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Abstract. We describe an ego-motion algorithm based on dense spatio-
temporal correspondences, using semi-global stereo matching (SGM) and
bilateral image warping in time. The main contribution is an improve-
ment in accuracy and robustness of such techniques, by taking care of
speed and numerical stability, while employing twice the structure and
data for the motion estimation task, in a symmetric way. In our ap-
proach we keep the tasks of structure and motion estimation separated,
respectively solved by the SGM and by our pose estimation algorithm.
Concerning the latter, we show the benefits introduced by our rectified,
bilateral formulation, that provides at the same time more robustness to
noise and disparity errors, at the price of a moderate increase in com-
putational complexity, further reduced by an improved Gauss-Newton
descent.

1 INTRODUCTION

Visual odometry, or ego-motion estimation, is concerned with the estimation
of one’s own velocities into an unknown, mainly rigid environment, through
sequences obtained from one or more cameras fixed on the moving body. In
this context, motion is usually constrained to planar (3-dof) or full 6-dof, under
the assumption of a rigid scene with a few independently moving items (such
as pedestrians, cars) acting as an external disturbance, which are detected and
factored out of the estimation procedure.

Model-based approaches, such as [1], use pre-defined models of shape and
appearance to be sought in the image, and provide an efficient and robust esti-
mation of absolute pose and motion. However, such methods require an apriori
model of the object, which in many scenarios may not be available.

Feature-based methods use a combination of feature detection, matching,
tracking, triangulation and pose estimation from corresponding points. Among
such techniques, [2] uses RANSAC and iterative pose refinement for stereo and
monocular odometry. A similar monocular technique, which minimizes drift us-
ing a local bundle adjustment, was presented in [3]. Integration of other sensory
modalities, such as GPS or IMU, also allows robustly coping with fast motion
as in the real-time 3D modeler [4]. A disadvantage of feature-based techniques
is that errors incurred at intermediate processing stages propagate to a higher
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level, and that for reliable tracking a sufficient number of features should be
available at each frame, which is not always the case.

Direct methods instead use all possible information from the image, including
weak gradient regions, to estimate pose and structure of a scene or an object,
by minimizing a photometric error rather than a geometric distance between
features. As discussed in [5], a major advantage is that feature extraction and
matching are not required, while a very large set of measurements are simul-
taneously available (one per pixel) providing generally more precise and robust
performances.

Related techniques, using appearance models and optical flow [6], employ
an extended planar pattern for tracking. However, the underlying assumptions
about motion (for example a planar homography [7]) or camera model (for ex-
ample affine cameras [8]) are usually strong, so that they apply to a restricted
class of scenes or objects.

A recently developed approach minimizes intensity errors between consec-
utive image pairs from calibrated stereo sequences [9], and can be considered
between model-based and image-based approaches. In this context, dense stereo
matching is used to obtain a reference model for motion estimation, that may
be built off-line (from a set of key-frames) or updated at each frame. This model
consists of a dense point cloud, including color and disparity information. A point
transfer function based on the quadrifocal tensor function allows rigid motion
estimation directly on the next stereo pair, with full 6-dof. The approach handles
arbitrary 3D structures, and improves the convergence domain with respect to
planar region-based methods, since the whole image is used for the registration
task.

In this paper we improve the above mentioned approach in some important
aspects. Firstly, we introduce a symmetric transfer error, simultaneously project-
ing points forwards and backwards over time, where the Jacobian of the inverse
transformation is easily obtained in the Lie algebra setting, and it is computed
once per frame using an inverse compositional formulation. Due to the fact that
stereo matching on consecutive frames does not provide fully overlapping point
clouds, as explained in Section 4.1, this scheme integrates additional information
for a more accurate motion estimation. This formulation also respects the sym-
metry of the problem, since by inverting the image sequence we exactly obtain
the inverse motion estimates.

Secondly, instead of trifocal tensors we utilize rectified images, and stereo
triangulation in homogeneous coordinates. This results in a simpler formulation,
clearly isolating computation into off-line (structure) and on-line (re-projection)
terms, while keeping intermediate quantities within a good numerical range.
Stereo matching is done here with the semi-global matching (SGM) algorithm
[10] using mutual information.

The paper is organized as follows: in Sec. 2 we present the stereo-based esti-
mation framework. The two sub-problems of structure and motion estimation are
dealt with in Sec. 3 and 4, respectively. Afterwards, Sec. 5 presents experimen-
tal results on simulated and real stereo sequences, compared with ground-truth
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trajectories. Sec. 6 concludes the paper, mentioning possible improvements to
this system.

2 PROBLEM STATEMENT

In the following, we denote by l, r the left and right camera of the stereo rig,
and by k the temporal frame index. Given four arbitrary (3 × 4) camera ma-

trices P k−1,k
l,r , two corresponding points in homogeneous coordinates xk−1

l,r that
satisfy the epipolar constraints (i.e. back-project to the same 3D point) can be
transferred forwards in time to the corresponding points xkl and xkr , by means of
the respective trifocal tensors [9]. When the stereo rig is calibrated, but motion
between k− 1 and k is unknown, both tensors can be parametrized by the rigid
transformation T k−1,k

l of the left camera frame, as well as differentiated through
the Lie algebra of the Euclidean group.
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Fig. 1. Forwards re-projection after 3D triangulation.

For almost parallel configurations, we simplify the formulation and address
normalization issues by considering only rectified images, and casting the trifocal
transfer into a mere forwards reprojection (Fig. 1), given by:

1. (2D-3D) Structure estimation from the pair at k − 1, by triangulation in
homogenous coordinates
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2. (3D-2D) Motion estimation, by minimizing photometric error of re-projected
points at k

so that the point cloud is computed out of the motion estimation loop.

3 STRUCTURE ESTIMATION

As a starting point, we need a rectified stereo pair at time k − 1. This can be
done using knowledge about the external and internal camera matrices, through
an accurate calibration procedure [11, Chap.7][12], for example using a planar
chessboard pattern.

Once that camera parameters are known, stereo rectification [11, Chap.11]
consists in rotating both cameras around the respective center, until the Carte-
sian frames are aligned, and the transformation becomes a pure horizontal trans-
lation. Furthermore, it requires to align also the projection planes, so that inter-
nal parameters become equal.

This is equivalent to apply a planar homography to the left and right image

Hl = KlRlK
−1
l ; Hr = KrRrK

−1
r (1)

where Hl,r are functions of the internal camera parameters Kl,r and the rotation
matrices Rl,r that align the two camera frames1.

In the end, we obtain the following projection matrices:

Pl =

f 0 px 0
0 f py 0
0 0 1 0

 ; Pr =

f 0 px −fTx
0 f py 0
0 0 1 0

 (2)

where the rectified parameters are given by the common focal length f , the
principal point (px, py), and the horizontal baseline Tx, expressed in metric units
(e.g. mm).

Subsequent triangulation becomes then a trivial task: let (xl, yl), (xr, yl) be
a pair of corresponding poins, where yl ≡ yr is the common coordinate, and let
X = (x, y, z, w) be the homogeneous coordinates of the corresponding 3D point,
referred to the left camera frame. Then, we have

x =
xl − px
f

; y =
yl − py
f

; z = 1; w =
xl − xr
fTx

(3)

where coordinates are defined up to a scale factor, so we are free to choose
z = 1, that keeps numerical stability and simplifies the computation of inverse-
compositional Jacobians (see eq. 15). This representation also allows points at
infinity, given by w = 0.

1 The amount of image distortion introduced depends on the convergence angle be-
tween optical axes. Therefore, it is best applied to similar and almost-parallel cam-
eras.
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In order to perform dense stereo matching we use the state-of-the-art semi-
global matching (SGM) algorithm [10],that nicely joins efficiency and robustness
properties, through dynamic programming and mutual information. In absence
of interpolation, missing disparities will occur over more or less large regions, so
that the 3D point cloud will not be 100% dense.

4 MOTION ESTIMATION

The point cloud Xk−1 is now re-projected on the next frame k by x̄klȳkl
z̄kl

 = PlTX
k−1;

 x̄krȳkr
z̄kr

 = PrTX
k−1 (4)

where T is the relative motion of left camera2 and Pl, Pr are the constant matrices
defined in (2), followed by normalization

xkl =
x̄kl
z̄kl

; ykl =
ȳkl
z̄kl

(5)

We parametrize motion by using Lie algebras [13]

T = T̄ exp

(
6∑
i=1

δpiGi

)
(6)

where Gi are the generators, providing a basis for the tangent space to the
Euclidean group

6∑
i=1

δpiGi =

[
[ω]× w
0 0

]
(7)

using [·]× to denote the (3× 3) cross-product matrix, and δp = [ω,w] the twist
velocity, so that the derivatives at δp = 0 (i.e. T = T̄ ) are

∂

∂δpi


xkl
ykl
xkr
ykr


δp=0

=

[
Jn
(
x̄kl , ȳ

k
l , z̄

k
l

)
Pl

Jn
(
x̄kr , ȳ

k
r , z̄

k
r

)
Pr

]
T̄GiX

k−1 (8)

for i = 1, . . . , 6, where

Jn(x̄, ȳ, z̄) =

[
1/z̄ 0 −x̄/z̄2
0 1/z̄ −ȳ/z̄2

]
(9)

is the Jacobian of the normalization (5), evaluated at T̄ .

2 Notice that in this representation we have T ≡ T k,k−1
l , i.e. the transformation from

current to previous left camera frame.
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Now we can compute the photometric error of a re-projected pair from k− 1
to k, under the transformation T̄

ekl = Ikl
(
xkl
(
T̄
)
, ykl

(
T̄
))
− Ik−1

l

(
xk−1
l , yk−1

l

)
(10)

ekr = Ikr
(
xkr
(
T̄
)
, ykr

(
T̄
))
− Ik−1

r

(
xk−1
l , yk−1

r

)
where (xkl , y

k
l , x

k
r , y

k
r ) are given by eq. (3,4,5).

Derivatives of the residual with respect to local motion parameters δpi are
finally obtained, by taking the image gradients and multiplying them by the
screen Jacobians

Jkl,i = ∇Ikl
(
xkl , y

k
l

)
· ∂

∂δpi

[
xkl
ykl

]
δp=0

(11)

Jkr,i = ∇Ikr
(
xkr , y

k
r

)
· ∂

∂δpi

[
xkr
ykr

]
δp=0

for i = 1, . . . , 6. At non-integer point coordinates (x, y), the corresponding
image values and gradients are obtained by bilinear interpolation from the four
nearest neighbors. Furthermore, we set a minimum threshold on image gradi-
ents in order to avoid uniform regions, that create ambiguities both for stereo
matching and motion estimation.

By putting together all of these quantities in vector form Jk, ek, where each
row of the (2nk−1 × 6) Jacobian is given by the above derivatives, and nk−1 is
the number of matching pairs at k − 1, we can write the normal equations for
the linearized LSE problem (

Jk,TJk
)
δp = Jk,Tek (12)

where Hk
i,j = Jk,TJk is the Hessian matrix and gki = Jk,Tek the gradient.

All of these quantities are evaluated at the current T̄ that, after solving eq.
(12), is updated to T̄ ← T̄ · exp(

∑
i δpiGi).

As a further speed-up, we apply the inverse-compositional method [7]: instead
of computing the Jacobian Jk over Ik at each iteration, we rather evaluate it
using ∇Ik−1 at the identity transform T̄ = I, and call it Jk−1

0 , so that

δp = −(Jk−1,T
0 Jk−1

0 )−1Jk−1,T
0 ek (13)

where the sign also changes, because the linearized residual now depends on T̄
through Ik−1

l,r instead of Ikl,r, as explained in [7]. The notation Jk−1
0 may create

some confusion, however we preferred it in order to underline that this is a
quantity related to the previous frame, and not to the current one.

Dropping the 0 subscript, eq. (11) becomes

Jk−1
l,i = ∇Ik−1

l Jk−1
n,l PlGiX

k−1 (14)

Jk−1
r,i = ∇Ik−1

r Jk−1
n,r PrGiX

k−1



Ego-motion estimation with bilateral transfer function 7

where image gradients are taken at (xk−1, yk−1), and Jn is also evaluated at
T̄ = I with X given by (3), so that

Jk−1
n,l =

[
1 0 −xk−1

l

0 1 −yk−1
l

]
(15)

and similarly for Jk−1
n,r .

Also considering the simple structure of Pl, Pr, this provides a very fast com-
putation. In fact, since the set of pairs is changing at each frame, J0 must be
re-computed at each k. However, the cost of doing only one evaluation becomes
negligible, with respect to the iterated point transfer and Gauss-Newton updates.

1kX

kX

1k
lI

k
lI

1k
rI

k
rI

Fig. 2. Two point clouds at adjacent frames do not exactly overlap, neither in space nor
in brightness, because of image resolution, noise, stereo matching errors, and occlusions
due to motion. Therefore, a symmetric transfer error can improve motion estimation
accuracy.

4.1 SYMMETRIC TRANSFER ERROR

The previous result applies to one-directional point transfer, where the previous
pair Ik−1

l,r plays the role of a template, reprojected onto Ikl,r. Therefore, we may
also add a backward -transfer term, parametrized by the inverse transformation
T−1, where the current stereo pair Ikl,r is the template, reprojected onto Ik−1

l,r .
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In this way we have a symmetric error, roughly requiring twice the amount of
computation for the motion estimation part3.

The main motivation for that lies in the different point clouds {Xk−1}, {Xk}
sampled at consecutive frames (see also Fig. 2): in fact, due to many factors
such as image resolution, occlusions on boundaries, brightness changes, shading
effects, missing (or mis-matched) stereo disparities etc., the two point clouds
will never exactly overlap, neither in spatial nor in brightness values, already
for a small inter-frame motion. Therefore, they provide two different sets of
measurements for the estimation of T , with a higher accuracy and robustness
with respect to the mono-lateral case.

To make an interesting comparison, in a feature-based approach the sym-
metric formulation could be applied to the geometric re-projection error, as
mentioned in [11, Chap. 4.2.2]. However, in that case temporal matching has al-
ready been performed through optical flow, so that the 4-tuple of corresponding
points (at least under ideal conditions of an exact localization) is supposed to
come from the same 3D point Xk ≡ Xk−1, and therefore no significant benefit
is observed by adding the backwards term.

The backwards re-projection error is then

ek−1
l = Ik−1

l (T̄−1)− Ikl (16)

ek−1
r = Ik−1

r (T̄−1)− Ikr

and inverse-compositional Jacobian

Jkl,i = −∇Ikl Jkn,lPlGiXk (17)

Jkr,i = −∇Ikr Jkn,rPrGiXk; i = 1, . . . , 6

The opposite sign of eq. (17) is because the backwards-projection Jacobian is
computed on the tangent space at T̄−1. In fact, we have (T̄ δT )−1 = δT−1T̄−1,
where the inverse of the exponential matrix is (eM )−1 = e−M , with M =∑6
i=1 δpiGi, and T̄ = I, so that Gi are simply replaced by −Gi.
Finally, the overall Hessian matrix is

Hi,j =

nk−1∑
l=1

Jk−1
l,i Jk−1

l,j +

nk−1∑
r=1

Jk−1
r,i Jk−1

r,j +

nk∑
l=1

Jkl,iJ
k
l,j +

nk∑
r=1

Jkr,iJ
k
r,j (18)

that is computed only once per frame, while the gradient

gi =

nk−1∑
l=1

Jk−1
l,i ekl +

nk−1∑
r=1

Jk−1
r,i ekr +

nk∑
l=1

Jkl,ie
k−1
l +

nk∑
r=1

Jkr,ie
k−1
r (19)

is updated at each step.

3 Instead, the triangulated structure at frame k, as well as Jk
0 , are re-used for the next

forwards transfer, from k to k + 1.
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Fig. 3. Frame-to-frame motion estimation errors for different versions of the car se-
quence, comparing forwards-only with symmetric transfer errors. Translations are given
in m, rotation angles in deg.

5 EXPERIMENTAL RESULTS

In order to test our formulation, we performed experiments on sequences involv-
ing simulated and real camera images.

For each sequence, comparisons are done with ground truth data, obtained
respectively by the simulation environment (hence, exact) or by different sensory
data, such as GPS/IMU or robot kinematics. The latter also require knowledge
of the rigid transform between the left camera and the sensor, obtained through
a hand-eye calibration procedure [14], to determine the transformation between
the robot TCP and the left camera frame Therefore, accurate ground truth is
provided by the direct robot kinematics, through the absolute angular mea-
surements from the joints. Since we do pure frame-to-frame estimation, without
keeping a constant structure, we only compare incremental motion T k−1,k.

The code has been implemented in C++ on a multi-core (Intel Xeon W3530)
CPU with 2.8 GHz and 5 GB RAM, however without exploiting parallelization.
Concerning processing times, for both sequences (at VGA resolution 640× 480)
we observe an average of 0.5 sec/frame using the symmetric transfer error, that
decreases to 0.25 sec/frame for the mono-lateral case, as previously explained.
However we emphasize that, on a dual-core platform, the symmetric reprojection
function can be easily splitted into the two terms (forwards and backwards) at
each LM iteration.

The car-driving simulation has been taken from a public dataset of the Uni-
versity of Auckland4, also related to the work [15]. This sequence consists of

4 http://www.mi.auckland.ac.nz
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396 stereo frames, with a baseline of 0.3 m, showing navigation on a road with
textured pavement, and forest trees surrounding it. The road goes briefly uphill
and downhill, and makes a brief left turn at the end. Several cars appear in the
field of view, from crossroads or running along the opposite lane, resulting in
outliers that are detected by the algorithm.

The original image sequence is perfecly rectified, and no image noise is
present, so that almost an ideal disparity map (dense and accurate) is obtained
from the SGM algorithm, limited to a depth range of zmin = 1m, zmax = 100m.
In this idealized scenario, we obtain good results for both the forwards and
symmetric reprojection error (top row of Fig. 3), however we already notice an
improvement in accuracy for the translation. The overall frame-to-frame trans-
lation error is around 1 cm/frame, for a motion of 50− 100 cm/frame. Rotation
errors are very low (about 0.005 deg/frame), although the car maintains almost
a constant attitude, with the exception of a left turn at the end, of about 0.3
deg/frame.

Subsequently, we tested the same sequence in the presence of image noise,
blurring and lower resolution, all of them affecting the estimated disparities and
colors. These conditions were obtained, respectively, by adding Gaussian noise
with σ = 10 in the range [0, 255], by Gaussian filtering with σ = 2.5 pixels, and
by sub-sampling to half resolution. As we can see from the related plots in Fig.
3, benefits of the symmetric error become more evident; a combined effect of
those disturbances has not yet been tested.

Next, we consider a real camera sequence, recorded by a small-baseline stereo
rig (5 cm) mounted onto an industrial manipulator, after performing stereo as
well as hand-eye calibration. The sequence consists of 1190 frames, showing a
miniature model of the Neuschwanstein castle, put on a white table and sur-
rounded by the robot arm, that performs a smooth full 6-dof trajectory. Here we
use a depth range of zmin = 0.05 m, zmax = 2 m. As a result, the average motion
error is about 0.1 mm/frame and 0.02 deg/frame, with the exception of frame
400, where an unpredicted large inter-frame motion caused an error of about 1
cm and 1 deg.

By considering the absolute errors, over a forth-and-back sweep covering
about 2 m and 360 deg, using symmetric transfer the estimated trajectory accu-
mulates a maximum drift of 25 mm and 4 deg, both corresponding to roughly 1%
final error, which is a good result since no drift reduction (e.g. by means of key-
frames selection and wide-baseline matching), is done. Using the forwards-only
transfer, the final errors grow up to 35 mm and 5 deg.

6 CONCLUSIONS

We presented an efficient and accurate method for visual odometry in rectified
stereo cameras, based on symmetric pixel transfer and photometric error mini-
mization, making use of stereo triangulation in homogeneous coordinates at both
consecutive frames. This method naturally handles normalization issues, while
efficiently splitting computation between structure and motion estimation, the
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Fig. 4. Reconstructed map (subsets of points, re-projected onto the first camera frame)
and left camera trajectories, from two different viewpoints. A few undistorted and
rectified frames are also shown.

former executed once per frame, the latter in a Levenberg-Marquardt optimiza-
tion loop, with outlier rejection and multi-resolution matching.

The current system employs a semi-global matching algorithm for comput-
ing dense stereo disparities, that can be accelerated by means of existing GPU
[16] or FPGA implementations. The same applies to the odometry algorithm,
concerning the computation of per-pixel reprojection errors and Jacobians.

Other issues may concern the robustness of the cost function to photometric
outliers, due to shading or specularity effects, global brightness and contrast
variations, as well as independently moving objects. In this context, apart from
the standard rejection scheme of the present work, further improvements may be
obtained by introducing more general cost functions, including explicit modeling
of local illumination [17], or mutual information [18].
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