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Abstract. Robust Principal Components Analysis (RPCA) gives a suitable frame-
work to separate moving objects from the background. The background sequence
is then modeled by a low rank subspace that can gradually change over time,
while the moving objects constitute the correlated sparse outliers. RPCA problem
can be exactly solved via convex optimization that minimizes a combination of
the nuclear norm and the /;-norm. This convex optimization is commonly solved
by an Alternating Direction Method (ADM) that is not applicable in real applica-
tion, because it is computationally expensive and needs a huge size of memory.
In this paper, we propose to use a Linearized Symmetric Alternating Direction
Method (LSADM) to achieve RPCA for moving object detection. LSADM in its
fast version requires less computational time than ADM. Experimental results on
the Wallflower and I2R datasets show the robustness of the proposed approach.

1 Introduction

The detection of moving objects is a key issue in a video surveillance system with
static cameras. This detection is commonly done using foreground detection. This basic
operation consists of separating the moving objects called "foreground” from the static
information called “background” [1]. In 1999, Oliver et al. [2] are the first authors
who model the background by Principal Component Analysis (PCA). PCA provides
a robust model of the probability distribution function of the background, but not of
the moving objects while they do not have a significant contribution to the model. The
main limitation of this model [3] is that the size of the foreground object must be small
in relation to the size of the image, and don’t appear in the same location during a
long period in the training sequence, that is the object does not have to be present
more than half of the training sequence. Recent research on robust PCA [4][5] can be
used to alleviate these limitations. For example, Candes et al. [S] proposed a convex
optimization to address the robust PCA problem. The observation matrix is assumed
represented as:

A=L+S (1

where L is a low-rank matrix and S must be sparse matrix with a small fraction of
nonzero entries. This research seeks to solve for L with the following optimization
problem:

min [|L|l + AllS|l subj A=L+S 2)
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where ||.||« and ||.||1 are the nuclear norm and [;-norm, respectively, and A > 0 is
an arbitrary balanced parameter. This approach assumed that all entries of the ma-
trix to be recovered are exactly known via the observation. The other assumption is
that the distribution of corruption should be sparse and random enough without noise.
Under these minimal assumptions, this approach perfectly recovers the low-rank and
the sparse matrices. The optimization in Equation (2) can be solved as a general con-
vex optimization problem by any iterative thresholding techniques [6]. However, the
iterative thresholding scheme converges extremely slowly. To alleviate this slow con-
vergence, Lin et al. [7] proposed the accelerated proximal gradient (APG) algorithm
and the gradient-ascent algorithm applied to the dual of the problem in the Equation
(2). However, these algorithms are all the same to slow for real application. More re-
cently, Lin et al. [8] proposed two algorithms based on augmented Lagrange multipliers
(ALM). The first algorithm is called exact ALM (EALM) method that has a Q-linear
convergence speed, while the APG is only sub-linear. The second algorithm is an im-
provement of the EALM that is called inexact ALM (IALM) method, which converges
practically as fast as the exact ALM, but the required number of partial SVDs is signif-
icantly less. The IALM is at least five times faster than APG, and its precision is also
higher. However, the direct application of ALM treats Equation (2) as a generic mini-
mization problem and doesn’t take into account its separable structure emerging in both
the objective function and the constraint. Hence, the variables S and L are minimized
simultaneously. Yuan and Yang [9] proposed to alleviate this problem by the Alternat-
ing Direction Method (ADM) which minimizes the variables L and S serially. However,
this method is computationally expensive and needs a huge size of memory. Recently,
Ma[10] and Goldfarb et al. [11] proposed a Linearized Symmetric Alternating Direc-
tion Method (LSADM) for minimizing the sum of two convex functions. This method
requires at most O(1/¢) iterations to obtain an e-optimal solution, while its fast version
called Fast-LSADM requires at most O(1/+/€) with little change in the computational
effort required at each iteration. These algorithms [10] have shown encouraging qual-
itative results on background extraction. These properties allow us to use and evaluate
it for moving object detection by using RPCA. The rest of this paper is organized as
follows. In Section 2, we present how the background and the moving objects can be
separated by using RPCA. Then, the proposed moving object detection method with
the LSADM algorithm is presented. Finally, performance evaluation and comparison
are given in Section 3.

2 Moving object detection by RPCA solved via LSADM

2.1 Background and moving object separation via RPCA

Denote the training video sequences D = {I 1,1 N} where I; is the frame at time
t and N is the number of training frames. Let each pixel (x,y) be characterized by its
intensity in the grey scale. The decomposition involves the following model:

D=L+S8 (3)

where L and S are the low-rank component and sparse component of D, respectively.
The matrix L contains the background and the matrix S contains mostly zero columns,
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with several non-zero ones corresponding to the moving objects. The matrices L and
S can be recovered by the convex program based on the Alternating Direction Method
(ADM). For this work on moving object detection, we propose to use the Linearized
Symmetric Alternating Direction Method (LSADM) proposed in [10][11].

2.2 Linearized Symmetric Alternating Direction Method

This sub-section briefly reminds the principle of LSADM developed in [10][11]. The-
orically, the RPCA problem can be initially formulated as a linear constrained convex
program [10].

min(f(z) +g(y)) subj x—y=0 O]
Solving this problem by ADM, one operates on the following augmented Lagrangian
function:

1
»Cu(x,y;k)=f(x)+g(y)+<A,x—y>+ﬂll\m—yll2 )
with respect to x and y, i.e, it solves the subproblem:

(wk, yk) = argming ,L,.(z,y; )\k) 6)

and then the Lagrange multipliers \* are updated as follows:
1
)\k+1 — )\k) + 7($k} _ yk) (7)
I

Minimizing £, (z,y; \) with respect to = and y alternatingly is often easy. Such an al-
ternating direction method for solving Equation (4) is given below as Algorithm 1.

Algorithm 1: Alternating Direction Method (ADM)
Initialization: Choose , )\0 and 20 = ¢¥
Line 1 fork=0,1,...d
Line2 aft! = argmmz MERTIPLS!
Line3 ¢+l = argminy (a:k+1, y; AF)
Lined A=)\t (x e S Taans'
Line 5 end

In each iteration of ADM, the Lagrange multiplier X is updated just once after the
augmented Lagrangian is minimized with respect to y (Line 4). For the ADM to be
symmetric with respect to x and y, Ma [10] updated also A after solving the subprob-
lem with respect to z. Such as symmetric ADM is given below as Algorithm 2.

Algorithm 2: Symmetric Alternating Direction Method (SADM)
Initialization: ~ Choose y, A° and 20 = ¢/°
Line 1 fork=0,1,...do
Line2 zFtl = argminz[, (z, y"; AF)
Line3 Mtz = )\F 4 L@ —yb)
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Lined  y"*! = argmin, L, (a"1,y; Ao+ 2)

i k41 _ yk+d 4 10k k
Line5  \MHL = \FFa 4 L (ahF1 -yt
Line 6 end

Ma [10] assumed that both f(z) and g(x) are differentiable to linearize the SADM.
It follows from the first order optimality conditions that A\**2=grad (f(z**1)) and
Metl=_grad (g(y**1)). Then, the Lagrangian functions can be replaced by:

Qs (u,v) = f(w) + g(o)+ < grad(f(w)),u—v > +i|lu 2 ®

Qy(uy0) = F(u) + g(v)+ < grad(g(u)),u —v > +$Hu T

Algorithm 3: Linearized Symmetric Alternating Direction Method (LSADM)
Initialization: =~ Choose p and 20 = ¢
Line 1 fork=0,1,...do
Line2 2! =argmin,Q,(z,y")
Line3  y**! = argmin,Q(y, 2% 1)
Line4 end

In Algorithm 3, the functions f and g are alternatively replaced by their linearizations
plus a proximal regularization term to get an approximation to the original function F'.
The complexity of LSADM is O(e) for obtaining an e-optimal solution for Equation
(4). Finally, to apply the LSADM to the RPCA, the formulation in Equation 3 is firstly
restated as the following convex optimization problem:

min ||L]l. +A[S|l; subj D=L+S (10)

where ||.||« and ||.||1 are the nuclear norm (which is the L; norm of singular value) and
l1-norm, respectively, and A > 0 is an arbitrary balanced parameter. In order to apply
the LSADM algorithm to Equation 3, both the nuclear norm f(L) = ||L||. and the I;
norm g(S) = A||S]|1 are smoothed by using the Nesterov’s smoothing technique. A
smoothed approximation of f(L) is obtained as follows:

o
fo(L) = max(< LW > =S [[W][E : [[W]lr < 1) (11
where W, (L) = UDiag(min(y,1))VT. UDiag(min(vy,1))V7 is the singular value

decomposition (SVD) of L/o. A smoothed approximation to the I;0f g(S) = p||S]|1 is
obtained as follows:

ag
9o(8) = maz(< 8,7 > =2 2|+ |1 ]l < p) (12)

where Z,(S) = min(p, max(% —p). After smoothing f and g, the LSADM algorithm
is applied to solve the smoothed problem:

min(f,(L) + g5(S)) subj L+S =D (13)
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2.3 Moving Object Detection Algorithm

The background and moving object separation can be obtained by solving the Equation(13)
with LSADM. Then, the proposed algorithm for moving object detection is as follows:

Algorithm for moving object detection by RPCA solved via LSADM
Input data: Training sequence with N images that is contained in D.
Output data: Background in L and moving objects in S.
Parameters initialization: Ly < D; Sy < O; Y < O;u = 30/||sign(D)||2; p > 0,
c>0,k<«0.
L+ Lg; S+ So;
Background and Moving Object Separation:
for k = 1,... to maxiter
X=puxY—-S+D.
X =UGVT (SVD).
G + Diag(G).
G+—G—ypu
Ly < L.
L = UDiag(G)VT.
R
%
B+ Y- =L
Sk «— S.
S = uB — pu* min(p, maz(—p, ;‘f#))
Y « Y — £=5=D,
I

d = || E£5=L|| /| D).
ifd<e
L+ Lk, S+ Sk.
goto Moving Object Detection step.
end if
end for
L+ L, S Sk.
Moving Object Detection: Threshold the matrix .S to obtain the moving objects.

max(G,u+o) "

For the initialization, the low-rank matrix L, the sparse matrix S, and the Lagrange
multiplier Y are set respectively to the matrix D, O and O. The parameters maxiter
and e are set respectively to 100 and 10e — 7. The computational cost in the LSADM al-
gorithm is mainly related to the singular value decomposition (SVD). It can be reduced
significantly by using a partial SVD because only the first largest few singular values are
needed. Practically, we used the implementation available in PROPACK!. Fig. 1 shows
the original frames 309, 395 et 462 of the sequence from [10] and their decomposition
into the low-rank matrix L and sparse matrix S. We can see that L. corresponds to the
background whereas S corresponds to the moving objects. The fourth image shows the
moving object mask obtained by thresholding the matrix S and the fifth image is the
ground truth image.

! http://soi.stanford.edu/rmunk/PROPACK/
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Fig. 1. From left to right: Original image, low-rank matrix L (background), sparse matrix S (mov-
ing objects), moving object mask, ground truth.

3 Implementation

For the implementation, we choose to implement the LSADM algorithm and its fast
version called Fast-LSADM which computes an e-optimal solution to the problem in
Equation (4) in O(1/+/e) iterations [10][11]. It is a successive over-relaxation type al-
gorithm since (¢, — 1)/tx+1 > 0,Vk > 2 as follows.

Algorithm 4: Fast-LSADM

Initialization:  Choose j, z° = y° and sett; = 1
Line 1 fork=1,2,...do

Line2 2% = argmin,Q,(z, zk)

Line3  y* = argmin,Q(y,z")

Line 4 tk+1 1+\/1+4*t2 /2

Line5  zM'=yh 4 5 (yF -y

Line6 end

The algorithm for moving object detection by RPCA solved via Fast LSADM can be
easily derived from the one with LSADM.

4 Experimental Results

We compared LSADM and Fast-LSADM with standard methods (SG [12], MOG [13],
PCA [2]) and robust PCA methods (RSL [4], EALM [8], IALM [8]). The experiments
were conducted qualitatively and quantitatively on the Wallflower dataset [14] and I2R
dataset [15]. The algorithms were implemented in batch mode with matlab. The com-
parison is essentially conducted against IALM as RSL and EALM are very computa-
tional expensive. Furthermore, there was not much difference between the performance
of LSADM and that of Fast-LSADM in terms of detection. So, we present only visual
results obtained with the Fast-LSADM. Due the 10 page limitation, we present only the
visual results obtained by the standard methods on the Wallflower dataset.
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4.1 Wallflower dataset?

This dataset consists of seven video sequences, with each sequence presenting one of
the difficulties a practical task is likely to encounter: Moved Object (MO), Time of Day
(TD), Light Switch (LS), Waving Trees (WT), Camouflage (C), Bootstrapping (B) and
Foreground Aperture (F). The images are 160 x 120 pixels. For each sequence, the
ground truth is provided for one image when the algorithm has to show its robustness
to a specific change in the scene. Thus, the performance is evaluated against hand-
segmented ground truth. The figure 2 shows the qualitative results. For the quantitative
evaluation, we used metrics based on the true negative (TN), true positive (TP), false
negative (FN), false positive (FP) detections. Then, we computed the detection rate, the
precision and the F-measure. The detection rate is given as follows:

TP
DR = —F— 14
TP+ FN 14
The precision is computed as follows:
TP
Precision = m (15)

A good performance is obtained when the detection rate is high without altering the
precision. This can be measured by the F-measure [16] as follows:

_ 2 x DR x Precision
DR + Precision

(16)

A good performance is then reached when the F-measure is closed to 1. Table 1 shows
in percentage the F-measure for each sequence and its average on the dataset. The F-
measure value of MO sequence can’t be computed due to the absence of true positives
in its ground-truth. We have highlighted when Fast-LSADM outperforms IALM. It is
the case on the sequences (MO, TD, LS, WT, C, B, FA). For the sequence LS, the result
is still acceptable. RSL and EALM gives the best results on the sequences (TD, WT, C,
FA) but the time requirement is very higher than IALM, LASDM and Fast-LSADM. So,
the proposed method offers a nice compromise between robustness and computational
efficiency. As these encouraging results are obtained by using one ground-truth image
one each sequence, we have evaluated the proposed method on a dataset with more
ground-truth images in the following sub-section.

4.2 I2R dataset*

This dataset provided by [15] consists of nine video sequences, which each sequence
presenting dynamic backgrounds or illumination changes. The size of the images is
176*144 pixels. For each sequence, the ground truth is provided for 20 images. Among
this dataset, we have chosen to show results on four representative sequences that are the
following ones: airport, shopping mall, water surface and curtain. We ran RSL, IALM,

2 http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.htm
3 http://sites.google.com/site/backgroundsubtraction/test-image-sequences—results
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Fig. 2. Experimental results on the Wallflower dataset. From top to bottom: original image,
ground truth, SG, MOG, PCA, RSL, EALM, IALM, Fast-LSADM. From left to right: MO (985),
TD (1850), LS (1865), WT (247), C (251),B (2832), FA (449). More results with other back-
ground subtraction methods available on the Background Subtraction Web Site’.

Fig. 3. Experimental results on the I2R dataset. From left to right: original image, ground truth,
RSL, TALM, Fast-LSADM. From top to bottom: airport (2926), shopping mall (1980), water
surface (1594), curtain (23257).
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RSL [EALM|IALM|LSADM |Fast-LSADM
Time of Day 75.73| 81.18 | 80.56| 80.24 80.84
Light Switch 28.36| 70.86 | 73.16 | 69.11 69.33
Waving Trees  [89.69| 86.40 |40.88| 81.25 81.67
Camouflage 91.78| 75.43 [22.02| 75.71 76.01
Bootstrap 69.38| 74.4 |(73.73| 74.11 74.69
Foreground Aperture|74.37| 72.07 |61.92| 71.26 71.56
Average 71.55| 76.73 |58.71| 75.28 75.69

Table 1. F-measure on the Wallflower dataset

RSL |[IALM|LSADM |Fast-LSADM
Airport 65.26|74.26 | 71.27 71.57
Shopping mall|58.64|50.89 | 75.24 75.74
Water surface |34.42|31.34 | 45.17 47.69
Curtain ~ |70.73|76.59 | 81.11 83.33
Average |57.26/58.27| 68.19 69.58
Table 2. F-measure on the I2R dataset

LSADM and Fast-LSADM on these sequences. We skipped EALM since it would take
excessive amounts of time due to full SVD calculations. Since all these video clips
have more than 1000 frames, we took a part of each clip with 200 frames. Fig. 3 shows
the qualitative results. For example, we can see that the LSADM allows to detect the
complete silhouette in the sequence called “water surface”. Table 2 shows the average
F-measure in percentage that is obtained on 20 ground truth images for each sequence
and its average on the dataset. We have highlighted when Fast LSADM outperforms
TALM. We can see that Fast LSADM outperforms RSL and IALM for each sequence
except for the sequence “Airport”. The SVDs and CPU time of each algorithm was
computed for each sequence. For example, in the case of the sequence ”Airport” of
resolution 176 x 144 with 200 images, the CPU time is 40min15s, 3min47s, 4min30s
and 1min56s respectively for EALM, IALM, LSADM and Fast-LSADM. The SVDs
times is 550 SVDs, 38 SVDs, 43 SVDs and 6 SVDs respectively for EALM, IALM,
LSADM and Fast-LSADM. On these problems of extremely low ranks, the partial SVD
technique used in IALM, LSADM and Fast-LSADM becomes quite effective. Even so,
the CPU times required by IALM are still about two times of those required by Fast-
LSADM. Furthermore, the speed can be improved by a GPU implementation.

5 Conclusion

In this paper, we have presented a moving object detection method based on RPCA that
is solved via a linearized alternating direction method. This method allows us to alle-
viate the contraints of the identities. Furthermore, experiments on video surveillance
datasets show that this approach is more robust than RSL and IALM in the presence of

* http://perception.i2r.a-star.edu.sg/
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dynamic backgrounds and illumination changes. In terms of computational efficiency,
the proposed approach has exhibited a significant speed advantage over IALM. Al-
though the proposed method is an offline one, meaning that the processing is done after
a large number of frames are acquired and therefore, it is not done in real time. It is pos-
sible to extend the concept to incremental, real time processing by adaptively update
the low rank component. This will be investigated in details in a future paper.

6
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