just here consider Example 1. Function compute is called with x ∈
[−1, 1], which can be abstracted by x = ε1. The first call to function mult is
then interpreted in Algorithm 1 as a new summary creation, since the current
summary for mult is ⊥. We thus interpret mult with arguments a1 = 1 + ε1
and b1 = ε1. Multiplication a1 × (b1 − 2) in the abstract domain of affine sets
produces a1× (b1− 2) = −1.5− ε1 + 0.5η1, where η1 is a new noise symbol with
values in [−1, 1]. The abstract environment at the end of this first call to mult
contains the entry, for mult (I = (a1 = 1 + ε1, b1 = ε1), O = −1.5− ε1 + 0.5η1).

3.3 Summary Instantiation

The instantiation of a summary for a given calling context resembles the meet
operation on constrained affine sets [GGP10]: indeed, it consists in adding con-

straints on noise symbols that correspond to component-wise equality of affine
forms. Still, it does not require the formalism of constrained affine sets as we do
not abstract constraints, they are immediately used to substitute in the summary
the noise symbols introduced by the join operation due to merging contexts, by
the affine expression of the other noise symbols.

The instantiation operator is thus a function that takes a summary (I,O),
an input affine set C such that C ≤ I and returns Z = [[I == C]]O. We form
the following matrix U , given I = (CI , P I) and C = (CC , PC) two affine sets
with (CI , P I), (CC , PC) ∈M(n+ 1, p)×M(m, p):

U =

 pIm,1 − pCm,1 . . . pI1,1 − pC1,1 cIn,1 − cCn,1 . . . cC0,1 − cC0,1
. . .

pIm,p − pCm,p . . . pI1,p − pC1,p cIn,p − cCn,p . . . cC0,p − cC0,p


Performing Gauss elimination [Bee06], on U we obtain the row-echelon form
for U : U ′ = t(U1|U2) where U1 ∈ M(n + m + 1, r) and U2 ∈ M(n + m +
1, p − r) with r = min(m, p) and U1 and U2 upper triangular. Matrix U1 en-
codes the fact that we must have, when “interpreting” I == C, relations of the
form ηk1 = R1(ηk1−1, . . . , η1, εn, . . . , ε1), ηk2 = R2(ηk2−1, . . . , η1, εn, . . . , ε1), . . .,
ηkr = Rr(ηkr−1, . . . , η1, εn, . . . , ε1), with k1 > k2 > . . . kr.

The principle of the instantiation operator defined below is, first, to interpret
the relation U t(ηm, . . . , η1, εn, . . . , ε1) = 0 as constraints on the values taken by
noise symbols, and to use the r relations R1, . . . , Rkr

to eliminate the pertur-
bation symbols that have been introduced the most recently in the summary
output O of function f , ηk1 , . . . , ηkr :

Definition 5. Let I = (CI , P I), C = (CC , PC) and O = (CO, PO) be three
affine sets with (CI , P I), (CC , PC) ∈ M(n + 1, p) ×M(m, p) and (CO, PO) ∈
M(n + 1, q) ×M(m, q) (by convention, m is the total number of perturbation
noise symbols, some lines in P I , PC and PO may contain only zeros). In Z =
[[I == C]]O, the (CZ , PZ) are defined by substituting in (CO, PO) the values of
ηk1 to ηkr

given by R1(ηk1−1, . . . , η1, εn, . . . , ε1) to Rkr
(ηkr−1, . . . , η1, εn, . . . , ε1)

respectively, in terms of the ηj of lower indices, and of the εj.

In practice, there is actually no need to first perform the Gauss elimination
on U : constraints I == C are of such a particular form that it is enough (and this
is what is implemented and tested in this article) to substitute in (CO, PO), in
order to obtain (CZ , PZ), only the relations in U that are already in row-echelon
form.

Note that when a function contains only operations that are affine with re-
spect to the calling context (no join operation), the instantiation of the summary
to a particular context gives the same result as would do the direct abstraction
of the function in that context. When non-affine operations are involved, such as
in the running example, we will see that the instantiation also gives tight results.

Let us consider the second call to function mult in our running example, with
a2 = ε1 and b2 = 2ε1. This calling context is not included in the previous one,
so in Algorithm 1 we need first to merge the current summary input context I

with the current call context, giving (a3, b3) = (a2, b2) t (a1, b1) = (0.5 + ε1 +
0.5η2, 1.5ε1+0.5η3) (note that we are in the non-generic case of Definition 4). The
zonotopic concretizations of the two calling contexts, and of the merged value
giving the input context of the summary, are represented on the left picture of
Figure 2 (and respectively named I1, I2 and I1 t I2).

The result of the multiplication for the merged context is then a3×(b3−2) =
− 1

4 −
5
4ε1 − η2 + 1

4η3 + 9
4η4 ∈ [−5, 9

2], so we create the new summary for mult:
(I = (a3 = 0.5 + ε1 + 0.5η2, b3 = 1.5ε1 + 0.5η3), O = − 1

4 −
5
4ε1− η2 + 1

4η3 + 9
4η4).

This is the zonotope (parallelepiped, here), represented in plain lines on the right
picture of Figure 2.

Let us now instantiate this summary for the second call (last part of Algo-
rithm 1), when a = ε1 = 0.5 + ε1 + 0.5η2 and b = 2ε1 = 1.5ε1 + 0.5η3: we
deduce by elimination η2 = −1 and η3 = ε1. Instantiating the summary with
these values of η2 and η3 yields a3 × (b3 − 2) = 3

4 − ε1 + 9
4η4 ∈ [− 5

2 , 4]. While
direct computation a2 × (b2 − 2) = 1− 2ε1 + η4 ∈ [−2, 4], which is just slightly
tighter. The instantiated and directly computed zonotopes are also represented
on the right picture of Figure 2, respectively in dotted and dashed lines.

3.4 Correctness and Complexity

The correctness of instantiation comes from the fact that, writing F|γ(C) for the
restriction of a function F : γ(I) → γ(O) ∈ γf (I,O) (remember that C ≤ I,
hence γ(C) ⊆ γ(I)), first, F (γ(C)) ⊆ γ(Z) and

{F|γ(C) : γ(C)→ γ(Z)|F ∈ γf (I,O)} ⊆ γf (C,Z) (5)

The last statement meaning that (C,Z) is a correct summary for restrictions of
functions F summarized by the more general summary (I,O).

We can conclude from this that Algorithm 1 is correct in the sense of Equation
4. This is done by showing inductively on the semantics that, for any program
P , and for any concrete environment e and abstract environment e] such as in
the premises of Equation 4,

{F |∀x ∈ [[P]]
(callig)
c e, F (x) = [[g]]

(returni
g)

c x} ⊆ γf
(
π2

(
[[P]]

(returni
g)

a e]
)

(g)
)

(6)

[[P]]
(callig)
c e ⊆ γ

(
π1

(
[[P]]

(callig)
a e]

))
(7)

In Equation 6, π2 : (Enva = Z × (Prog → Z × Z)) → (Prog → Z × Z), ex-
tracts the part of the abstract semantics which accounts for the representation
of summaries. The fact that Equation 6 is true comes from the fact that sum-
mary instantiations compute correct over-approximations of concrete functions
on the calling contexts, see Equation 5. The fact that Equation 7 is true comes
from the fact that in Algorithm 1 we join the calling context with the current
summary context as soon as it is not included in it, so we safely over-approximate
all calling contexts in the abstract fixed-point.

Without the inclusion test, the complexity of Algorithm 1 and of (the simpler
version of) summary instantiation is O(q × nb noise), where q is the number of
arguments of the called function and nb noise is the number of noise symbols
involved in the affine form of the calling context. The main contribution to the
complexity comes from the (particularized) Gauss elimination in the substitu-
tion. The inclusion test is by default exponential in the number of noise symbols.
However, simpler O(q × nb noise) versions can be used as a necessary condition
for inclusion, and in many cases the full test can be avoided, see [GP09]. Also,
the use of a modular abstraction as proposed here helps to keep the number of
noise symbols quite low.

4 Summary Creation Strategies

In order to control the loss of accuracy due to summarizing, it is natural to use
several (a bounded number n of) summaries instead of a unique one. We present
here a method inspired from tabulation-based procedure summaries [SP81] and
dynamic partitioning [Bou92].

We consider a function call f(C), when k summaries (Ij , Oj), j = 1, . . . , k
exist for function f . Either C is included in one of the inputs Ij , and the call
reduces to instantiating Oj and thus returning [[Ij == C]]Oj . Or else, we dis-
tinguish two cases. If the maximal number n of pairs (Ij , Oj) is not reached, we
add a new summary (C, [[f]](C)). And if it is reached, we take the closest calling
context Ij to C (such that the cost c(C, Ij) is minimal) and replace in the table
of summaries, (Ij , Oj) by the new summary (Ij t C, [[f]](Ij t C)).

For instance, the cost function c could be chosen as follows: let (el)1≤l≤p be
the canonical basis of Rp,

c(X,Y) =
p∑
l=1

(
‖(CY − CX)el‖1− | ‖PY el‖1 − ‖PXel‖1 |

)
.

By definition of the order relation 3, if X ≤ Y or Y ≤ X then c(X,Y) ≤ 0. This
function, which defines a heuristic to create or not new summaries, expresses a
cost function on the component-wise concretizations of the affine sets X and Y .
And it can be computed more efficiently (in O(p(n+m)) operations, where p is
the number of variables and n+m the number of noise symbols) than if we used
a stronger condition linked to the order on the concretizations of these affine
sets.

5 Examples

We have implemented the zonotopic summarizing in a small analyzer of C pro-
grams. The part dedicated to zonotopes and summarizing represents about
7000 lines of C++ code. We present experiments showing the good behavior
in time and accuracy of summaries, then some results on realistic examples. The
examples are available on http://www.lix.polytechnique.fr/Labo/Sylvie.
Putot/benchs.html.

5.1 Performance of the Modular Analysis

To evaluate the performance of the summarizing process, we slightly transform
the running example of Figure 1, so that mult is called with different calling
contexts (Figure 5.1 below). We analyze it with different numbers n of noise
symbols for input x. Note that even though the interval abstraction for x is
always [−1, 1], the relational information between the arguments of mult evolves.

We now compare the summary-based modular analysis to the classic zono-
topic iterations when n evolves (see Figure 5.1). We see the much better per-
formance of the modular analysis when the instantiation succeeds: it is linear in
the number n of noise symbols, whereas the non-modular one is quadratic, be-
cause of the multiplication. This is of course a toy example, where increasing the
number of noise symbols brings no additional information. But in the analysis
of large programs, which is the context where modularity makes the more sense,
we will often encounter this kind of situation, with possibly many noise symbols
if we want a fine abstraction of correlations and functional behavior (sensitiv-
ity to inputs and parameters). This complexity gain is thus crucial. Note that
the results for the modular analysis are still very accurate: we obtain, for y1,
[−6.5, 2.5], to be compared to [−3, 0] with the non-modular analysis, and for y2,
[−4, 4], to be compared to [−2, 4].

int N = 100, i;

int main(...)

{ double x ∈ [−1, 1];
double y1, y2;

for (i=0; i<N; i++)

{ y1 = mult(x+1,x);

y2 = mult(x, 2*x);

x /= 2;

}
}

Fig. 3. Number of operations in the analysis, function of the number of symbols

5.2 Application of Summarizing on Benchmarks

We consider the following set of simple benchmarks: img filter is a simple filter
that performs edge detection on a small image composed of 20 pixels. The algo-
rithm uses iterative filtering that calls a blur filter followed by 6 calls to a Sobel
filter. The application thus filters 40 different descriptions of the initial pixels.

sincos computes an approximation of the sin and the cos functions with dif-
ferent order 5 polynomials, depending on the range of the inputs. The application

makes 64 different calls to the function computing the results. At the end of each
call, we formally verify that sin2 + cos2−1 remains in small ranges.

order2 filter is a linear filter of order two: S = a ∗ E + b ∗ E0 + c ∗ E1 + d ∗
S0 + e ∗ S1. The formal parameters of the function are a close to 0.7, b close to
−1.3, c close to 1.1, d close to 1.4 and e close to −0.7; inputs E are independent,
within [−1, 1]. Close to means that the value of these coefficients is only known
to be in a range of width 2% of their value. The filter is called 8 times.

The results are shown in Table 1. Even on a rather small number of function
calls, we have a significant time gain (at least 5 times as fast as the non-modular
analysis) without losing too much precision (worst case being around 2).

example img filter sincos filter

Characteristics #lines of C/#vars 194/135 208/135 96/19

Non-modular analysis time (s) 11.8 3.84 49
average interval [0.056, 0.067] [−0.026, 0.026] [−1.24, 2.99]

Modular analysis time(s) 1.7 0.79 10
instantiations 18/20 63/65 6/8

average interval [0.056, 0.067] [−0.058, 0.058] [−1.58, 3.33]

Comparison time gain 6.9 4.9 4.9
precision loss 1 2.23 1.27

Table 1. Comparison of modular and non-modular analyses

Our aim is of course to apply this modular analysis to real industrial control
software for numerical validation. The applications we target are large reactive
systems. Most of the source code for these applications is generated automat-
ically from high-level synchronous data-flow specifications written in SCADE
or SIMULINK. These languages allow programming the control software in a
highly hierarchical way, with many calls to different levels of blocks. The struc-
ture of the C source generated in such a way is one main function that calls
many numerical blocks, generally iterating on a large number of cycles.

We report here on a partially manual, partially automated simulation of our
method to a real industrial test case, part of a control command software used
in the aeronautics industry. This program is about 37500 lines of C, consisting
of an infinite loop. The core of the loop first updates the inputs with the sensors’
data and then calls a function composed of eight different blocks. We unroll this
loop 6 times here, after which the ranges are stable. The program has about 20
input variables, more than 500 sensor variables, more than 10000 constant and
local variables, and about 30 output variables. The automated part was done
on an interactive version of FLUCTUAT [DGP+09], but we manually simulated
the instantiation and call mechanisms. We did not use our standalone prototype
here since the code contained features (in particular arrays), that are not treated
in the prototype we specifically developed for this article.

A summary is built for the whole function in the loop, and it is reused or
updated if necessary by the next iterations. The input summary has 70 vari-
ables, the output summary has 90. The analysis takes about 10 minutes for each
cycle / function call on a standard Linux desktop. The summary applications
is immediate (less than 1 second), and only one summary creation is needed
here. For the 6 iterations, the analysis takes 60 minutes without summaries, and
10 minutes with summaries. The time gain may be less impressive than on the
smaller examples, but it depends on the structure of the program, and this one
is not especially modular. Also, if more loop iterations were needed (thus more
function calls), the gain would of course have been higher. The final results are
similar with and without summaries; only some partial results are less precise
with summaries, but the loss of accuracy is always within 20%.

6 Conclusion and Future Work

We showed in this paper that zonotopic abstractions are particularly well suited
as a basis for modular static analysis, by the fact that they form a natural
parameterization of input-output relationships between program variables. The
algorithm we presented and tested is both simple and efficient. Future work
includes the proper testing and improvement of the dynamic partitioning exten-
sion to our algorithm (Section 4) and the combination of this numerical modular
abstract interpretation together with modular alias analyses. One possibility is
to use recent work on shape analysis [RC11], that eases such combinations.

Acknowledgement

This work was funded by CEA Carnot program and ANR projects ASOPT and
DEFIS (grants ANR 2008 SEGI 023 02 and ANR 2011 INS 008 05).

References

[Bee06] R. Beezer. A First Course in Linear Algebra. available at http://linear.

ups.edu/online.html, 2006.
[Bou92] F. Bourdoncle. Abstract interpretation by dynamic partitioning. J. Funct.

Program., 2(4):407–423, 1992.
[CC77] P. Cousot and R. Cousot. Static determination of dynamic properties of re-

cursive procedures. In Formal Description of Programming Concepts, pages
237–277. North-Holland, 1977.

[CC92] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of
Logic and Computation, 2(4):511–547, August 1992.

[CC02] P. Cousot and R. Cousot. Modular static program analysis, invited paper.
In CC’02, LNCS 2304, pages 159–178, Grenoble, France, April 6-14 2002.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL’78, pages 84–96. ACM, 1978.

[CS93] J. L. D. Comba and J. Stolfi. Affine arithmetic and its applications to
computer graphics. SIBGRAPI’93, 1993.

[DGP+09] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine.
Towards an industrial use of FLUCTUAT on safety-critical avionics soft-
ware. In FMICS’09, LNCS 5825, pages 53–69, 2009.

[GGP09] K. Ghorbal, E. Goubault, and S. Putot. The zonotope abstract domain
taylor1+. In CAV’09, Grenoble, France, 2009.

[GGP10] K. Ghorbal, E. Goubault, and S. Putot. A logical product approach to
zonotope intersection. In CAV’10, LNCS 6174, pages 212–226, 2010.

[GP06] E. Goubault and S. Putot. Static analysis of numerical algorithms. In
SAS’06, LNCS 4134, pages 18–34, 2006.

[GP09] E. Goubault and S. Putot. A zonotopic framework for functional abstrac-
tions. CoRR, abs/0910.1763, 2009.

[GP11] E. Goubault and S. Putot. Static analysis of finite precision computations.
In VMCAI’11, LNCS 6530, pages 232–247, 2011.

[GT07] S. Gulwani and A. Tiwari. Computing procedure summaries for interproce-
dural analysis. In ESOP’07, volume 4421 of LNCS, pages 253–267, 2007.

[JGR05] B. Jeannet, D. Gopan, and T. Reps. A relational abstraction for functions.
In Int. Workshop on Numerical and Symbolic Abstract Domains, 2005.

[Log07] F. Logozzo. Cibai: An abstract interpretation-based static analyzer for mod-
ular analysis and verification of java classes. In VMCAI’07, 2007.

[Min01] A. Miné. A new numerical abstract domain based on difference-bound ma-
trices. In Symposium on Programs as Data Objects, LNCS 2053, 2001.

[MOS04] M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear
algebra. In POPL’04, pages 330–341. ACM, 2004.

[QR04] S. Qadeer and S. K. Rajamani. Summarizing procedures in concurrent
programs. In POPL’04, pages 245–255. ACM Press, 2004.

[RC11] X. Rival and Bor-Yuh E. Chang. Calling context abstraction with shapes.
In POPL, pages 173–186. ACM Press, 2011.

[RHS95] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In POPL’95, pages 49–61. ACM, 1995.

[SP81] M. Sharir and A. Pnueli. Two approaches to interprocedural data-flow anal-
ysis. In Program Flow Analysis: Theory and Applications, 1981.

[SRH96] S. Sagiv, T. W. Reps, and S. Horwitz. Precise interprocedural dataflow
analysis with applications to constant propagation. TCS, 167:131–170, 1996.

[SSM05] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable analysis of lin-
ear systems using mathematical programming. In VMCAI’05, LNCS 3385,
pages 25–41, 2005.

[YYC08] G. Yorsh, E. Yahav, and S. Chandra. Generating precise and concise pro-
cedure summaries. In POPL ’08, pages 221–234. ACM, 2008.

