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Abstract. ASPDA is a framework for expressing defeasibility in Answer Set
Programs via so-called argumentation theories, proposed by Wan, Kifd
Grosof in [2]. The authors describe a reduction from ASPDA to plainwers
Set Programming, which however exponentially inflate programs. Innibiis,
we present an alternative reduction, which does not suffer from tbidgm. As

a side-effect, complexity results for ASPDA are established.

1 Introduction

ASPDA is a framework for expressing defeasibility in Ansv@at Programs via so-
called argumentation theories, proposed by Wan, Kifer,Grasof in [2]. ASPDA pro-
grams provide a very general means for defeating literalgales and capture several
earlier proposals for defeasibility in logic programmirg.[2], the authors also pro-
vide a reduction from ASPDA to ASP (in the sense of [1]). Hoarethis reduction
can easily lead to ASP programs that are exponentially ldhge the original ASPDA
programs. In this paper, we show that this exponential behamot necessary, by pro-
viding an alternative reduction. Different to the reduntia [2], ours introduces new
symbols and also needs a concept of rule identifier, whicherpatving correctness of
the reduction slightly more cumbersome. However, thiscédn immediately provides
complexity results for ASPDA, in particular showing thair{ually all) computational
tasks over ASPDA programs have the same complexity as thveseA&P programs.

2 ASPDA: Syntax and Semantics

We briefly review syntax and semantics of ASPDA, for detaiks nefer to [2]. The
language assumes a set of atoms; in [2] this set is not fixed weassume it to consist
of first-order or propositional atomic formulas. There ave kinds of negation, and a
literal is either an atorl, neg A, naf A, ornaf neg A. A rule is of the form

QrLyV---V Ly :— Body (1)

wherek > 0, r is a term and the tag of the rule (different rules can sharsahee rule
tag), eachl; (0 < ¢ < k) is a literal, andBody is a conjunction of literals. Given a rule
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of the form (1), the termh(r, L;) (handle(r, L;) in [2]) is the handle for each of the
head literald; (0 < ¢ < k). Each rule can be either defeasible or strict.

An argumentation theonAT is a set of strict rules of the form (1), which makes
use of a distinguished prediceiée feated 41 that may occur only in rule heads. The
subscriptAT is usually omitted when the context is clear. An answer-sag@am with
defaults and argumentation theories (ASPDA) is a set okrafehe form (1), which
may comprise an argumentation theory. In [2], the arguntiemtéheory is usually con-
sidered separated from the program, but since it is syotditiand semantically the
same as a special kind of program, we consider it as part gfrtigram for simplicity.

Herbrand universe and base are defined in the standard waye e Herbrand
base consists not just of ground atoms, but of graumtifree literals. An (Herbrand)
interpretation is a subset of the Herbrand base, and we ségllrae consistent interpre-
tations, i.e. no interpretation contains bothandneg A.

A naf-free literalL is true in an interpretationif L € I,naf Listrueinlif L ¢ I,
otherwise these literals are falselinA strict rule is satisfied iff if at least one head
literal is true inI whenever all body literals are true in A defeasible rule of the form
(1) is satisfied if it either meets the condition for a strigeror if $de feated(h(r, L;))
istrue inl for all 0 < 7 < k. As usual, an interpretatiohis a model of an ASPDA
programP if I satisfies all rules iP. A model of a progranP is minimal if none of
its subsets is a model @f.

For defining answer sets, [2] define the quotiéntor an ASPDA progranP and
an interpretatior in four steps: (i) Delete every rule iR in which anaf body literal
is false inI; (ii) in each defeasible rule of the form (1), delete Bjlthat are true irT; if
all L; are deleted, delete the complete rule; (iii) remove.atl-literals of the remaining
rules; (iv) remove tags from the remaining rules. An intetation/ is an answer set of
an ASPDAP if I is a minimal model of;.

Traditional ASP can be viewed as a special case of ASPDA. ASpDgrams that
have no defeasible rules and empty argumentation theorpeatmewed as ASP pro-
grams. It is easy to show that the quotié}moincides with the redud?’ [1] for such
programs (the only difference are the rule tags, which agéeivant for these programs).

3 A Polynomial Reduction from ASPDA to ASP

In [2] a reduction from ASPDA to ASP is provided that pressremswer sets, which
however, produces an exponential number of rules in gendkaprovide an alternative
reduction, which does not suffer from this exponential éase in size.

Definition 1. Given an ASPDAP, for each defeasible rule of the form (1), create

$der(r,L1) V ---V $der(r, L) : — Body,naf $rdef(rid) 2
$rdef(rid): — $defeated(h(r, L1)), ..., $defeated(h(r, L)) (3)

where$rdef and$der are fresh predicates;:d is a rule identifier (obtained for exam-
ple by the index of a fixed enumeration of rules; note that the tag cannot serve as



the rule identifier), and for each < i < k create

L; :— S$der(r,L;) (4)
$der(r, L;) :— L;,naf $defeated(h(r, L;)) (5)
:— S$der(r, L;), $defeated(h(r, L;)) (6)

For each strict rule, delete its rule tag. We refer to the ahéal program asr(P).
Example 1.For@r a V b : — the reduction of [2] generates

a Vb :— naf $defeated(h(r,a)),naf $defeated(h(r,b))
a :— naf $defeated(h(r,a)), $defeated(h(r,b))
b:— $defeated(h(r,a)),naf $defeated(h(r,b))

(and also: —$de feated(h(r, a)), $de feated(h(r,b)), but this seems to be due to a
typo). The reduction of Definition 1 generates

$der(r,a) V $der(r,b) : — naf $rdef(rid) a:— $der(r,a) b:— $der(r,b)
$rdef(rid) : — $de feated(h(r,a)), $de feated(h(r,b))

$der(r,a) : — a,naf $defeated(h(r,a)) :— $der(r,a), $de feated(h(r, a))
$der(r,b) : — b,naf $defeated(h(r,b)) :— $der(r,b), $de feated(h(r,b))

In general, for each rule with head literals, the reduction of Definition 1 creatést 2
rules, while the one of [2] creat@$ — 1 rules.

Theorem 1. Given an ASPDAP, there is a one-to-one relationship between the answer
sets of P and those oftr(P). In particular, for each answer sefl of P, tr(A) =

AU {$der(r, L) | a defeasible rule with tag in P exists with true body and in its
head, s.t$defeated(h(r,L)) ¢ AandL € A }U{$rdef(rid) | a defeasible rule with
identifierrid and tagr in P exists s.t. for each head literdl, $de feated(h(r, L)) € A
holds} is an answer set df-(P), and these are the only answer set#:/dfP).

Proof. Assume thatd is an answer set aP (hence a minimal model of). We show
thattr(A) is a minimal model o%. First observe that for each rule #a which is
deleted in step (i) of the definition e§ the rule itself or its corresponding rule (4) is

not in Zgig either. Moreover, a defeasible rule infor which $de feated(h(r, L)) €

A holds for all head literald. is not in % due to step (i) of the definition of;,
and no reduct of the corresponding rule (4) is%ﬁ%u% either, since by construction
$rdef(rid) € tr(A). For all other defeasible rules of form (1) i (i.e. those not
deleted in steps (i) and (ii) of the definition §f), & contains\/, . L : — Body', s.t. K
is the set of head literals s$tde feated(h(r, L) ¢ A andBody’ is Body withoutnaf-

literals. ;:Ei; instead ha8der(r, L1)V---V$der(r, Ly) : — Body', $der(r, L;) : — L;
for L; s.t.8de feated(h(r, L;)) ¢ A and also all rules of type (3), (4), and (6). By con-
struction,tr(A) is a model ofiigig. To see minimality, observe thétler(r, L;) take

the place ofL; in rule heads of reducts i TEZ;. So if there is a modeN C ¢r(A) for




o)
of a rule of type (4). Removing other literals fram( A) cannot yield a model oj'%.
Assume now thad/ is an answer set far(P). We show thaf\l = ¢r(A) for some
answer setd of P. Let M’ denote the sel/ after removing all literal$der(r, L) and
$rdef(rid). First we note thal/’ satisfies all strict rules in the reduﬁr,. Concerning
defeasible rules, ifrdef(rid) € M, then the rule with identifierid is not in .
Otherwise, rule (2) is int% and a corresponding ruleé obtained fromr is also in
%. Note thatr’ in general has fewer head literals than (2), however, werobdhat
for eachL; that was removed from when creating”’ in 15, there is a rule (6) and
for each of thesd;, $de feated(h(r,L;)) € M' and$defeated(h(r,L;)) € M and
so$der(r,L;) ¢ M. Hence if rule (2) has a true body W, $der(r, L;) € M holds
only if $defeated(h(r,L;)) ¢ M and$defeated(h(r,L;)) ¢ M'. Moreover, rules
(4) enforce thatl; € M andL; € M’. It follows that all rules in-; that stem from
defeasible rules are satisfied By’ and hencell’ is a model of%. Minimality of
M’ then follows from the minimality of\/ and the fact that the satisfaction patterns of
rule heads of the reducts of defeasible rules and the cameamy reducts of rules (2)
coincide. Thereford/’ is an answer set d? and M = ¢r(M’).

not containing somé&der(r, L;), then alsal; must not be in that model because

The computational complexity of reasoning tasks over ASRIDdgrams was left
open in [2]. It is obvious that the reduction in Definition Insuin polynomial time,
hence the reduction provides a tight upper bound for the t®xtp of all computa-
tional tasks of ASPDA, where the corresponding task for AS&t ieast polynomial.

Corollary 1. Given a computational task over ASP programs wwhich is cetagbr
located a complexity class that contaifs the corresponding task over ASPDA pro-
grams is located in the same complexity class.

Since traditional ASP programs are a special case of ASP@Rer bounds extend
trivially from ASP to ASPDA.

4 Conclusion

We have provided an alternative reduction from ASPDA to A8fch avoids an ex-
ponential increase in space and thus is an immediate impr@veover an analogous
reduction in [2]. Contrary to the earlier reduction, it makese of additional symbols
and also needs the concept of a rule identifier. As an immed@isequence of the re-
duction, we obtain results on the computational complexfitgomputational tasks over
ASPDA, which coincide with those of ASP for practically aflevant tasks.
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