Skip to main content

A Robust Objective Function of Joint Approximate Diagonalization

  • Conference paper
Book cover Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7553))

Included in the following conference series:

Abstract

Joint approximate diagonalization (JAD) is a method solving blind source separation, which can extract non-Gaussian sources without any other prior knowledge. However, it is not robust when the sample size is small because JAD is based on an algebraic objective function. In this paper, a new robust objective function of JAD is derived by an information theoretic approach. It has been shown in previous works that the “true” probabilistic distribution of non-diagonal elements of approximately-diagonalized cumulant matrices in JAD is Gaussian with a fixed variance. Here, the distribution of the diagonal elements is also approximated as Gaussian where the variance is an adjustable parameter. Then, a new objective function is defined as the likelihood of the distribution. Numerical experiments verify that the new objective function is effective when the sample size is small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S., Cichocki, A.: A new learning algorithm for blind signal separation. In: Touretzky, D., Mozer, M., Hasselmo, M. (eds.) Advances in Neural Information Processing Systems 8, pp. 757–763. MIT Press, Cambridge (1996)

    Google Scholar 

  2. Cardoso, J.F.: High-order contrasts for independent component analysis. Neural Computation 11(1), 157–192 (1999)

    Article  MathSciNet  Google Scholar 

  3. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non Gaussian signals. IEE Proceedings-F 140(6), 362–370 (1993)

    Google Scholar 

  4. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. Wiley (2002)

    Google Scholar 

  5. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley (2001)

    Google Scholar 

  6. Lee, T.W., Girolami, M., Sejnowski, T.J.: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation 11(2), 417–441 (1999)

    Article  Google Scholar 

  7. Matsuda, Y., Yamaguchi, K.: An adaptive threshold in joint approximate diagonalization by assuming exponentially distributed errors. Neurocomputing 74, 1994–2001 (2011)

    Article  Google Scholar 

  8. Matsuda, Y., Yamaguchi, K.: An Information Theoretic Approach to Joint Approximate Diagonalization. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part I. LNCS, vol. 7062, pp. 20–27. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matsuda, Y., Yamaguchi, K. (2012). A Robust Objective Function of Joint Approximate Diagonalization. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33266-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33266-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33265-4

  • Online ISBN: 978-3-642-33266-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics