Fundamentals of Business Process Management

Marlon Dumas • Marcello La Rosa • Jan Mendling • Hajo A. Reijers

Fundamentals of Business Process Management

Marlon Dumas Institute of Computer Science University of Tartu Tartu, Estonia

Marcello La Rosa Queensland University of Technology and NICTA Brisbane, Australia Jan Mendling
Institute for Information Business
Vienna University of Economics
and Business
Vienna, Austria

Hajo A. Reijers
Department of Mathematics
and Computer Science
Eindhoven University of Technology
Eindhoven, The Netherlands

ISBN 978-3-642-33142-8 ISBN 978-3-642-33143-5 (eBook) DOI 10.1007/978-3-642-33143-5 Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013932467

ACM Computing Classification (1998): J.1, H.4, H.3.5, D.2

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Cover illustration: M.C. Escher's "Drawing Hands" © 2012 The M.C. Escher Company-Holland. All rights reserved. www.mcescher.com

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To Inga and Maia—Marlon To Chiara and Lorenzo—Marcello To Stefanie—Jan To Maddy, Timon and Mayu—Hajo

Foreword

Business processes represent a core asset of corporations. They have direct impact on the attractiveness of products and services as perceived by the market. They determine tasks, jobs and responsibilities and by this, shape the work of every employee. Processes integrate systems, data, and resources within and across organizations and any failure can bring corporate life to a standstill. Processes determine the potential of an organization to adapt to new circumstances and to comply with a fast growing number of legislative requirements. Processes influence the revenue potential as much as they shape the cost profile of an organization.

However, unlike other corporate assets such as products, services, workforce, brand, physical or monetary assets, the significance of business processes had not been appreciated for a long period. Despite the fact that processes are the lifeblood of an organization, they did not develop the status of a primary citizen in boardroom discussions and managerial decision-making processes.

Only the growing demands for globalization, integration, standardization, innovation, agility and operational efficiency, and the related challenge of finding further variables in the corporate ecosystem that can be optimized, have finally increased the appetite for reflecting on and ultimately improving business processes.

In response, over the last two decades a comprehensive set of tools, techniques, methods and entire methodologies has been developed providing support for all stages of the business process lifecycle. Relevant contributions have been made by diverse disciplines such as Industrial Engineering, Operations Management, Quality Management, Human Capital Management, corporate governance, conceptual modeling, workflow management and system engineering.

Business Process Management (BPM) is the discipline that now faces the difficult, but rewarding task of consolidating and integrating the plethora of these approaches.

This book is the first and most up-to-date contribution that faces and masters this challenge. It succinctly captures the current status of BPM and brings meaningful order and consistency into approaches that often have been developed, discussed and deployed in isolation.

viii Foreword

"Fundamentals of Business Process Management" derives its merits from its firm foundation in the latest applied BPM research. Relying on scientifically sound practices means capitalizing on evidence rather than depending on confidence. This clearly differentiates this much needed publication from many of its predecessors. In particular, it gives BPM the credibility that a still young and growing discipline requires.

The book itself is also a compelling showcase for the importance of a new class of processes, i.e. long living, internationally distributed, complex and flexible business processes. In this case, it is the process of jointly writing a book involving four authors in four different countries. The team has addressed this challenge brilliantly and the outcome is an impressive compilation of the individual strengths of each author grounded in a shared understanding of the essential BPM fundamentals and a common passion for the topic.

I have no doubts that this book will shape the toolset, and hopefully even more the mindset, of the current and future generations of BPM professionals. This publication has the potential to become a significant catalyst for future BPM success by establishing a common sense for the fundamentals of BPM upon which it can be further developed and tailored to individual circumstances. The book provides the needed consistency and rigor within and across the diverse and fast growing community of professionals and researchers committed to and passionate about the merits of the process-based organization.

Finally, and maybe most of all, the book is an outstanding reference for all students who are keen to learn more about and want to embrace the fascination of BPM. This long missing BPM textbook addresses a severe shortcoming within the BPM community, i.e. the lack of resources to facilitate the introduction of BPM subjects into tertiary and corporate education. Making BPM more accessible to future decision makers ensures that processes will play the role they deserve.

Brisbane, Australia

Michael Rosemann

Preface

First, master the fundamentals. Larry Bird (1957–)

Business Process Management (BPM) is a special field for more than one reason. First of all, BPM is a crossroad of multiple, quite different viewpoints. Business managers are attracted to BPM because of its demonstrated ability to deliver improvements in organizational performance, regulatory compliance and service quality. Industrial engineers see BPM as an opportunity to apply well-trodden manufacturing optimization techniques in the context of organizations that deliver services rather than physical products. Finally, Information Technology (IT) specialists appreciate the fact that BPM provides them with a shared language to communicate with business stakeholders. Furthermore, business process automation technology allows IT specialists to implement and monitor IT systems in a way that is aligned with the vision that business stakeholders have of the organization. In other words, BPM is a boundary-spanning field that serves as a melting pot for otherwise separate communities. For those who have experienced how business managers, industrial engineers and IT professionals often seem to live in different worlds, this shared field of interest is a remarkable opportunity to achieve a joint understanding of the inner workings of a business.

A second special characteristic of BPM is that it is both actively practiced and actively researched. In other words, it is a field where there are both proven and established practices as well as open challenges. Businesses around the world are carrying out BPM initiatives with the aim to, for example, outperform their competitors or meet the demands of regulatory authorities. Academics in fields like computer science, management science, sociology, and engineering are working on the development of methods and techniques to support such initiatives. It is appropriate to see BPM as a "theory in practice" field. On the one hand, practical demands inspire the development of new methods and technologies. On the other hand, the application of these methods and technologies in practice feeds back to the drawing boards in universities and research centers.

After teaching BPM to thousands of students and professionals over the past decade, we strongly feel the lack of a textbook to give a structure to our courses and to allow our audience to study for themselves beyond classwork and homework

x Preface

assignments. This situation is not due to a lack of excellent books on BPM—in fact there is a good number of them—but rather due to the cross-disciplinary and continuously evolving nature of BPM.

There are excellent treatments of BPM from a business management perspective, most notably Harmon's *Business Process Change* and Sharp and McDermott's *Workflow Modeling*. Both of these books provide useful conceptual frameworks and practical advice and should definitely lie in the bookshelves (or better in the hands) of BPM practitioners. However, one needs an introductory background and preferably years of experience in order to truly appreciate the advice given in these books. Also, these books give little attention to technology aspects such as business process management systems and process intelligence tools.

On the other side of the spectrum, other books adopt a computer science perspective to BPM, such as Van der Aalst and Van Hee's *Workflow Management* and Weske's *Business Process Management*, both focused on process modeling, analysis and automation for computer scientists. At a more specialized level, one can find a range of books focusing on process modeling using specific languages—for example Silver's *BPMN Method and Style*.

Against this background, we decided it was time to put together our combined teaching experience in BPM in order to deliver a textbook that:

- Embraces BPM as a cross-disciplinary field, striking a balance between business management and IT aspects.
- Covers the entire BPM lifecycle, all the way from identifying processes to analyzing, redesigning, implementing and monitoring these processes.
- Follows a step-by-step approach punctuated by numerous examples, in order to make the content accessible to students who have little or no BPM background.
- Contains numerous classroom-tested exercises, both inside each chapter and at the end of the chapters, so that students can test their skills incrementally and instructors have material for classwork, homework and projects.
- Relies on a mature and standardized process modeling language, namely BPMN.

In the spirit of a textbook, every chapter contains a number of elaborated examples and exercises. Some of these exercises are spread throughout the chapter and are intended to help the reader to incrementally put into action concepts and techniques exposed in the chapter in concrete scenarios. These "in-chapter" exercises are paired with sample solutions at the end of the chapter. In addition, every chapter closes with a number of further exercises for which no solutions are provided. Instructors may wish to use these latter exercises for assignments.

Most chapters also contain "highlighted boxes" that provide complementary insights into a specific topic. These boxes are tangential to the flow of the book and may be skipped by readers who wish to concentrate on the essential concepts. Similarly, every chapter closes with a "Further Readings" section that provides external pointers for readers wishing to deepen their understanding of a specific topic.

To better serve our readership, we have set up a website to collect course materials: http://fundamentals-of-bpm.org. This website includes slides, lecture recordings, sample exams, links to related resources and additional exercises.

Preface xi

The book is designed to support courses of a wide variety. An in-depth course on BPM could cover all chapters in a balanced way. In order to fit the content into one semester though, it may be necessary to sacrifice one or two chapters. If this was required, our suggestion would be to skip Chap. 4 or 10. An introductory BPM course could skip Chaps. 2, 4, 7 and 10 while still providing a consistent picture of the field. A course on process automation for IT students could skip Chaps. 2, 5 and 6. A course on process modeling would focus on Chaps. 2 to 5, and possibly Chap. 9 if the intention is to produce executable process models. Chapters 3 and 4 can be integrated into a broader semester-long course on systems modeling. Finally, a process improvement course for business students might focus on Chap. 3 and Chaps. 5 to 8. Naturally, Chap. 1 could find its place in any of the above courses.

Each chapter can be delivered as a combination of lectures and classwork sessions. Shorter chapters (1, 2, 3, 5, 6 and 10) can be delivered in one lecture and one classwork session. Chapters 4, 8 and 9 may require two lectures and two classwork sessions each. Chapter 7 can be delivered across two lectures and two classwork sessions, or it can be delivered in one lecture and one classwork session by skipping the content on queues and flow analysis.

This textbook is the result of many years of educational practice both at the undergraduate and postgraduate levels in more than half a dozen institutions, including Eindhoven University of Technology (The Netherlands), Queensland University of Technology (Australia), Humboldt University of Berlin (Germany), University of Tartu (Estonia), Vienna University of Economics and Business (Austria) and National University of Colombia. The material in this textbook has also served as a basis for professional training courses delivered to organizations in Australia, The Netherlands and elsewhere. We are grateful to the thousands of students who over the past years have given us constructive feedback and encouragement.

We also owe a lot to our many colleagues who encouraged us and provided us with feedback throughout the entire idea-to-textbook process. We would like to thank Wil van der Aalst, Raffaele Conforti, Monika Malinova, Johannes Prescher, Artem Polyvyanyy, Manfred Reichert, Jan Recker, Michael Rosemann, Matthias Schrepfer, Arthur ter Hofstede, Irene Vanderfeesten, J. Leon Zhao and Michael zur Muehlen, who all provided constructive feedback on drafts of the book. Fabio Casati and Boualem Benatallah provided us with initial encouragement to start the writing process. Special mentions are due to Matthias Weidlich who provided us with detailed and comprehensive suggestions, and Remco Dijkman who shared with us teaching material that served as input to Chaps. 2 and 9.

Tartu, Estonia Brisbane, Australia Vienna, Austria Eindhoven, The Netherlands Marlon Dumas Marcello La Rosa Jan Mendling Hajo A. Reijers

Contents

1	Intr	oduction to Business Process Management
	1.1	Processes Everywhere
	1.2	Ingredients of a Business Process
	1.3	Origins and History of BPM
		1.3.1 The Functional Organization 8
		1.3.2 The Birth of Process Thinking
		1.3.3 The Rise and Fall of BPR
	1.4	The BPM Lifecycle
	1.5	Recap
	1.6	Solutions to Exercises
	1.7	Further Exercises
	1.8	Further Reading
2	Pro	cess Identification
	2.1	Focusing on Key Processes
		2.1.1 The Designation Phase
		2.1.2 The Evaluation Phase
	2.2	Designing a Process Architecture
		2.2.1 Identify Case Types
		2.2.2 Identify Functions for Case Types
		2.2.3 Construct Case/Function Matrices 49
		2.2.4 Identify Processes
		2.2.5 Complete the Process Architecture
	2.3	Recap 57
	2.4	Solutions to Exercises
	2.5	Further Exercises
	2.6	Further Reading
3	Esse	ential Process Modeling
	3.1	First Steps with BPMN 63
	3.2	Branching and Merging 67
		3.2.1 Exclusive Decisions 67

xiv Contents

		3.2.2	Parallel Execution			69
			Inclusive Decisions			
			Rework and Repetition			
	3.3		ation Artifacts			
	3.4		ces			
	3.5	Recap.				. 89
	3.6	Solution	ns to Exercises			. 89
	3.7	Further	Exercises			93
	3.8		Reading			
4	Adva	nced P	rocess Modeling			97
	4.1		Decomposition			
	4.2		Reuse			
	4.3		n Rework and Repetition			
			Parallel Repetition			
			Uncontrolled Repetition			
	4.4		ng Events			
			Message Events			
			Temporal Events			
			Racing Events			
	4.5		ng Exceptions			
			Process Abortion			
			Internal Exceptions			
			External Exceptions			
			Activity Timeouts			
			Non-interrupting Events and Complex Exceptions			
			Interlude: Event Sub-processes			
			Activity Compensation			
	4.6		es and Business Rules			
	4.7		Choreographies			
	4.8					
	4.9		ns to Exercises			
	4.10		Exercises			
			Reading			
5			overy			
3	5.1		ting of Process Discovery			
	5.1		Process Analyst Versus Domain Expert			
			Three Process Discovery Challenges			
			Profile of a Process Analyst			
	5.2		•			
	J.4		ery Methods			
			Interview-Based Discovery			
			Workshop-Based Discovery			
		5.2.4	Strengths and Limitations			. 103

Contents xv

	5.3	Process Modeling Method	167
		5.3.1 Identify the Process Boundaries	167
		5.3.2 Identify Activities and Events	167
		5.3.3 Identify Resources and Their Handovers	168
		5.3.4 Identify the Control Flow	169
		5.3.5 Identify Additional Elements	169
	5.4	Process Model Quality Assurance	171
		5.4.1 Syntactic Quality and Verification	171
		5.4.2 Semantic Quality and Validation	172
		5.4.3 Pragmatic Quality and Certification	174
		5.4.4 Modeling Guidelines and Conventions	
	5.5	Recap	178
	5.6	Solutions to Exercises	179
	5.7	Further Exercises	
	5.8	Further Reading	183
6	One	alitative Process Analysis	185
U	6.1	Value-Added Analysis	
	0.1	6.1.1 Value Classification	
		6.1.2 Waste Elimination	
	6.2	Root Cause Analysis	
	0.2	6.2.1 Cause–Effect Diagrams	
		6.2.2 Why–Why Diagrams	
	6.3	Issue Documentation and Impact Assessment	
	0.5	6.3.1 Issue Register	
		6.3.2 Pareto Analysis and PICK Charts	
	6.4	Recap	
	6.5	Solutions to Exercises	
	6.6	Further Exercises	
	6.7	Further Reading	
_			
7	_	antitative Process Analysis	
	7.1	Performance Measures	
		7.1.1 Process Performance Dimensions	
		7.1.2 Balanced Scorecard	
		7.1.3 Reference Models and Industry Benchmarks	
	7.2	Flow Analysis	
		7.2.1 Calculating Cycle Time Using Flow Analysis	
		7.2.2 Cycle Time Efficiency	
		7.2.3 Cycle Time and Work-In-Process	
	7.3	7.2.4 Other Applications and Limitations of Flow Analysis	
	7.3	Queues	
		7.3.1 Basics of Queueing Theory	
		7.3.2 M/M/1 and M/M/c Models	
		7.3.3 Limitations of Basic Queueing Theory	234

xvi Contents

	7.4	Simulation
		7.4.1 Anatomy of a Process Simulation
		7.4.2 Input for Process Simulation
		7.4.3 Simulation Tools
		7.4.4 A Word of Caution
	7.5	Recap
	7.6	Solutions to Exercises
	7.7	Further Exercises
	7.8	Further Reading
8	Pro	ess Redesign
	8.1	The Essence of Process Redesign
		8.1.1 Why Redesign?
		8.1.2 What Is Redesign?
		8.1.3 The Devil's Quadrangle
		8.1.4 How to Redesign?
	8.2	Heuristic Process Redesign
		8.2.1 Customer Heuristics
		8.2.2 Business Process Operation Heuristics 264
		8.2.3 Business Process Behavior Heuristics
		8.2.4 Organization Heuristics
		8.2.5 Information Heuristics
		8.2.6 Technology Heuristics
		8.2.7 External Environment Heuristics 27
	8.3	The Case of a Health Care Institution
		8.3.1 Sending Medical Files by Post 275
		8.3.2 Periodic Meetings
		8.3.3 Requesting Medical Files
	8.4	Product-Based Design
		8.4.1 Analysis: Creating a Product Data Model 279
		8.4.2 Design: Deriving a Process from a Product Data Model 285
	8.5	Recap
	8.6	Solutions to Exercises
	8.7	Further Exercises
	8.8	Further Reading
9	Pro	ess Automation
	9.1	Automating Business Processes
		9.1.1 Business Process Management Systems
		9.1.2 Architecture of a BPMS
		9.1.3 The Case of ACNS
	9.2	Advantages of Introducing a BPMS
		9.2.1 Workload Reduction
		9.2.2 Flexible System Integration
		9.2.3 Execution Transparency
		9.2.4 Rule Enforcement 313

Contents xvii

	9.3	Challenges of Introducing a BPMS
		9.3.1 Technical Challenges
		9.3.2 Organizational Challenges
	9.4	Turning Process Models Executable
		9.4.1 Identify the Automation Boundaries
		9.4.2 Review Manual Tasks
		9.4.3 Complete the Process Model
		9.4.4 Bring the Process Model to an Adequate Granularity Level 324
		9.4.5 Specify Execution Properties
		9.4.6 The Last Mile
	9.5	Recap
	9.6	Solutions to Exercises
	9.7	Further Exercises
	9.8	Further Reading
10	Proc	ess Intelligence
	10.1	Process Execution and Event Logs
		10.1.1 The Perspective of Participants on Process Execution 354
		10.1.2 The Perspective of the Process Owner on Process
		Execution
		10.1.3 Structure of Event Logs
		10.1.4 Challenges of Extracting Event Logs
	10.2	Automatic Process Discovery
		10.2.1 Assumptions of the α -Algorithm
		10.2.2 The Order Relations of the α -Algorithm
		10.2.3 The α -Algorithm
		10.2.4 Robust Process Discovery
	10.3	Performance Analysis
		10.3.1 Time Measurement
		10.3.2 Cost Measurement
		10.3.3 Quality Measurement
		10.3.4 Flexibility Measurement
	10.4	Conformance Checking
		10.4.1 Conformance of Control Flow
		10.4.2 Conformance of Data and Resources 377
		Recap
		Solutions to Exercises
		Further Exercises
	10.8	Further Reading
Ref	erence	es
1101	-1 -11-1	

Acronyms

6 M Machine, Method, Material, Man, Measurement, Milieu

4 P Policies, Procedures, People, Plant/Equipment

7PMG Seven Process Modeling Guidelines

ABC Activity-Based Costing

APQC American Productivity and Quality Center

ATAMO And Then, A Miracle Occurs

B2B Business-to-Business

BAM Business Activity Monitoring

BOM Bill-of-Material

BPA Business Process Analysis

BPEL Web Service Business Process Execution Language

BPM Business Process Management
BPMN Business Process Model & Notation
BPMS Business Process Management System
BPR Business Process Reengineering

BTO Build-to-Order

BVA Business Value-Adding
CEO Chief Executive Officer
CFO Chief Financial Officer
CIO Chief Information Officer

CMMI Capability Maturity Model Integrated

COO Chief Operations Officer CPO Chief Process Officer

CRM Customer Relationship Management

CPN Colored Petri Net CT Cycle Time

DBMS Database Management System

DCOR Design Chain Operations Reference (product design)

DES Discrete-Event Simulation
DMR Department of Main Roads
DMS Document Management System

ХX Acronyms

DUR Drug Utilization Review

EPA Environment Protection Agency EPC Event-driven Process Chain **ERP** Enterprise Resource Planning eTOM **Enhanced Telecom Operations Map**

FIFO First-In-First-Out HR **Human Resources**

Integrated Definition for Process Description Capture Method IDEF3

ISP Internet Service Provider IT Information Technology

ITIL Information Technology Infrastructure Library

KM Knowledge Management **KPI Key Performance Indicator**

Department of Natural Resources and Water NRW

NVA Non-Value-Adding

Organization for the Advancement of Structured Information **OASIS**

Standards

OMG Object Management Group

Operating System OS

PCF Process Classification Framework

PD Product Development **PDCA** Plan-Do-Check-Act PO Purchase Order POS Point-of-Sale

PPM Process Performance Measurement

RBAC Role-based Access Control RFID Radio-Frequency Identification

RFO Request for Ouote ROI Return-On-Investment

SCAMPI Standard CMMI Appraisal Method for Process Improvement

SCOR Supply Chain Operations Reference Model

Smart eDA Smart Electronic Development Assessment System

SOA Service-Oriented Architecture STP Straight-Through-Processing TCT Theoretical Cycle Time TOC Theory of Constraints **TQM Total Quality Management**

UIMS User Interface Management System **UEL** Universal Expression Language UML Unified Modeling Language UML AD **UML** Activity Diagram

VA Value-Adding

VCH Value Creation Hierarchy Value Creation System VCS VRM Value Reference Model

Acronyms xxi

WIP Work-In-Progress

WfMC Workflow Management Coalition WfMS Workflow Management System

WS-BPEL Web Service Business Process Execution Language

WSDL Web Service Definition Language

XES Extensible Event StreamXML Extensible Markup LanguageXSD XML Schema Definition

YAWL Yet Another Workflow Language

List of Figures

Fig. 1.1	Ingredients of a business process	6
Fig. 1.2	How the process moved out of focus through the ages	8
Fig. 1.3	Purchasing process at Ford at the initial stage	10
Fig. 1.4	Purchasing process at Ford after redesign	11
Fig. 1.5	Job functions of a manager responsible for a process (a.k.a.	
	process owner)	14
Fig. 1.6	Process model for an initial fragment of the equipment rental	
	process	17
Fig. 1.7	BPM lifecycle	21
Fig. 2.1	The different levels of detail in a process architecture	42
Fig. 2.2	A process architecture for a harbor authority	44
Fig. 2.3	Different functional decompositions within the same	
	organization	48
Fig. 2.4	A case/function matrix	49
Fig. 2.5	A case/function matrix evolving into a process landscape model	
	(applying Guideline 1)	50
Fig. 2.6	A case/function matrix evolving into a process landscape model	
	(applying Guidelines 2–7)	54
Fig. 2.7	A case/function matrix evolving into a process landscape model	
	(applying Guideline 8)	54
Fig. 2.8	A process map for the mortgage payment process	56
Fig. 3.1	The diagram of a simple order fulfillment process	64
Fig. 3.2	Progress of three instances of the order fulfillment process	65
Fig. 3.3	A building (a), its timber miniature (b) and its blueprint (c).	
	((b): © 2010, Bree Industries; (c): used by permission of	
	planetclaire.org)	66
Fig. 3.4	An example of the use of XOR gateways	68
Fig. 3.5	An example of the use of AND gateways	70
Fig. 3.6	A more elaborated version of the order fulfillment process	
	diagram	71

xxiv List of Figures

Fig. 3.7	A variant of the order fulfillment process with two different	
	triggers	72
Fig. 3.8	Modeling an inclusive decision: first trial	73
Fig. 3.9	Modeling an inclusive decision: second trial	73
Fig. 3.10	Modeling an inclusive decision with the OR gateway	74
Fig. 3.11	What type should the join gateway have such that instances	
	of this process can complete correctly?	75
Fig. 3.12	The order fulfillment process diagram with product	
	manufacturing	77
Fig. 3.13	A process model for addressing ministerial correspondence	78
Fig. 3.14	The order fulfillment example with artifacts	80
Fig. 3.15	The order fulfillment example with resource information	84
Fig. 3.16	Collaboration diagram between a seller, a customer and two	
	suppliers	87
Fig. 4.1	Identifying sub-processes in the order fulfillment process	
	of Fig. 3.12	98
Fig. 4.2	A simplified version of the order fulfillment process after hiding	
	the content of its sub-processes	99
Fig. 4.3	A process model for disbursing home loans, laid down over	
	<u> </u>	100
Fig. 4.4	The process model for disbursing student loans invokes the same	
	model for signing loans used by the process for disbursing home	
	•	101
Fig. 4.5	The process model for addressing ministerial correspondence	
		103
Fig. 4.6	An example of unstructured cycle	104
Fig. 4.7		105
Fig. 4.8	Obtaining quotes from multiple suppliers, whose number is not	
	1	106
Fig. 4.9		106
Fig. 4.10		108
Fig. 4.11	Replacing activities that only send or receive messages (a)	
	E ()	109
Fig. 4.12	Using timer events to drive the various activities of a business	
	process	110
Fig. 4.13	A race condition between an incoming message and a timer	112
Fig. 4.14	Matching an internal choice in one party with an event-based	
	choice in the other party	113
Fig. 4.15	An example of deadlocking collaboration between two pools	113
Fig. 4.16	Using an event-based gateway to fix the deadlocking	
	collaboration of Fig. 4.15	114
Fig. 4.17	A collaboration diagram between a client, a travel agency and	
	an airline	115
Fig. 4.18	Using a terminate event to signal improper process termination .	116
Fig. 4.19	Error events model internal exceptions	117

List of Figures xxv

Fig. 4.20	Boundary events catch external events that can occur during an activity	118
Fig. 4.21	Non-interrupting boundary events catch external events that	110
	occur during an activity, and trigger a parallel procedure without	
	interrupting the enclosing activity	119
Fig. 4.22	Non-interrupting events can be used in combination with signal	
	events to model complex exception handling scenarios	120
Fig. 4.23	Event sub-processes can be used in place of boundary events,	
	and to catch events thrown from outside the scope of a particular	
	sub-process	
Fig. 4.24	Compensating for the shipment and for the payment	123
Fig. 4.25	A replenishment order is triggered every time the stock levels	
	drop below a threshold	124
Fig. 4.26	The choreography diagram for the collaboration diagram in	
	Fig. 4.9	126
Fig. 4.27	The choreography diagram between a seller, a customer and a	
	carrier	
Fig. 4.28	Collaboration diagram—part $1/2$ (Freight shipment fragment)	140
Fig. 4.29	Collaboration diagram—part 2/2 (Merchandise return handling	
	fragment)	
Fig. 4.30	Choreography diagram—part 1/2	
Fig. 4.31	Choreography diagram—part 2/2	
Fig. 4.32	Collaboration diagram—part 1/3 (Loan establishment fragment)	
Fig. 4.33	Collaboration diagram—part 2/3 (Loan disbursement fragment)	
Fig. 4.34	Collaboration diagram—part 3/3 (sub-processes)	
Fig. 5.1	The main activities and events of the order fulfillment process	168
Fig. 5.2	The activities and events of the order fulfillment process	
	assigned to pools and lanes	
Fig. 5.3	The control flow of the order fulfillment process	
Fig. 5.4	Quality aspects and quality assurance activities	
Fig. 5.5	Common sound and unsound process fragments	
Fig. 5.6	Extract of the order fulfillment process model with bad layout	
Fig. 5.7	Extract of the order fulfillment process model with good layout .	
Fig. 5.8	A complaint handling process as found in practice	
Fig. 5.9	The complaint handling process reworked	
Fig. 5.10	A loan application process	
Fig. 5.11	A sales campaign process	
Fig. 6.1	Template of a cause–effect diagram based on the 6M's	
Fig. 6.2	Cause–effect diagram for issue "Equipment rejected at delivery"	195
Fig. 6.3	Template of a why–why diagram	197
Fig. 6.4	Pareto chart for excessive equipment rental expenditure	
Fig. 6.5	PICK chart	204
Fig. 6.6	Pareto chart of causal factors of issue "Equipment not available	
	when needed"	
Fig. 7.1	Fully sequential process model	219

xxvi List of Figures

Fig. 7.2	Process model with XOR-block	220
Fig. 7.3	XOR-block pattern	220
Fig. 7.4	Process model with AND-block	221
Fig. 7.5	AND-block pattern	221
Fig. 7.6	Credit application process	
Fig. 7.7	Example of a rework loop	222
Fig. 7.8	Rework pattern	223
Fig. 7.9	Activity that is reworked at most once	223
Fig. 7.10	Credit application process with rework	223
Fig. 7.11	Structure of an M/M/1 or M/M/c system, input parameters and	
	computable parameters	233
Fig. 7.12	Histograms produced by simulation of the credit application	
	process	239
Fig. 7.13	Cetera's claim-to-resolution process	
Fig. 7.14	Mortgage process	
Fig. 8.1	The Devil's Quadrangle	259
Fig. 8.2	The intake process	
Fig. 8.3	The intake process after the medical file redesign	277
Fig. 8.4	The helicopter pilot product data model	280
Fig. 8.5	An incorrect process design for the helicopter pilot product data	
	model	286
Fig. 8.6	A correct process design for the helicopter pilot product data	
	model	286
Fig. 8.7	An alternative process design for the helicopter pilot product	
	data model	
Fig. 8.8	Solution for the loan proposal	291
Fig. 8.9	A complete process design for the helicopter pilot product data	
	model	292
Fig. 8.10	A cost-efficient process design for the helicopter pilot product	
	data model	
Fig. 9.1	The architecture of a BPMS	299
Fig. 9.2	The process modeling tool of Bonita Open Solution from Bonita	
	Soft	
Fig. 9.3	The worklist handler of Bizagi's BPM Suite	
Fig. 9.4	The monitoring tool of Perceptive Software's BPMOne	
Fig. 9.5	The spectrum of BPMS types	
Fig. 9.6	The order fulfillment model that we want to automate	318
Fig. 9.7	Admission process: the initial (a) and final (c) assessments can	
	be automated in a BPMS; the assessment by the committee (b)	
	is a manual process outside the scope of the BPMS	321
Fig. 9.8	The order fulfillment model of Fig. 9.6, completed with	
	control-flow and data-flow aspects relevant for automation	
Fig. 9.9	The sales process of a B2B service provider	
Fig. 9.10	Structure of the BPMN format	328

List of Figures xxvii

Fig. 9.11	The XSD describing the purchase order (a) and one of its instances (b)
Fig. 9.12	The automated prescription fulfillment process
Fig. 9.12 Fig. 9.13	The model for the sales process of a B2B service provider,
rig. 9.13	
	completed with missing control flow and data relevant for
E' 0.14	execution
Fig. 9.14	FixComp's process model for handling complaints
Fig. 9.15	Claims handling process model
Fig. 10.1	Example of an event log for the order fulfillment process 357
Fig. 10.2	Metamodel of the XES format
Fig. 10.3	Example of a file in the XES format
Fig. 10.4	Definition of a workflow log
Fig. 10.5	Simple control flow patterns
Fig. 10.6	Footprint represented as a matrix of the workflow log
	$L = [\langle a, b, g, h, j, k, i, l \rangle, \langle a, c, d, e, f, g, j, h, i, k, l \rangle] \dots \dots 363$
Fig. 10.7	Process model constructed by the α -algorithm from workflow
U	$\log L = [\langle a, b, g, h, j, k, i, l \rangle, \langle a, c, d, e, f, g, j, h, i, k, l \rangle] \dots 365$
Fig. 10.8	Examples of two short loops, which are problematic for the
8	α -algorithm
Fig. 10.9	Dotted chart of log data
Fig. 10.10	Timeline chart of log data like PM 232
Fig. 10.11	BPMN model with token on start event for replaying the case
11g. 10.11	$\langle a, b, g, i, j, k, l \rangle$
Eia 10 12	
Fig. 10.12	Replaying the non-conforming case $\langle a, b, i, j, k, l \rangle$ 376
Fig. 10.13	Result of replaying cases in the process model
Fig. 10.14	Process model constructed by the α -algorithm