Skip to main content

A Computational Geometry Approach for Pareto-Optimal Selection of Neural Networks

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7553))

Included in the following conference series:

Abstract

This paper presents a Pareto-optimal selection strategy for multiobjective learning that is based on the geometry of the separation margin between classes. The Gabriel Graph, a method borrowed from Computational Geometry, is constructed in order to obtain margin patterns and class borders. From border edges, a target separator is obtained in order to obtain a large margin classifier. The selected model from the generated Pareto-set is the one that is closer to the target separator. The method presents robustness in both synthetic and real benchmark datasets. It is efficient for Pareto-Optimal selection of neural networks and no claim is made that the obtained solution is equivalent to a maximum margin separator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vapnik, V.: Statistical Learning Theory. Wiley-Interscience (1998)

    Google Scholar 

  2. Teixeira, R.A., Braga, A.P., Saldanha, R.R., Takahashi, R.H.C., Medeiros, T.H.: The Usage of Golden Section in Calculating the Efficient Solution in Artificial Neural Networks Training by Multi-objective Optimization. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 289–298. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Jin, Y., Sendhoff, B.: Pareto-Based Multiobjective Machine Learning: An Overview and Case Studies. IEEE Transactions on Systems Science and Cybernetics 39, 373 (2009)

    Article  Google Scholar 

  4. Teixeira, R.A., Braga, A.P., Takahashi, R.H.C.: Improving generalization of mlps with multi-objective optimization. Neurocomputing 35, 189–194 (2000)

    Article  MATH  Google Scholar 

  5. Costa, M.A., Braga, A.P., Menezes, B.R.: Improving generalization of MLPS witch multi-objective witch sliding mode control and the Levenberg-Maquardt algorithm. Neurocomputing 70, 1342–1347 (2007)

    Article  Google Scholar 

  6. Kokshenev, I., Braga, A.P.: An efficient multi-objective learning algorithm for RBF neural network. Neurocomputing 37, 2799–2808 (2010)

    Article  Google Scholar 

  7. Medeiros, T.H., Takahashi, H.C.R., Braga, A.: A Incorporação do Conhecimento Prévio na Tomada de Decisão do Aprendizado Multiobjetivo Congresso Brasileiro de Redes Neurais - Inteligência Computacional 9, 25–28 (2009)

    Google Scholar 

  8. Berg, M., Kreveld, M.V., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer (2000)

    Google Scholar 

  9. Gestel, T., Suykens, J.A.K., Baesens, B., Viaene, S., Vanthienen, J., Dedene, G., De Moor, B., Vandewalle, J.: Benchmarking least squares support vector machine classifiers. Machine Learning 54, 5–32 (2004)

    Article  MATH  Google Scholar 

  10. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of multiobjective optimization, vol. 176. Elsevier Science  (1985)

    Google Scholar 

  11. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  12. Bartlett, P.L.: For valid generalization, the size of the weights is more important than the size of the network. In: Advances in Neural Information Processing Systems, pp. 134–140. Morgan Kaufmann Publishers (1997)

    Google Scholar 

  13. Lawson, C.L., Hanson, R.J.: Solving least squares problems. Society for Industrial Mathematics 15 (1995)

    Google Scholar 

  14. Sánchez, J., Pla, F., Ferri, F.: Prototype selection for the nearest neighbour rule through proximity graphs. Pattern Recognition Letters 18(6), 507–513 (1997)

    Article  Google Scholar 

  15. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011) software, http://www.csie.ntu.edu.tw/~cjlin/libsvm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torres, L.C.B., Castro, C.L., Braga, A.P. (2012). A Computational Geometry Approach for Pareto-Optimal Selection of Neural Networks. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33266-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33266-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33265-4

  • Online ISBN: 978-3-642-33266-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics