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Abstract. Human pose estimation using monocular vision is a challenging prob-
lem in computer vision. Past work has focused on developing efficient inference
algorithms and probabilistic prior models based on captured kinematic/dynamic
measurements. However, such algorithms face challenges in generalization be-
yond the learned dataset.

In this work, we propose a model-based generative approach for estimating the
human pose solely from uncalibrated monocular video in unconstrained environ-
ments without any prior learning on motion capture/image annotation data. We
propose a novel Product of Heading Experts (POHE) based generalized heading
estimation framework by probabilistically-merging heading outputs (probabilis-
tic/ non-probabilistic) from time varying number of estimators to bootstrap a syn-
ergistically integrated probabilistic-deterministic sequential optimization frame-
work for robustly estimating human pose. Novel pixel-distance based perfor-
mance measures are developed to penalize false human detections and ensure
identity-maintained human tracking. We tested our framework with varied inputs
(silhouette and bounding boxes) to evaluate, compare and benchmark it against
ground-truth data (collected using our human annotation tool) for 52 video vi-
gnettes in the publicly available DARPA Mind’s Eye Year I dataset [T_] Results
show robust pose estimates on this challenging dataset of highly diverse activi-
ties.

1 Introduction

Estimating and tracking 3D pose of humans in unrestricted environments using monoc-
ular vision poses several technical challenges due to high-dimensionality of human
pose, self-occlusion, unconstrained motions, variability in human motion and appear-
ance, observation ambiguities (left/right limb ambiguity), ambiguities due to camera
viewpoint, motion blur and unconstrained lighting [[L]. Efforts at addressing this chal-
lenging problem can be broadly classified into: (i) model-based approaches, and (ii)
model-less approaches [2]]. Sminchisescu [3] alternately categorizes the research into:
(i) generative approaches and (ii) discriminative approaches. While generative approaches
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are highly generalizable, the use of stochastic sampling methods to deal with the mul-
timodal posterior/likelihood function increases their computational complexity. On the
other hand, discriminative approaches are computationally tractable (for moderate sized
training sets) but lack generalizability to unseen exemplars. However, there is always
one or more fundamental assumptions involved that there is a priori knowledge about
the physical properties (e.g. mass, inertia, limb lengths, ground plane and/or collision
geometries), the activity in the scene, calibrated camera, imagery from multiple cameras
(often in laboratory settings), availability of similar motion dataset [4I56].

No formal studies exist on which methods are employed by the human visual sys-
tem for its marvelous visual perception. However, studies have constantly shown that
humans use motion based cues (the instantaneous retinal optical flow) for instantaneous
retino-centric heading (3D translation direction), eye-body rotation, and the relative
depth of points in the world [7]. Humans appear to use motion based cues whenever
motion is present in the scene and resort to visual cues (color, texture) when no/subtle
motion is present in the scene. To the best of our knowledge, no prior work has used
motion based cues for the task of explicitly estimating human heading direction.

Our work employs a model-based generative approach for the task of human pose
estimation for general human movements in unrestricted environments. Unlike many
previous approaches, our framework is fully automatic, without using camera calibra-
tion, prior motion (motion capture database), prior activity, appearance, body size in-
formation about the scene. Evaluations on a challenging dataset (DARPA Mind’s Eye
Year I) show the robustness of the presented framework.

Research Contributions

1. Product of Heading Experts - We model the heading estimation task independent of
features/types of individual estimators using the proposed Product of Heading Ex-
perts (PoHE) based generalized heading estimation framework which probabilisti-
cally merges heading outputs from time varying number of estimators to produce
robust heading estimates under varied conditions in unconstrained scenarios.

2. Motion Cues Based Heading Estimation - We propose a novel generative model for
estimating heading direction of the subject in the video using motion-based cues
thus, significantly reducing the pose search space.

3. Decoupled Pose Estimation - We propose a sequential optimization based frame-
work optimizing the uncoupled pose states (camera/body location, body joint an-
gles) separately using a combination of deterministic and probabilistic optimization
approaches to leverage the advantages associated with each.

4. Probabilistic-Deterministic Optimization Scheme - We achieve faster convergence
to the global minima by obtaining initial guesses using population based global
optimization technique for deterministic convex optimization scheme.

5. Identity Maintained Pose Evaluation Metric - We introduce the notion of pose eval-
uation for videos with multiple humans by defining identity maintained pose eval-
uation metrics.
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Fig. 1: System diagram for human pose estimation framework.

2 Optimization Based Pose Estimation

Fig. [T provides an overview of the human pose estimation framework. We use back-
ground subtracted binary images [8] and point features at the low-level to detect/track
humans/objects in the scene, extract human silhouettes at the mid-level leading to hu-
man heading and pose/salient-point estimation/filtering at the high-level. We consider 3
position variables and 5 angular variables to define the pose of a human (Figs. 2{a)}H(c)).

2.1 Human Heading Estimation

Knowledge regarding the heading direction can significantly restrict the pose search
space and can result in better pose estimates at lower computational costs. In the past,
the task of heading estimation is not addressed separately from the actual body pose
which significantly increases the complexity of the problem. Furthermore, heading is
often modeled as a discrete variable using discriminative approaches with few possible
values [9]. Fig. Jd)] illustrates a sequence of frames where invaluable human head-
ing direction information can be inferred from following cues: (i) human silhouette
centroid, (ii) human silhouette bounding box centroid, (iii) detected human bound-
ing box centroid, (iv) area of human silhouette, (v) aspect ratio of bounding boxes,
(vi) human silhouette/bounding boxes centroid velocity (x and y coordinates), (viii)
regression/classification-based estimation of heading direction (Adaboost/Support Vec-
tor Machine), and/or (ix) optical flow.

Product of Heading Experts: We use a time evolving Product of Experts (PoE) [10]
model to optimally fuse hypothesis from various heading estimators at each instant in
time to propose a Product of Heading Experts (PoOHE). We consider each estimator
T1,T5, ..., Tk as experts for predicting the heading direction. Product of experts model
for heading ensures that the resulting model for heading is explained by all the experts.
Let 65 be the parameters associated with probability distribution of each expert ( =
[F, 32%]T in current case). Probability of any direction ¢ to be true heading of a human
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Fig. 2: Variables used in the model. (a) side view, (b) front view, and (c) top view of the
human model (d) frames from a vignette in the DARPA corpus depicting that the motion
cues provide significant information regarding the heading direction of a human. The
red arrow portrays the direction of motion of the human in the respective frame.

as explained by all the expert estimators is given by Equation T]

K
H Pk(¢\9k)
p(¢|eT179T27“'59TK) = k;1 (1)
fkl:llpk(¢|9k)d¢

This model results in robust estimation because it allows to incorporate (or leave
out) arbitrary number of estimators, even those providing non-probabilistic output,
which could also be incorporated using Equation

A wealth of information about the heading direction of the human torso can be in-
ferred solely from information regarding the human motion. In the current implementa-
tion, we focus on a POHE based generative heading estimation method using (i) human
silhouette centroid, and (ii) human silhouette bounding box centroid. Once a silhouette
corresponding to a detected/tracked human is found in a frame, internal holes/gaps are
filled [L1]] for subsequent use in the pose-estimation process. The silhouette centroid
and the silhouette bounding box centroid are then evaluated for every valid frame and
any gaps are filled using linear interpolation. We model the 3D heading direction as a
continuous variable and approximate it as the 2D heading angle (which is the projected
3D heading angle) which works fairly well as will be evident in results. Fig. [3a] depicts
two human silhouettes from two different frames (N frames/dt time apart) in a video.
The red triangle (solid line) connects the centroid of the two silhouettes ((z1, y1) to
(22, y2)) and the blue triangle (dashed line) connects the centroid of the two silhouette
bounding boxes ((xp1, Yp1) t0 (xp2, Yp2))- It can be seen that the true silhouette centroid
and the silhouette bounding box centroid information are corrupted by the merging of
the silhouette due to the shadow in the original human silhouette. In cases where partial
silhouette information is obtained, the silhouette centroid tends to be biased towards
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Fig. 3: Human heading estimation modeling. (a) Silhouette and bounding box centroid
modeling of human heading estimation, and (b) Outlier detection in angular data using
optimization based sector positioning.

the region where the foreground pixels are concentrated. However, the bounding box
centroid locates the centroid of the region irrespective of the foreground pixel density.
By merging information from both the sources we tend to reduce the effect of noise in
estimating heading direction. Equation [2]is used to evaluate an estimate of the heading
direction given the centroid information for two frames.

iy = tan~! (H) @

L2 — T1

We build a Gaussian distribution for each heading estimate considering the distri-
bution mean to be situated at the corresponding estimated value and the variance to be
equal to the variation in the value from its vector mean in a local temporal window. In-
tuitively, we seek to weight the heading direction changes with uncertainty within each
temporal window. Please note that directional statistics [[12] is required to deal with the
heading angle data.

p(¢k(t)) = N(ux(t), 07), 3)

where, 02(t) = ¢1.(t) — o (t), du(t) = Arg(pr), k € {s,sb}, pr = & SN | 2,
Zkn = €08 P (t) + i sin ¢x(t)

QOutlier detection in angular data: The raw heading estimates obtained are noisy due
to noise in silhouettes and so contain outliers which are eliminated using outlier detec-
tion. For outlier detection, we use an optimization based sector positioning technique
in which the data lying within a sector is considered to be fit for evaluating the heading
estimate within a local temporal window (Fig. [3b). The green circles on the main cir-
cle represents good samples and the red crosses represents the outliers. The blue sector
represents the angular region (of angle 6, = 7/2 degrees) samples in which are con-
sidered to be good and valid for heading estimation. Initially the sector is aligned with
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the main quadrant (9, = 0) and the sector positioning () is determined by solving
the optimization problem in (@) which maximizes the number of samples lying in the
angular region:

arg rr})ax(max #{0,10 e bin(k)}) k=1..K, K = 20—: “4)
q
where the symbol ‘# stands for angular histogram. The optimization is carried out in
local temporal sliding window to remove the outliers and Gaussian filtering is carried
out on the filtered data considering the same temporal window. Intuitively, we rely on
the continuity of motion i.e. the human heading direction does not change within a
fraction of a second.

2.2 Optimization Based Body Position Estimation

We formulate the problem of determining the position of the body relative to the camera
as two optimization subproblems.

Z Coordinate Estimation: The camera depth (z coordinate) estimation is based on
the fact that an actual body with proportional dimensions and similar orientation in
space will roughly occupy a similar area in an actual image as that of the model in
the synthetic image. We set up an optimization problem based on the difference in the
silhouette area in the original image and the model generated image, and minimize the
square of this difference as in Fig. 4] (c, is the z coordinate of the camera in the model
coordinate system, A, and A,, is the silhouette area in the original and model generated
image, respectively.). We also specify an upper and lower bound on z coordinate such
that the model generates a reasonable area in the synthetic image.

X,Y Coordinate Estimation: The estimation of the x, y coordinate is based on the
fact that the centroid of the silhouette in the original image and the model generated
image should roughly be the same for model with similar orientation. We setup another
optimization problem in which square of the distance between the centroid of the orig-
inal silhouette and the model generated silhouette is minimized constraining the (X,y)
coordinates such that the model silhouette is within the synthetic image as in Fig. ] (
(¢s,¢y) is the (x, y) coordinate of the camera in the model coordinate system, (Z¢o,Yco)
and (Z¢m,Yem) 18 the centroid of the silhouette in the original and model generated
image, respectively).

2.3 Optimization Based Pose Estimation

For a given camera position, the difference between original and model generated im-
ages is minimum when the correct limb pose is achieved. The absolute subtracted image
(of model generated and actual human silhouettes) measures the extent of mismatch and
serves as the objective function (Fig. where the subscript i indicates i*”* joint in the hu-
man body model, I, and I,,, denotes the actual and model generated silhouette image,
respectively ). Limits on the human joint angles are imposed based on the biomechani-
cal constraints set by the human body [13].
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3 Optimization Approach

The probabilistic optimization techniques are good at identifying promising areas of
the search space (exploration), but slow at fine-tuning the approximation to the min-
imum (exploitation) [14]. Thus, a much faster convergence to the local minima can
be achieved if initial guesses are obtained using population based global optimization
technique (Genetic Algorithm (GA) [15]) and then convergence to the global optima is
accomplished using convex optimization techniques.

3.1 Convex Optimization

We use Augmented Lagrangian method (ALM) [[16] for solving the optimization prob-
lem considering its advantage over penalty methods which are less robust due to sensi-
tivity to penalty parameter chosen. In order to solve the ND unconstrained optimization
subproblem, we use Powell’s conjugate direction method [[17] as it requires only the
objective function value and is more robust to noise in function evaluation, which is
often the case with image based objective functions. For 1D optimization subproblem
we employ Golden section with Swann’s bounding [[18]].

3.2 Optimization Framework

The optimization subproblems in Fig. ] are highly coupled and cannot be solved inde-
pendently. While a weighted/combined optimization problem may be posed, it suffers
from multiple local minima as well as sensitivity to weightage of each objective. Hence,
in lieu of this, we adopt a sequential optimization framework as shown in Fig.[4] Once,
we have the heading estimates for each frame in the video, we first optimize for the
camera parameters (relative location of body with respect to camera) and then for the
pose assuming fixed geometries for the human body parts. In order to deal with the
well-known problem of pose ambiguity due to symmetric nature of human body and
keep the framework computationally feasible, we only resort to GA when either the
difference between the joint angles for the the left and the right leg are below a cer-
tain threshold or the joint angle limits are exceeded, to obtain good initialization for
pose. The presented framework is executed on each frame in the video to estimate two
corresponding poses (left leg forward and right leg forward).

4 Experiments

We evaluated the proposed human pose estimation framework on 52 challenging video
vignettes in the DARPA Mind’s Eye Year ]E]dataset (resolution: 1280 x 720) of different
activities (collide, enter, follow, flee, leave, run, jump, walk, approach, fall, pass, stop,
replace, take, turn, throw, kick, go, hold, get) performed by multiple people interacting
with other entities (humans/objects) in outdoor scenes.

! Available at https:/sites.google.com/site/poseestimation/
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Fig. 4: Summary of optimization framework implemented for pose estimation on each
frame.

Inputs: In order to thoroughly test the system performance we test the pose estima-
tion framework on three different types of inputs: (i) Manually Labeled Silhouette
(MLS) and Manually Labeled Human Bounding Boxes (MLHBB) for a selected set
of the videos (6 in number) where it was possible to get good pose estimates as sig-
nificant lower limb movement was involved. This trial was carried out to establish the
benchmark against which to compare the performance of the algorithm with inputs of
varying fidelity; (ii) Background Subtracted Silhouette (BSS), Detected Human Bound-
ing Boxes (DHBB) [19]], and Detected Object Bounding Boxes (DOBB) for the entire
dataset to establish the system performance over a larger set and all algorithm generated
inputs. We observed that the human detection results contains a lot of false positives
along with ambiguity in entity identity while tracking; (iii) Background Subtracted Sil-
houette (BSS), Tracked Human Bounding Boxes (THBB) and Detected Object Bound-
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ing Boxes (DOBB) for the entire corpus again to establish the system performance over
a large set and more reliable human detections [20].

Pose Evaluation Metrics: Human annotation GU]E] was developed in order to assess
and quantify the performance of the pose estimation algorithm. 13 salient points on
human body: head center, right shoulder, right elbow, right hand, left shoulder, left
elbow, left hand, right hip, right knee, right foot (ankle), left hip, left knee, left foot
(ankle) were manually marked for all videos in the corpus. We build upon the pose
error metric proposed in [21] and define the following pose evaluation metrics for each
vignette in the corpus: (a) Average error per frame as in (3, (b) Average error per
marker per frame (Dgepmpy) (average of (E]) for number of markers) , (c) Average error
for different markers per frame as in (6).

R 1 N M=13
Dll@pf(va) = N <Z Z ||Im - i‘m|2> (5)

n=1 m=1

N
N 1 N
Daedmpf(vavm):N <Z|xm_xm|1> (6)

n=1

where N is the number of processed frames in the considered vignette. For vignettes
with multiple humans, we first associate the estimated pose tracks with the ground truth
pose tracks by using the nearest neighbor approach on the entire track, as in (7).

N M=13 P
. . . 1
Ji = argmin E E Zmk — Zmill1, Bz = 7 ( E DI> , x€{aepf, aecpmpf, aedmpf}
n=1 m=1 n=1
(7

where @1, Zm; are the coordinates of the m!* marker in the ground truth data of the
kth person and in the estimated data of the i!" person, respectively, j; is the ground
truth track associated with the i*" detected track, K is the number of humans present
in the ground truth and P is the number of detected humans. The error over the entire

corpus is the average error obtained considering all the vignettes in the corpus as in

5 Results

Fig.[6] depict the stick figure and bounding boxes superimposed over the original video
frame for vignettes corresponding to the verbs “pass”, “collide”, and “run” in the dataset,
respectively. As can be seen the tracking is carried out while maintaining the identity of
people in the video. Please note that the presented framework works well with different
types of verbs? and does not make assumptions regarding the activity in the scene which
is an unstated assumption in many state-of-the-art pose trackers.

Fig. [5] shows the error metric obtained for the two probable pose estimates using
BBSS and THBB. Table. [I| shows a comparison of the pose evaluation metric for dif-

ferent inputs described in the Section 4 As expected, the average error per frame per

2 Available at https:/sites.google.com/site/poseestimation/
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Fig.5: Error metric on the two probable pose estimates using the BSS, THBB and
DOBB. (a) Average error (L2 norm) per marker per frame, and (b) Average error distri-
bution across markers (L1 norm) per frame.

marker increased from a value of 6 to 13 when BSS, DHBB, DOBB are provided as
input as opposed to MLS, MLHBB. However, the error reduced from 13 to 10 when
tracked human bounding box detections are used showing the performance of the pose
estimation framework over the entire dataset. Please note that an average human head
for the current dataset has a dimension of ~50 pixels (ground truth), so an accuracy
of around 10 pixels (L2 norm) and 40 pixels (L1 norm) is fairly good. Since, the cur-
rent framework does not reliably distinguish between the left and the right leg the error
corresponding to the foot and the knee markers is relatively high (Fig. [5b).

6 Discussion

In this work, we propose a Product of Heading Experts (PoHE) based generalized head-
ing estimation framework bootstrapping an integrated probabilistic-deterministic opti-
mization framework for human pose estimation in uncalibrated monocular videos. We
benchmarked the standalone performance of the pose estimation framework against
ground-truth data for the DARPA video corpus using the proposed pixel-distance based
metrics emphasizing identity maintained human tracking and low false human detec-
tions. Results showed the robustness and performance of the proposed framework.
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Average Error | Average Error for
Average Error .
. Per Frame Per | Different Markers
Input/Error Metric Per Frame (L2
Norm) (pixels) Marker (L2 Per Frame (L1
PIxets Norm) (pixels) Norm) (pixels)
MLS + MHLBB (6 vignettes) 80 6 17
BSS + DHBB + DOBB (52 vignettes) 166 13 65
BSS + THBB + DOBB (52 vignettes) 128 10 43
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Fig. 6: Raw pose estimation results for the verbs “pass”, “collide”, and “run” using the
system generated inputs. N.B. Identity of the persons is maintained before and after
collision for the verb “collide”. (Please view in color)
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