Neural PCA and Maximum Likelihood Hebbian
Learning on the GPU

Pavel Krémer!2, Emilio Corchado??, Vaclav Snagel!:2,

Jan Plato§!?, and Laura Garcfa-Herndndez*

! Department of Computer Science, VSB-Technical University of Ostrava,

17.listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic

2 IT4Innovations, 17 listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic

{pavel.kromer,vaclav.snasel, jan.platos}@vsb.cz
3 Departamento de Informéatica y Automdtica, Universidad de Salamanca, Spain
escorchado@usal.es
4 Area of Project Engineering, University of Cordoba, Spain
irlgahel@uco.es

Abstract. This study introduces a novel fine-grained parallel implemen-
tation of a neural principal component analysis (neural PCA) variant and
the maximum Likelihood Hebbian Learning (MLHL) network designed
for modern many-core graphics processing units (GPUs). The parallel
implementation as well as the computational experiments conducted in
order to evaluate the speedup achieved by the GPU are presented and
discussed. The evaluation was done on a well-known artificial data set,
the 2D bars data set.

Keywords: neural PCA, Maximum Likelihood Hebbian Learning, Ex-
ploratory Projection Pursuit, GPU, CUDA, performance.

1 Introduction

Modern many-core GPUs have been successfully used to accelerate a variety of
meta-heuristics and bio-inspired algorithms [B/T2JT3] including different types
of artificial neural networks [ITOTTITAUTSIT7ITRI20022I24]. To fully utilize the
parallel hardware, the algorithms have to be carefully adapted to data-parallel
architecture of the GPUs [21].

Artificial neural networks (ANNs) performing PCA and MLHL are known to
be useful for the analysis of high dimensional data [5I25]. Their main aim is to
identify interesting projections of high dimensional data to lower dimensional
subspaces that reveal hidden structure of the data sets. Due to the relative
simplicity of their operations and generally real-valued data structures, such a
networks are suitable for a parallel implementation on multi-core systems and on
the GPUs that reach peak performance of hundreds and thousands giga FLOPS
(floating-point operations per second) at low costs.

This study presents a design and evaluation of a novel fine-grained data-
parallel implementation of an ANN for PCA and MLHL for the nVidia Compute
Unified Device Architecture (CUDA) platform.

A.E.P. Villa et al. (Eds.): ICANN 2012, Part II, LNCS 7553, pp. 132-[39] 2012.
© Springer-Verlag Berlin Heidelberg 2012

Neural PCA and Maximum Likelihood Hebbian Learning on the GPU 133

1.1 Neural PCA and MLHL

PCA is a standard statistical technique for compressing data; it can be shown to
give the best linear compression of the data in terms of least mean square error.
There are several ANNs which have been shown to perform PCA e.g. [9I19].

The Negative Feedback Network [9] for the PCA is defined as follows. Consider
an N-dimensional input vector and an M-dimensional output vector y with W;;
being the weight linking input j to output ¢ and let 1 be the learning rate. The
initial situation is that there is no activation at all in the network. The input
data is feedforward via the weights from the input neurons (the x-values) to the
output neurons (the y-values) where a linear summation is performed to get the
output neuron activation value. It can be expressed as:

N
yi =y Wi, Vi (1)

Jj=1

The activation is fed back through the same weights and subtracted from the
inputs (where the inhibition takes place):

M
ej=z5— Y Wiyyi, Vj (2)

i=1
After that, simple Hebbian learning is performed between input and outputs:
AWij = ne;yi ®3)

The effect of the negative feedback is the network learning stability. This network
is capable of finding the principal components of the input data [9] in a manner
that is equivalent to Oja’s Subspace algorithm [19], and so the weights will not
find the current Principal Components but a basis of the Subspace spanned by
these components.

Maximum Likelihood Hebbian Learning [2I34l8] is based on the previous
PCA-type rule and can be described as a family of learning rules based on the
following equations: a feedforward step () followed by a feedback step () and
then a weight change, which is as follows:

AWij = nysign(e;)|e; [P~ (4)
Maximum Likelihood Hebbian Learning (MLHL) [2I3/4I8] has been linked to the
standard statistical method of Exploratory Projection Pursuit (EPP)[47].

2 GPU Computing

Modern graphics hardware has gained an important role in the area of paral-
lel computing. The data-parallel architecture of the GPUs is suitable for vec-
tor and matrix algebra operations and it is nowadays widely used for scientific

134 P. Kromer et al.

computing. The GPUs and general purpose GPU (GPGPU) programming have
established a new platform for neural computation. The usage of the GPUs to
accelerate neural information processing and artificial neural networks pre-dates
the inception of general purpose GPU APIs [IITTI7I8]. At that time, the data
structures were mapped directly to native GPU concepts such as textures and
the operations were implemented using vertex and pixel shaders of the GPUs.
Often, the ANNs were implemented using graphic oriented shader programs,
OpenGL functions, or DirectX functions to accelerate ANN operations. For ex-
ample, a 20 times accelerated feedforward network on the GPU was presented
by Oh and Jung in [I8]. Martinez-Zarzuela et al. [I7] proposed a 33 times faster
GPU-based fuzzy ART network. Ho et al. [11] developed a simulator of cellular
neural network on the GPU that was 8 to 17 times faster than a corresponding
CPU version, and Brandstetter and Alessandro [1] designed a 3 to 72-fold faster
radial basis function network powered by the GPUs.

The GPGPU APIs have simplified the development of neural algorithms and
ANNs for the graphics hardware significantly [L0JI6] and a variety of neuro-
computing algorithms were ported to the GPUs [TOT4T5T6IT82022I24]. The
CUDA platform was used to achieve 46 to 63 times faster learning of a feedfor-
ward ANN by the backpropagation algorithm by Sierra-Canto et al. [24] while
Lopes and Ribeiro [I4] reported a 10 to 40 faster implementation of the multiple
backpropagation training of feedforward and multiple feedforward ANNs.

Ghuzva et al. [10] presented a coarse-grained implementation of the multilayer
perceptron (MLP) on the CUDA platform that operated a set of MLPs in parallel
50 times faster than a sequential CPU-based implementation. The training of a
feedforward neural network by genetic algorithms was implemented on CUDA by
Patulea et al. [20] and it was 10 times faster than a sequential version of the same
algorithm. An application of a GPU-powered ANN for speech recognition is due
to Scanzio et al. [22]. The GPU technology accelerated the ANN approximately
6 times. Martinez-Zarzuela et al. [I5] used the GPU to speedup a neural texture
classification process and achieved 16 to 26 times better performance than on
the CPU. In [16], the authors implemented a fuzzy ART network on the CUDA
platform and achieved a 57-fold peak speedup.

An example of the use of GPUs for unsupervised neural networks is due to
Shitara et al. [23]. Three different graphic cards were used to benchmark the
performance of the algorithm and it was shown that the GPUs can improve the
performance of the SOM up to 150 times for certain hardware configurations.

In this research, the CUDA platform is used to accelerate the training of the
Negative Feedback Network and also for MLHL.

3 A Version of Neural PCA and MLHL on CUDA

According to the authors’ knowledge, there is no prior research on the accelera-
tion of the training phase of ANNs for PCA and MLHL by the GPUs. However,
Oh and Jung [I8] have combined the PCA and an ANN with CUDA accelerated
feedforward pass for a system for view-point tolerant human pose recognition.

Neural PCA and Maximum Likelihood Hebbian Learning on the GPU 135

CPU GPU
1 thread many threads

CPU GPU
1 thread many threads

kernel call

kernel call
kernel return

i kernel retumn
j—emelrelum |

kernel call
kernel return -

kernel call
kernel call
kernel call
kernel return
kernel return
kernel call
kernel call ———
kernel return
kernel return
kernel call kernel call
_ kemelcall |
kernel return kernel return

(a) Neural PCA Flowchart (b) MLHL Flowchart

Fig. 1. Neural PCA and MLHL on CUDA

The CUDA implementation of the Negative Feedback Network and MLHL
is outlined in fig. [1d and fig. [1d respectively. The GPU was used to accelerate
the iterative phase of the algorithm (i.e. () - {@)). The implementation used the
cublas library, a set of custom kernels that implemented operations not available
in cublas such as the sign function, and auxiliary kernels for common operations
such as generation of batches of random numbers. All operations of the iterative
phase of network training were implemented on CUDA to minimize memory
transfers between the host and the device and maximize the performance of the
implementation.

3.1 Experiments and Results

To evaluate the performance of the Negative Feedback Network and MLHL on
CUDA, the fine-grained parallel implementations were compared to sequential
single-threaded CPU implementations of the same algorithms. Both networks
were implemented from scratch in C/C++ and CUDA-C and their execution
times for the same data set were compared. The experiments were performed
on a server with 2 dual core AMD Opteron processors at 2.6GHz and an nVidia
Tesla C2050 device with 448 cores at 1.15GHz. The server was running Linux
operating system and CUDA SDK 4.0 was used.

To obtain a randomized high-dimensional data set with clear internal struc-
ture and simple interpretation, two variants of the 2D bars data set were gener-
ated. The first one contained 10000 records with 256 attributes and the second

136 P. Kromer et al.

Fig. 2. First 20 records of the 1024-dimensional data set as 32 x 32 images

one contained 10000 records with 1024 attributes. Each record in the data set
can be seen as an n X n image with a single vertical or horizontal bar painted
by different shades of gray (represented by real values between 0.7 and 1). The
visualisation of the first 20 records of the 1024-dimensional data set is shown
in fig. M. 1t can be expected, that in such a data set, the pictures with the bar
in the same position ought to form (at least one) cluster, i.e. there might be at
least n 4+ n clusters. The randomized data sets used in this study contained 15
and 31 unique bar positions respectively.

The data sets were processed by both, the Negative Feedback Network and
MLHL on CPU and GPU with the following parameters: 100000 iterations, learn-
ing rate 0.00001 and the MLHL parameter p = 2.2.

In the experiment, the dimension of the target subspace m was set to the
powers of 2 from the interval [2, DIM] (where DIM was the full dimension of the
data set) and the execution time of network training was measured. The results
are visualized in fig. 41t clearly illustrates how the execution time grows with the
dimension of the target subspace m and with the number of attributes. These two
parameters define the complexity of the vector-matrix operations. As expected,
the CPU is faster for small m (m < 32 for 256-dimensional data and m < 16
for 1024-dimensional data) for the Negative Feedback Network. The MLHL on
the GPU was faster than the CPU-based implementation of the same algorithm
even for small values of m. The speedup obtained by the parallel implementation
for the 256-dimensional data set ranged from 1.4 for m = 32 to 5.5 for m = 256
for the Negative Feedback Network and from 1.5 to 6.1 for the MLHL. The
performance increase was more significant for the 1024-dimensional data set.
The improvement in the training time of the Negative Feedback Network on the
GPU ranged from 1.36 times faster training for m = 16 to 47.95 faster training
for m = 512. The processing of the 1024-dimensional data set by the MLHL on
the GPU was between 2.18 to 47.81 times faster than on the CPU.

The performance results of both algorithms for the 1024-dimensional data
set on different hardware are visualized in fig. 41t displays the dependency of
the execution time (y-axis, note the log scale) on the dimension of the target
subspace m and illustrates how the GPU versions of the algorithms outperform
the CPU versions by an order of magnitude for larger m.

The visual results of the projection of the 1024-dimensional data set to the 2-
dimensional subspace are for both methods shown in fig. 4. Figure [4a shows the
results of the projection by the neural PCA and fig. [4H shows the structure of the
same data processed by the MLHL. Points representing images that had a bar
in the same position were drawn in the same color. We can clearly see that both

Neural PCA and Maximum Likelihood Hebbian Learning on the GPU 137

107 T T T
PCA AMD Opteron 2.2GHz —+—
A Tesla C2050
MLHL AMD Opteron 2.2GHz ---%---
MLHL Tesla C2050 &

Time [ms]
g
T
¥
\
I

103 L L L L L L L L
2 4 8 16 32 64 128 256 512 1024

Fig. 3. Neural PCA (Negative Feedback Network) and MLHL execution time for the
1024-dimensional data set

5 . ¥
o a% 2
% o+
¥ #
-
N - . ,
-~ - » ‘ * L
. ";\.‘ L)
el o -
s .-
- = 3
* - - . ': -
N o o
*
1, s
‘/))) o E
(a) Neural PCA (b) MLHL

Fig. 4. The results of projection to 2D for the 1024-dimensional data set

projections have emphasized a structure in the data. The neural PCA version
clearly separated several clusters from the rest of the data, which populates
the center of the graph, while the MLHL lead to a more regular pattern of 2D
clusters. This can serve as a visual proof that the CUDA-C implementations of
both algorithms provide projections to lower dimensional subspaces with good
structure.

4 Conclusions

This research introduced a fine-grained data-parallel implementation of two
types of ANNs, the Negative Feedback network for the PCA and the Maxi-
mum Likelihood Hebbian Learning network. The GPU versions of the algorithms
have achieved for two high-dimensional artificial data sets a significant speedup
in training times. When projecting to low dimensional subspaces (m < 16), the
CPU version of the negative feedback network was faster but when projecting

138 P. Kromer et al.

the data to spaces with larger dimension, the GPU was up to 47.99 times faster
(for the 1024-dimensional data set and m = 1024). The projection through the
MLHL network was on the GPU faster for all m € [2, DI M] ranging from 2.1-fold
speedup for m = 8 to 47.81 times faster execution time for m = 1024.

In the future, other variants of the MLHL will be implemented and the GPU
version will be used to process and analyze real world data sets.

Acknowledgements. This research is partially supported through a projects of
the Spanish Ministry of Economy and Competitiveness [ref: TIN2010-21272-C02-
01] (funded by the European Regional Development Fund). This work was also
supported by the European Regional Development Fund in the IT4Innovations
Centre of Excellence project (CZ.1.05/1.1.00/02.0070) and by the Bio-Inspired
Methods: research, development and knowledge transfer project, reg. no. CZ.1.07
/2.3.00/20.0073 funded by Operational Programme Education for Competitive-
ness, co-financed by ESF and state budget of the Czech Republic.

References

1. Brandstetter, A., Artusi, A.: Radial basis function networks gpu-based implemen-
tation. IEEE Transactions on Neural Networks 19(12), 2150-2154 (2008)

2. Corchado, E., Fyfe, C.: Orientation selection using maximum likelihood hebbian
learning. Int. Journal of Knowledge-Based Intelligent Engineering 2(7) (2003)

3. Corchado, E., Han, Y., Fyfe, C.: Structuring global responses of local filters using
lateral connections. J. Exp. Theor. Artif. Intell. 15(4), 473-487 (2003)

4. Corchado, E., MacDonald, D., Fyfe, C.: Maximum and minimum likelihood heb-
bian learning for exploratory projection pursuit. Data Mining and Knowledge Dis-
covery 8, 203-225 (2004)

5. Corchado, E., Perez, J.C.: A three-step unsupervised neural model for visualizing
high complex dimensional spectroscopic data sets. Pattern Anal. Appl. 14(2), 207—
218 (2011)

6. De, P., Veronese, L., Krohling, R.A.: Swarm’s flight: accelerating the particles using
c-cuda. In: Proceedings of the Eleventh conference on Congress on Evolutionary
Computation, CEC 2009, pp. 3264-3270. IEEE Press, Piscataway (2009)

7. Friedman, J., Tukey, J.: A projection pursuit algorithm for exploratory data anal-
ysis. IEEE Transactions on Computers C- 23(9), 881-890 (1974)

8. Fyfe, C., Corchado, E.: Maximum likelihood Hebbian rules. In: Verleysen, M. (ed.)
ESANN 2002, Proceedings of the 10th European Symposium on Artificial Neural
Networks, Bruges, Belgium, April 24-26, pp. 143-148 (2002)

9. Fyfe, C.: A neural network for pca and beyond. Neur. Proc. Letters 6, 33-41 (1997)

10. Guzhva, A., Dolenko, S., Persiantsev, I.: Multifold Acceleration of Neural Network
Computations Using GPU. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas,
G. (eds.) ICANN 2009, Part I. LNCS, vol. 5768, pp. 373-380. Springer, Heidelberg
(2009)

11. Ho, T.Y., Lam, P.M., Leung, C.S.: Parallelization of cellular neural networks on
gpu. Pattern Recogn. 41(8), 26842692 (2008)

12. Kromer, P., Platos, J., Snésel, V., Abraham, A.: An Implementation of Differential
Evolution for Independent Tasks Scheduling on GPU. In: Corchado, E., Kurzynski,
M., Wozniak, M. (eds.) HAIS 2011, Part I. LNCS, vol. 6678, pp. 372-379. Springer,
Heidelberg (2011)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Neural PCA and Maximum Likelihood Hebbian Learning on the GPU 139

Langdon, W.B., Banzhaf, W.: A SIMD Interpreter for Genetic Programming
on GPU Graphics Cards. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia
Alcédzar, A1, De Falco, 1., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008.
LNCS, vol. 4971, pp. 73-85. Springer, Heidelberg (2008)

Lopes, N., Ribeiro, B.: GPU Implementation of the Multiple Back-Propagation
Algorithm. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp.
449-456. Springer, Heidelberg (2009)

Martinez-Zarzuela, M., Diaz-Pernas, F., Antén-Rodriguez, M., Diez-Higuera, J.,
Gonzalez-Ortega, D., Boto-Giralda, D., Lépez-Gonzélez, F., De La Torre, I.: Multi-
scale neural texture classification using the gpu as a stream processing engine.
Machine Vision and Applications 22, 947-966 (2011)

Martinez-Zarzuela, M., Pernas, F., de Pablos, A., Rodriguez, M., Higuera, J., Gi-
ralda, D., Ortega, D.: Adaptative Resonance Theory Fuzzy Networks Parallel Com-
putation Using CUDA. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M.
(eds.) IWANN 2009, Part I. LNCS, vol. 5517, pp. 149-156. Springer, Heidelberg
(2009)

Martinez-Zarzuela, M., Diaz Pernas, F., Diez Higuera, J., Rodriguez, M.: Fuzzy
ART Neural Network Parallel Computing on the GPU. In: Sandoval, F., Prieto,
A.G., Cabestany, J., Graiia, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 463—470.
Springer, Heidelberg (2007)

Oh, K.S., Jung, K.: GPU implementation of neural networks. Pattern Recogni-
tion 37(6), 1311-1314 (2004)

Oja, E.: Neural networks, principal components, and subspaces. International Jour-
nal of Neural Systms 1(1), 61-68 (1989)

Patulea, C., Peace, R., Green, J.: Cuda-accelerated genetic feedforward-ann train-
ing for data mining. J. of Physics: Conference Series 256(1), 012014 (2010)
Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose
GPU Programming, 1st edn. Addison-Wesley Professional (July 2010)

Scanzio, S., Cumani, S., Gemello, R., Mana, F., Laface, P.: Parallel implementation
of artificial neural network training for speech recognition. Pattern Recognition
Letters 31(11), 1302-1309 (2010)

Shitara, A., Nishikawa, Y., Yoshimi, M., Amano, H.: Implementation and eval-
uation of self-organizing map algorithm on a graphic processor. In: Parallel and
Distributed Computing and Systems 2009 (2009)

Sierra-Canto, X., Madera-Ramirez, F., Uc-Cetina, V.: Parallel training of a back-
propagation neural network using cuda. In: Proceedings of the 2010 Ninth In-
ternational Conference on Machine Learning and Applications, ICMLA 2010, pp.
307-312. IEEE Computer Society, Washington, DC (2010)

Zhang, K., Li, Y., Scarf, P., Ball, A.: Feature selection for high-dimensional machin-
ery fault diagnosis data using multiple models and radial basis function networks.
Neurocomputing 74(17), 2941-2952 (2011)

	Neural PCA and Maximum Likelihood Hebbian Learning on the GPU

	Introduction
	Neural PCA and MLHL

	GPU Computing
	A Version of Neural PCA and MLHL on CUDA
	Experiments and Results

	Conclusions
	References

