Skip to main content

Imaging Standoff Detection of Explosives by Diffuse Reflectance IR Laser Spectroscopy

  • Conference paper
Future Security (Future Security 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 318))

Included in the following conference series:

Abstract

In this work we demonstrate standoff detection of traces of explosives using mid-infrared laser spectroscopy. We apply active laser illumination and use an infrared camera for collection of the diffusely backscattered laser radiation. The key component of the system is an external cavity quantum cascade. Different numerical hyperspectral image analysis methods are evaluated with respect to target detection performance and false alarm rate using both synthetic and real spectroscopic data. Traces of TNT, PETN and RDX could be identified and discriminated against non-hazardous materials by scanning the illumination wavelength over several characteristic absorption features of the explosives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cornish, T.J., Antoine, M.D., Ecelberger, S.A., Demirev, P.A.: Arrayed Time-of-Flight Mass Spectrometry for Time-Critical Detection of Hazardous Agents. Anal. Chem. 77(13), 3954–3959 (2005)

    Article  Google Scholar 

  2. Bauer, C., Sharma, A.K., Willer, U., Burgmeier, J., Braunschweig, B., Schade, W., Blaser, S., Hvozdara, L., Müller, A., Holl, G.: Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives. Appl. Phys. B 92(3), 327–333 (2008)

    Article  Google Scholar 

  3. Orghici, R., Willer, U., Gierszewska, M., Waldvogel, S.R., Schade, W.: Fiber optic evanescent field sensor for detection of explosives and CO2 dissolved in water. Appl. Phys. B 90(2), 355–360 (2008)

    Article  Google Scholar 

  4. Dunayevskiy, I., Tsekoun, A., Prasanna, M., Go, R., Patel, C.K.N.: High-sensitivity detection of triacetonetriperoxide (TATP) and its precursor acetone. Appl. Opt. 46(25), 6397–6404 (2007)

    Article  Google Scholar 

  5. van Neste, C.W., Senesac, L.R., Thundat, T.: Standoff photoacoustic spectroscopy. Appl. Phys. Lett. 92(23), 234102 (2008)

    Article  Google Scholar 

  6. Furstenberg, R., Kendziora, C.A., Stepnowski, J., Stepnowski, S.V., Rake, M., Papantonakis, M.R., Nguyen, V., Hubler, G.K., McGill, R.A.: Stand-off detection of trace explosives via resonant infrared photothermal imaging. Appl. Phys. Lett 93, 224103-1–224103-3 (2008)

    Article  Google Scholar 

  7. Pushkarsky, M.B., Dunayevskiy, I.G., Prasanna, M., Tsekoun, A.G., Go, R., Patel, C.K.N.: High sensitivity detection of TNT. Proc. of the National Academy of Sciences of the United States of America 103(52), 19630–19634 (2006)

    Article  Google Scholar 

  8. Hummel, R.E., Fuller, A.M., Schollhorn, C., Holloway, P.H.: Detection of explosive materials by differential reflection spectroscopy. Appl. Phys. Lett. 88(23), 231903 (2006)

    Article  Google Scholar 

  9. Wallin, S., Petterson, A., Östmark, H., Hobro, A.: Laser-based standoff detection of explosives: a critical review. Analyt. and Bioanalyt. Chem. 395(2), 259–274 (2009)

    Article  Google Scholar 

  10. Fuchs, F., Hugger, S., Kinzer, M., Aidam, R., Bronner, W., Lösch, R., Yang, Q.K., Degreif, K., Schnürer, F.: Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers. Opt. Eng. 49(11), 111–127 (2010)

    Article  Google Scholar 

  11. British and European Standard BS EN 60825-1 2007, International Standard IEC 60825-1 (2007)

    Google Scholar 

  12. Barker, F.M., Brainard, G.C.: The direct spectral transmittance of the excised human lens as a function of age. FDA 785345 0090 RA, US Foodand Drug Administration: Washington DC (1991)

    Google Scholar 

  13. Laube, T., Apel, H., Koch, H.-R.: Ultraviolet Radiation Absorption of Intraocular Lenses. Ophthalmology 111, 880–885 (2004)

    Article  Google Scholar 

  14. Bismuto, A., Beck, M., Faist, J.: High power Sb-free quantum cascade laser emitting at 3.3 μm above 350 K. Appl. Phys. Lett. 98, 191104 (2011)

    Article  Google Scholar 

  15. Faist, J., Beck, M., Aellen, T.: Quantum-cascade lasers based on bound-to-continuum transition. Appl. Phys. Lett. 78, 147–149 (2001)

    Article  Google Scholar 

  16. Maulini, R., Mohan, A., Giovannini, M., Faist, J., Gini, E.: External cavity quantum-cascade laser tunable from 8.2 μm to 10.4 μm using a gain element with a heterogeneous cascade. Appl. Phys. Lett. 88, 201113 (2006)

    Article  Google Scholar 

  17. Du, Q., Ren, H., Chang, C.: A comparative study for orthogonal subspace projection and constrained energy minimization. IEEE Transactions on Geoscience and Remote Sensing 41, 1525–1529 (2003)

    Article  Google Scholar 

  18. Harsanyiand, J., Chang, C.: Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Transactions on Geoscience and Remote Sensing 32, 779–785 (1994)

    Article  Google Scholar 

  19. Manolakis, D., Siracusa, C., Shaw, G.: Hyperspectral subpixel target detection using the linear mixing model. IEEE Transactions on Geoscience and Remote Sensing 39, 1392–1409 (2001)

    Article  Google Scholar 

  20. Plaza, A., Martinez, P., Perez, R., Plaza, J.: A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data. IEEE Transactions onGeoscience and Remote Sensing 42, 650–663 (2004)

    Article  Google Scholar 

  21. Ren, H., Chang, C.: Automatic spectral target recognition in hyperspectral imagery. Transactions on Aerospace and Electronic System 39, 1232–1249 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fuchs, F. et al. (2012). Imaging Standoff Detection of Explosives by Diffuse Reflectance IR Laser Spectroscopy. In: Aschenbruck, N., Martini, P., Meier, M., Tölle, J. (eds) Future Security. Future Security 2012. Communications in Computer and Information Science, vol 318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33161-9_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33161-9_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33160-2

  • Online ISBN: 978-3-642-33161-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics