Skip to main content

Rugged and Elementary Landscapes

  • Chapter
  • First Online:

Part of the book series: Natural Computing Series ((NCS))

Abstract

The landscape of an optimization problem combines the fitness (or cost) function f on the candidate set X with a notion of neighborhood on X, typically represented as a simple sparse graph. A landscape forms the substrate for local search heuristics including evolutionary algorithms. Understanding such optimization techniques thus requires insight into the connection between the graph structure and properties of the fitness function. Local minima and their gradient basins form the basis for a decomposition of landscapes. The local minima are nodes of a labeled graph with edges providing information on the reachability between the minima and/or the adjacency of their basins. Barrier trees, inherent structure networks, and funnel digraphs are such decompositions producing “coarse-grained” pictures of a landscape. A particularly fruitful approach is a spectral decomposition of the fitness function into eigenvectors of the graph Laplacian, akin to a Fourier transformation of a real function into the elementary waves on its domain. Many landscapes of practical and theoretical interest, including the Traveling Salesman Problem with transpositions and reversals, are elementary: Their spectral decomposition has a single non-zero coefficient. Other classes of landscapes, including k-satisfiability (K-SAT), are superpositions of the first few Laplacian eigenvectors. Furthermore, the ruggedness of a landscape, as measured by the correlation length of the fitness function, and its neutrality, the expected fraction of a candidate’s neighbors having the same fitness, can be expressed by the spectrum. Ruggedness and neutrality are found to be independently variable measures of a landscape. Beyond single instances of landscapes, models with random parameters, such as spin glasses, are amenable to this algebraic approach. This chapter provides an introduction into the structural features of discrete landscapes from both the geometric and the algebraic perspective.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Angel, V. Zissimopoulos, On the classification of NP-complete problems in terms of their correlation coefficient. Discr. Appl. Math. 99, 261–277 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Barnes, S. Dokov, R. Acevedoa, A. Solomon, A note on distance matrices yielding elementary landscapes for the TSP. J. Math. Chem. 31, 233–235 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. J.W. Barnes, B. Dimova, S.P. Dokov, A. Solomon, The theory of elementary landscapes. Appl. Math. Lett. 16, 337–343 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. O. Bastert, D. Rockmore, P.F. Stadler, G. Tinhofer, Landscapes on spaces of trees. Appl. Math. Comput. 131, 439–459 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. K. Binder, A.P. Young, Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986)

    Article  Google Scholar 

  6. T. Bıyıkoğlu, J. Leydold, P.F. Stadler, in Laplacian Eigenvectors of Graphs: Perron-Frobenius and Faber-Krahn Type Theorems. Lecture Notes in Mathematics, vol. 1915 (Springer, Heidelberg, 2007)

    Google Scholar 

  7. Z. Burda, A. Krzywicki, O.C. Martin, Network of inherent structures in spin glasses: scaling and scale-free distributions. Phys. Rev. E 76, 051107 (2007)

    Article  MathSciNet  Google Scholar 

  8. F. Chicano, L.D. Whitley, E. Alba, A methodology to find the elementary landscape decomposition of combinatorial optimization problems. Evol. Comp. (2011). doi:10.1162/EVCO_a_00039

    Google Scholar 

  9. B. Codenotti, L. Margara, Local properties of some NP-complete problems. Technical Report TR 92-021, International Computer Science Institute, Berkeley, 1992

    Google Scholar 

  10. E.B. Davies, G.M.L. Gladwell, J. Leydold, P.F. Stadler, Discrete nodal domain theorems. Lin. Algebra Appl. 336, 51–60 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. B. Dimova, J.W. Barnes, E. Popova, Arbitrary elementary landscapes & AR(1) processes. Appl. Math. Lett. 18, 287–292 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Dimova, J.W. Barnes, E. Popova, E. Colletti, Some additional properties of elementary landscapes. Appl. Math. Lett. 22, 232–235 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. J.P.K. Doye, Network topology of a potential energy landscape: a static scale-free network. Phys. Rev. Lett. 88, 238701 (2002)

    Article  Google Scholar 

  14. G. Dueck, New optimization heuristics: the great deluge algorithm and the record-to-record travel. J. Comp. Phys. 104, 86–92 (1993)

    Article  MATH  Google Scholar 

  15. A.M. Duval, V. Reiner, Perron-Frobenius type results and discrete versions of nodal domain theorems. Lin. Algebra Appl. 294, 259–268 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Fiedler, Algebraic connectivity of graphs. Czechoslovak Math. J. 23, 298–305 (1973)

    MathSciNet  Google Scholar 

  17. C. Flamm, I.L. Hofacker, P.F. Stadler, M.T. Wolfinger, Barrier trees of degenerate landscapes. Z. Phys. Chem. 216, 155–173 (2002)

    Google Scholar 

  18. C. Flamm, B.M.R. Stadler, P.F. Stadler, Saddles and barrier in landscapes of generalized search operators, in Foundations of Genetic Algorithms IX, ed. by C.R. Stephens, M. Toussaint, D. Whitley, P.F. Stadler. Lecture Notes Computer Science, vol. 4436 (Springer, Berlin/Heidelberg, 2007), pp. 194–212. 9th International Workshop, FOGA 2007, Mexico City, 8–11 Jan 2007

    Google Scholar 

  19. W. Fontana, P.F. Stadler, E.G. Bornberg-Bauer, T. Griesmacher, I.L. Hofacker, M. Tacker, P. Tarazona, E.D. Weinberger, P. Schuster, RNA folding landscapes and combinatory landscapes. Phys. Rev. E 47, 2083–2099 (1993)

    Article  Google Scholar 

  20. S. Fortunato, Community detection in graphs. Phys. Rep. 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  21. R. García-Pelayo, P.F. Stadler, Correlation length, isotropy, and meta-stable states. Physica D 107, 240–254 (1997)

    Article  Google Scholar 

  22. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman, San Francisco, 1979)

    MATH  Google Scholar 

  23. P. Garstecki, T.X. Hoang, M. Cieplak, Energy landscapes, supergraphs, and “folding funnels” in spin systems. Phys. Rev. E 60, 3219–3226 (1999)

    Article  Google Scholar 

  24. L.K. Grover, Local search and the local structure of NP-complete problems. Oper. Res. Lett. 12, 235–243 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Happel, P.F. Stadler, Canonical approximation of fitness landscapes. Complexity 2, 53–58 (1996)

    Article  Google Scholar 

  26. D. Heidrich, W. Kliesch, W. Quapp, in Properties of Chemically Interesting Potential Energy Surfaces. Lecture Notes in Chemistry, vol. 56 (Springer, Berlin, 1991)

    Google Scholar 

  27. J. Holland, Adaptation in Natural and Artificial Systems (MIT, Cambridge, 1975)

    Google Scholar 

  28. W. Hordijk, P.F. Stadler, Amplitude spectra of fitness landscapes. Adv. Complex Syst. 1, 39–66 (1998)

    Article  MATH  Google Scholar 

  29. L. Kallel, B. Naudts, C.R. Reeves, Properties of fitness functions and search landscapes, in Theoretical Aspects of Evolutionary Computing, ed. by L. Kallel, B. Naudts, A. Rogers (Springer, Berlin Heidelberg, 2001), pp. 175–206

    Chapter  Google Scholar 

  30. K. Karhunen, Zur Spektraltheorie Stochasticher Prozesse. Ann. Acad. Sci. Fennicae, Ser. A I 34, 7 (1947)

    Google Scholar 

  31. S.A. Kauffman, The Origin of Order (Oxford University Press, New York/Oxford, 1993)

    Google Scholar 

  32. S.A. Kauffman, S. Levin, Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128, 11–45 (1987)

    Article  MathSciNet  Google Scholar 

  33. S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  34. K. Klemm, C. Flamm, P.F. Stadler, Funnels in energy landscapes. Europ. Phys. J. B 63, 387–391 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. W.B. Langdon, 2-bit flip mutation elementary fitness landscapes, in 11th International Workshop on Foundations of Genetic Algorithms, FOGA 2011, Schwarzenberg, ed. by H.G. Beyer, W.B. Langdon (ACM, 2011), pp. 25–42

    Google Scholar 

  36. G. Lu, R. Bahsoon, X. Yao, Applying elementary landscape analysis to search-based software engineering, in 2nd International Symposium on Search Based Software Engineering, Benevento (IEEE Computer Society, Los Alamitos, 2010), pp. 3–8

    Google Scholar 

  37. C.A. Macken, P.S. Hagan, A.S. Perelson, Evolutionary walks on rugged landscapes. SIAM J. Appl. Math. 51, 799–827 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  38. M. Mann, K. Klemm, Efficient exploration of discrete energy landscapes. Phys. Rev. E 83(1), 011113 (2011)

    Google Scholar 

  39. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  40. M. Mézard, G. Parisi, M. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987)

    MATH  Google Scholar 

  41. P.G. Mezey, Potential Energy Hypersurfaces (Elsevier, Amsterdam, 1987)

    Google Scholar 

  42. B. Mohar, Graph laplacians, in Topics in Algebraic Graph Theory, Encyclopedia of Mathematics and Its Applications, vol. 102, ed. by L.W. Beineke, R.J. Wilson (Cambridge University Press, Cambridge, 2004), pp. 113–136

    Google Scholar 

  43. K.i. Okazaki, N. Koga, S. Takada, J.N. Onuchic, P.G. Wolynes, Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: structure-based molecular dynamics simulations. Proc. Natl. Acad. Sci. U.S.A. 103, 11844–11849 (2006)

    Google Scholar 

  44. V.M. de Oliveira, J.F. Fontanari, P.F. Stadler, Metastable states in high order short-range spin glasses. J. Phys. A: Math. Gen. 32, 8793–8802 (1999)

    Article  MATH  Google Scholar 

  45. R. Palmer, Optimization on rugged landscapes, in Molecular Evolution on Rugged Landscapes: Proteins, RNA, and the Immune System, ed. by A.S. Perelson, S.A. Kauffman (Addison-Wesley, Redwood City, 1991), pp. 3–25

    Google Scholar 

  46. D.L. Powers, Graph partitioning by eigenvectors. Lin. Algebra Appl. 101, 121–133 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  47. R. Rammal, G. Toulouse, M.A. Virasoro, Ultrametricity for physicists. Rev. Mod. Phys. 58, 765–788 (1986)

    Article  MathSciNet  Google Scholar 

  48. C.M. Reidys, P.F. Stadler, Neutrality in fitness landscapes. Appl. Math. Comput. 117, 321–350 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  49. C.M. Reidys, P.F. Stadler, Combinatorial landscapes. SIAM Rev. 44, 3–54 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  50. H. Rieger, The number of solutions of the Thouless-Anderson-Palmer equations for p-spin interaction spin glasses. Phys. Rev. B 46, 14655–14661 (1992)

    Article  Google Scholar 

  51. D. Rockmore, P. Kostelec, W. Hordijk, P.F. Stadler, Fast Fourier transform for fitness landscapes. Appl. Comput. Harmonic Anal. 12, 57–76 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  52. P. Sibani, R. van der Pas, J.C. Schön, The lid method for exhaustive exploration of metastable states of complex systems. Comput. Phys. Commun. 116, 17–27 (1999)

    Article  Google Scholar 

  53. A. Solomon, J.W. Barnes, S.P. Dokov, R. Acevedo, Weakly symmetric graphs, elementary landscapes, and the TSP. Appl. Math. Lett. 16, 401–407 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  54. A. Solomon, B.W. Colletti, Quasiabelian landscapes of the traveling salesman problem are elementary. Discret. Optim. 6, 288–291 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  55. P.F. Stadler, Landscapes and their correlation functions. J. Math. Chem. 20, 1–45 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  56. P.F. Stadler, Spectral landscape theory, in Evolutionary Dynamics—Exploring the Interplay of Selection, Neutrality, Accident, and Function, ed. by J.P. Crutchfield, P. Schuster (Oxford University Press, New York, 2002), pp. 231–272

    Google Scholar 

  57. P.F. Stadler, R. Happel, Correlation structure of the landscape of the graph-bipartitioning-problem. J. Phys. A: Math. Gen. 25, 3103–3110 (1992)

    Article  MathSciNet  Google Scholar 

  58. P.F. Stadler, R. Happel, Random field models for fitness landscapes. J. Math. Biol. 38, 435–478 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  59. P.F. Stadler, W. Schnabl, The landscape of the travelling salesman problem. Phys. Lett. A 161, 337–344 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  60. B.M.R. Stadler, P.F. Stadler, Generalized topological spaces in evolutionary theory and combinatorial chemistry. J. Chem. Inf. Comput. Sci. 42, 577–585 (2002)

    Article  Google Scholar 

  61. B.M.R. Stadler, P.F. Stadler, Combinatorial vector fields and the valley structure of fitness landscapes. J. Math. Biol. 61, 877–898 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  62. P.F. Stadler, R. Seitz, G.P. Wagner, Evolvability of complex characters: population dependent Fourier decomposition of fitness landscapes over recombination spaces. Bull. Math. Biol. 62, 399–428 (2000). Santa Fe Institute Preprint 99-01-001

    Google Scholar 

  63. P.F. Stadler, W. Hordijk, J.F. Fontanari, Phase transition and landscape statistics of the number partitioning problem. Phys. Rev. E 67, 0567011–6 (2003)

    Google Scholar 

  64. A.M. Sutton, A.E. Howe, L.D. Whitley, A theoretical analysis of the k-satisfiability search space, in Proceedings of SLS 2009, Brussels. Lecture Notes in Computer Science, vol. 5752 (2009), pp. 46–60

    Article  MathSciNet  Google Scholar 

  65. A.M. Sutton, L.D. Whitley, A.E. Howe, A polynomial time computation of the exact correlation structure of k-satisfiability landscapes, in Genetic and Evolutionary Computation Conference, GECCO 2009, Montréal, 2009, ed. by F. Rothlauf, pp. 365–372

    Google Scholar 

  66. M. Tomassini, S. Vérel, G. Ochoa, Complex-network analysis of combinatorial spaces: the NK landscape case. Phys. Rev. E 78, 066114 (2008)

    Article  Google Scholar 

  67. V.K. Vassilev, T.C. Fogarty, J.F. Miller, Information characteristics and the structure of landscape. Evol. Comput. 8, 31–60 (2000)

    Article  Google Scholar 

  68. E.D. Weinberger, Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 63, 325–336 (1990)

    Article  MATH  Google Scholar 

  69. E.D. Weinberger, Local properties of Kauffman’s N-K model: a tunably rugged energy landscape. Phys. Rev. A 44, 6399–6413 (1991)

    Article  Google Scholar 

  70. L.D. Whitley, A.M. Sutton, Partial neighborhoods of elementary landscapes, in Genetic and Evolutionary Computation Conference, GECCO 2009, Montréal, 2009, ed. by F. Rothlauf, pp. 381–388

    Google Scholar 

  71. L.D. Whitley, A.M. Sutton, A.E. Howe, Understanding elementary landscapes, in Genetic and Evolutionary Computation Conference, GECCO 2008, Atlanta, ed. by C. Ryan, M. Keijzer (ACM, 2008), pp. 585–592

    Google Scholar 

  72. L.D. Whitley, F. Chicano, E. Alba, F. Luna, Elementary landscapes of frequency assignment problems, in Proceedings of the 12th Annual Conference of Genetic and Evolutionary Computation GECCO, Portland, ed. by M. Pelikan, J. Branke (ACM, 2010), pp. 1409–1416

    Google Scholar 

  73. M.T. Wolfinger, W.A. Svrcek-Seiler, C. Flamm, I.L. Hofacker, P.F. Stadler, Exact folding dynamics of RNA secondary structures. J. Phys. A: Math. Gen. 37, 4731–4741 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  74. P. Wolynes, J. Onuchic, D. Thirumalai, Navigating the folding routes. Science 267, 1619–1620 (1995)

    Article  Google Scholar 

  75. S. Wright, The roles of mutation, inbreeding, crossbreeeding and selection in evolution, in Proceedings of the Sixth International Congress on Genetics, New York, vol. 1, ed. by D.F. Jones (Brooklyn Botanic Gardens, New York, 1932), pp. 356–366

    Google Scholar 

  76. S. Wright, “Surfaces” of selective value. Proc. Natl. Acad. Sci. U.S.A. 58, 165–172 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Klemm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klemm, K., Stadler, P.F. (2014). Rugged and Elementary Landscapes. In: Borenstein, Y., Moraglio, A. (eds) Theory and Principled Methods for the Design of Metaheuristics. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33206-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33206-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33205-0

  • Online ISBN: 978-3-642-33206-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics