Skip to main content

Depth from Vergence and Active Calibration for Humanoid Robots

  • Conference paper
Book cover Advanced Concepts for Intelligent Vision Systems (ACIVS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7517))

  • 1407 Accesses

Abstract

In human eyes, many clues are used to perceive depth. For nearby tasks involving eye-hand coordination, depth from vergence is a strong cue. In our research on humanoid robots we study binocular robotic eyes that can pan and tilt and perceive depth from stereo, as well as depth from vergence by fixing both eyes on a nearby object. In this paper, we report on a convergent robot vision set-up: Firstly, we describe the mathematical model for convergent vision system. Secondly, we introduce an algorithm to estimate the depth of an object under focus. Thirdly, as the centers of rotation of the eye motors do not align with the center of image planes, we develop an active calibration algorithm to overcome this problem. Finally, we examine the factors that have impact on the depth error. The results of experiments and tests show the good performance of our system and provide insight into depth from vergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandera, C., Scott, P.D.: Foveal Machine Vision System. In: IEEE International Conference on System, Man and Cybernetics, USA, vol. 2, pp. 596–599 (1989)

    Google Scholar 

  2. Hansard, M., Horaud, R.: Cyclorotation Models for Eyes and Cameras. IEEE Transactions on Systems, Man, and Cybernetics 40(1), 151–161 (2010)

    Article  Google Scholar 

  3. Wodnicki, R., Roberts, G.W., Levine, M.D.: A foveated image sensor in standard CMOS technology. In: Proceedings of the IEEE Custom Integrated Circuits Conference, USA, pp. 357–360 (1995)

    Google Scholar 

  4. Wang, Z., Member, S., Bovik, A.C.: Embedded Foveation Image Coding. IEEE Transactions on Image Processing 10, 1397–1410 (2000)

    Google Scholar 

  5. Weber, C., Triesch, J.: Implementations and Implications of Foveated Vision. Recent Patents on Computer Science 2(1), 75–85 (2009)

    Article  Google Scholar 

  6. Bernardino, A., Santos-Victor, J.: A Binocular Stereo Algorithm for Log-Polar Foveated Systems. In: Bülthoff, H.H., Lee, S.-W., Poggio, T., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 127–136. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Ude, A., Gaskett, C., Cheng, G.: Foveated Vision Systems with two Cameras per Eye. In: International Conference on Robotics and Automation, FL, pp. 3457–3462 (2006)

    Google Scholar 

  8. Olson, T.J., Coombs, D.J.: Coombs: Real-Time Vergence Control for Binocular Robots. International Journal of Computer Vision 7(1), 67–89 (1991)

    Article  Google Scholar 

  9. Gould, S., Arfvidsson, J., Kaehler, A., Sapp, B., Messner, M., Bradski, G., Baumstarck, P., Chung, S., Ng, A.Y.: Peripheral-foveal vision for real-time object recognition and tracking in video. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, USA, pp. 2115–2121 (2007)

    Google Scholar 

  10. Björkman, M., Eklundh, J.-O.: Foveated Figure-Ground Segmentation and Its Role in Recognition. In: British Machine Vision Conference, pp. 57–88 (2005)

    Google Scholar 

  11. Sahabi, H., Basu, A.: Analysis of Error in Depth Perception with Vergence and Spatially Varing Sensing. Computer Vision and Image Understanding 63(3), 447–461 (1996)

    Article  Google Scholar 

  12. Scharstein, D., Szeliski, R.: A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms 47(1-3), 7–42 (2002)

    Google Scholar 

  13. Li, M.: Kinematic calibration of an active head-eye system. IEEE Transactions on Robotics and Automation 14(1), 153–158 (1998)

    Article  Google Scholar 

  14. Fusiello, A., Trucco, E., Verri, A.: A compact algorithm for rectification of stereo pairs. Machine Vision and Applications 12(1), 16–22 (2000)

    Article  Google Scholar 

  15. Trucco, E., Verri, A.: Introduction Techniques for 3-D Computer Vision. Prentice Hall, Upper Saddle River (1998)

    Google Scholar 

  16. Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11), 1330–1334 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, X., Lenseigne, B., Jonker, P. (2012). Depth from Vergence and Active Calibration for Humanoid Robots. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P., Zemčík, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2012. Lecture Notes in Computer Science, vol 7517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33140-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33140-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33139-8

  • Online ISBN: 978-3-642-33140-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics