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Abstract. The covariance matrix in the Mahalanobis distance can be
trained by semi-definite programming, but training for a large size data
set is inefficient. In this paper, we constrain the covariance matrix to
be diagonal and train Mahalanobis kernels by linear programming (LP).
Training can be formulated by ν-LP SVMs (support vector machines)
or regular LP SVMs. We clarify the dependence of the solutions on the
margin parameter. If a problem is not separable, a zero-margin solu-
tion, which does not appear in the LP SVM, appears in the ν-LP SVM.
Therefore, we use the LP SVM for kernel training. Using the benchmark
data sets we show that the proposed method gives better generalization
ability than RBF (radial basis function) kernels and Mahalanobis kernels
calculated using the training data and has a good capability of selecting
input variables especially for a large number of input variables.

1 Introduction

Regular support vector machines do not assume a priori data distributions and
determine the decision boundary using only support vectors that are near the
boundary. However, if data of one class have a large variance and those of the
other class have a small variance, it may not be good to place the hyperplane
in the middle of the unbounded support vectors. In such a situation, instead of
the Euclidean distance, the Mahalanobis distance is sometimes effective [1–5].

There are two ways to incorporate the Mahalanobis distance into support vec-
tor machines: one is to reformulate support vector machines so that the margin is
measured by the Mahalanobis distance [1, 2], and the other is to use Mahalanobis
kernels [3–5], which calculate the kernel value according to the Mahalanobis dis-
tance between the associated two argument vectors.

Radial basis function (RBF) kernels are widely used because they usually give
good performance for most applications. To improve the generalization ability
of RBF kernels, generalized RBF kernels are proposed, in which each input
variable has a weight in calculating the kernel value. Mahalanobis kernels are an
extension of generalized RBF kernels and if the covariance matrix is restricted to
a diagonal matrix, the Mahalanobis kernels reduce to generalized RBF kernels
[4].
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In [3], training of a support vector machine is reformulated so that a gen-
eralized RBF kernel is trained simultaneously. The formulation, however, is no
longer quadratic. In [4], the covariance matrix for Mahalanobis kernels is calcu-
lated using the training data.

There are several discussions to obtain Mahalanobis metric by training, which
results in semi-definite programming [6]. Usually, semi-definite programming is
difficult to solve for large size problems and its speedup has been discussed.
However if we confine the covariance matrix to a diagonal matrix, training results
in linear programming.

In this paper, we train Mahalanobis kernels with the diagonal covariance
matrix by linear programming (LP). Restricting the covariance matrix to a di-
agonal matrix in the formulation of [6], we obtain a linear programming program
with the explicit margin similar to a ν-LP SVM [7]. We analyze the dependence
of the solution of the ν-LP SVM for the margin parameter and show that if a
training problem is not linearly separable, the zero-margin solution is obtained
for the margin parameter value larger than some value. We show that this does
not happen for the LP SVM, which is equivalent to the ν-LP SVM with the
positive margin and objective function values. We also derive the lower bound
of the margin parameter value of the LP SVM, in which the nonzero solution is
obtained. We, therefore, use the LP SVM for kernel training. We compare the
proposed method with the RBF kernels and Mahalanobis kernels whose diagonal
elements are calculated using training data.

In Section 2, we formulate kernel training by linear programming. In Section
3, we clarify the characteristics of ν-LP SVMs and LP SVMs. In section 4, we
demonstrate the effectiveness of the proposed method using some benchmark
data sets.

2 Formulation of Kernel Training

In [4], the Mahalanobis kernel for m-dimensional inputs x and x′ is defined by

K(x,x′) = exp(−(δ/m) (x− x′)�Q−1 (x− x′)), (1)

where δ (> 0) is a parameter, � and −1 denote the matrix transpose and inverse,
respectively, and Q is the covariance matrix with the M data {x1, . . . ,xM}:

Q =
1
M

M∑

i=1

(xi − c) (xi − c)�, c =
1
M

M∑

i=1

xi. (2)

According to the computer experiment [4], the diagonal covariance matrix is
sufficient for high generalization ability. Therefore, in the following we consider
only diagonal covariance matrix for (1).

In [6], the inverse of Q is trained using the training data. We reformulate the
method discussed in [6] for the diagonal Q. We let R = Q−1.

Let set P be a set of training triplets:

P = {Pr} = {(xi,xj ,xk)} for r = 1, . . . , |P |, i, j, k ∈ {1, . . . , M}, (3)
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where xi and xj belong to the same class but xk and xi (and thus xj) belong to
different classes, and |P | denotes the number of elements in P . In [6], the details
of how to generate triplets are not described. Here, we consider generating the
set of triplets, P . For a training sample xr (r = 1, . . . , M) belonging to a class,
we find the nearest xj belonging to the same class and the nearest xk belonging
to the other class and make (xr ,xj ,xk) the triplet. In this way, we obtain P
with M triplets.

A Mahalanobis distance between two data belonging to the same class needs
to be shorter than that between data of different classes. Thus, we define a
margin ρr for the rth triplet as follows:

ρr = (xr − xk)� R (xr − xk) − (xr − xj)� R (xi − xj) =
m∑

i=1

air Rii, (4)

where air = (xir − xik)2 − (xir − xij)2 for i = 1, . . . , m, r = 1, . . . , M , xir

is the ith element of xr , and Rii is the ith diagonal element of R.
We want ρr as large as possible but similar to support vector machines,

for some triplets we allow negative margins. Then, we formulate the following
optimization problem:

maximize Jρ(ρ,R, ξ) = ρ − Cρ

M∑

r=1

ξr (5)

subject to
m∑

i=1

Rii = 1 (6)

Rii ≥ 0 for i = 1, . . . , m, (7)
m∑

i=1

air Rii ≥ ρ − ξr for r = 1, . . . , M, (8)

ξr ≥ 0 for r = 1, . . . , M, ρ > 0, (9)

where ρ is the margin, ξr are slack variables to allow negative margins, Cρ is a
margin parameter, and (6) is to make the left-hand side of (8) be unique.

The above formulation is similar to the ν-LP SVM discussed in [7]. Because
the ν-LP SVM treats a two-class problem, air Rii in (8) is multiplied by yr which
takes 1 or −1. But this is a trivial difference. Thus, we call the above support
vector machine primal ν-LP SVM or ν-LP SVM for short.

According to [7], for positive ρ, the ν-LP SVM is equivalent to the following
formulation:

minimize J(R, ξ) =
m∑

i=1

Rii + CM

M∑

r=1

ξr (10)

subject to Rii ≥ 0 for i = 1, . . . , m, (11)
m∑

i=1

air Rii ≥ 1 − ξr for r = 1, . . . , M, (12)

ξr ≥ 0 for r = 1, . . . , M, (13)
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where CM is a margin parameter.
The above formulation is similar to standard LP SVMs with linear kernels.

The differences are that the coefficients of the hyperplane, Rii, are non-negative
and no bias term is included. In the following, we call the above support vector
machine regular LP SVM or LP SVM for short.

In the ν-LP SVM, the margin is ρ/
∑m

i=1 Rii = ρ, whereas in the LP SVM,
the margin is 1/

∑m
i=1 Rii. By negating (5) and replacing ρ with −∑m

i=1 Rii, the
objective function (10) is obtained. Because the equality constraint (6) makes
the optimization meaningless it is deleted, and ρ in (8) is replaced with 1 in the
LP SVM.

Let the optimal solution of the ν-LP SVM be (ρ̄, R̄, ξ̄), that of the LP SVM
be (R̂, ξ̂), J̄ρ = Jρ(ρ̄, R̄, ξ̄), Ĵ = J(R̂, ξ̂), and R̄ �= 0 denote that at least one
diagonal element of R is nonzero. In [7], the equivalence of the ν-LP SVM and
LP SVM is shown as follows:

Theorem 1. If the ν-LP SVM has the optimal solution (ρ̄, R̄, ξ̄) with ρ̄ > 0
and J̄ρ > 0 for Cρ, (R̂, ξ̂) = (R̄/ρ̄, ξ̄/ρ̄) is the optimal solution of the LP SVM
with CM = Cρ/J̄ρ. Conversely, if the LP SVM with CM has the optimal solution
(R̂, ξ̂) with R̂ �= 0, (ρ̄, R̄, ξ̄) = (1/

∑m
i=1 R̂ii, ρ̄ R̂, ρ̄ ξ̂) is the optimal solution of

the ν-LP SVM with Cρ = CM Ĵ .

We add the condition J̄ρ > 0 at the first part of Theorem 1 to guarantee equiv-
alence.

In [7], it is recommended to use the ν-LP SVM rather than the LP SVM
for the ease of parameter value selection for Cρ: Cρ = 1

ν M for 1/M < ν < 1.
Therefore, 1/M < Cρ < 1.

3 Properties of ν-LP SVMs and LP SVMs

In this section we clarify the properties of ν-LP SVMs and LP SVMs and then
compare them. Because of the space limitation, we omit proofs of the theorems.

3.1 ν-LP SVMs

We investigate the dependence of the ν-LP SVM on the Cρ value. To do so, we
derive the dual form of the ν-LP SVM given by (5) to (9) as follows:

minimize z (14)

subject to
M∑

r=1

δr ≥ 1 (15)

M∑

r=1

air δr ≤ z for i = 1, . . . , m, (16)

Cρ ≥ δr ≥ 0 for r = 1, . . . , M, (17)
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where z is the dual variable associated with the constraint (6) and δr are dual
variables associated with (8). We call the above formulation dual ν-LP SVM. In
[7], the equality is used for (15) but that is valid only for ρ > 0.

From (15) and (17), the dual ν-LP SVM has a feasible solution for Cρ ≥ 1/M ,
but does not have a feasible solution for 1/M > Cρ > 0. For the ν-LP SVM,
because of the slack variables ξi, a feasible solution always exists for Cρ > 0.
But for 1/M > Cρ > 0, the optimal solution of the ν-LP SVM is unbounded:

Theorem 2. For 0 < Cρ < 1/M , the solution of the ν-LP SVM is unbounded.

But for Cρ ≥ 1, Rii (i = 1, . . . , m) are the same:

Theorem 3. For Cρ ≥ 1 the optimal Rii (i = 1, . . . , m) are the same for
different values of Cρ.

From Theorem 3, it is clear that for 1 ≥ Cρ ≥ 1/M , the bounded optimal
solutions exist for the primal and dual ν-LP SVMs. From (15) and (17), for the
optimal solution of the ν-LP SVM with 1/(j − 1) > Cρ ≥ 1/j (j = 2, . . . , M),
at least j inequality constraints in (8) are active. Theorem 3 is further refined
as follows:

Theorem 4. If for Cρ = C0 (≥ 1/M), the solution of the ν-LP SVM satisfies
ρ > 0 and ξ = 0, or ρ = 0, the same solution is obtained for Cρ = t C0 (t > 1).

Assume that for Cρ = 1/j (j = 2, . . . , 1/M) the solutions of the primal
and dual ν-LP SVMs are (ρ̄, R̄, ξ̄) and (z̄, δ̄), respectively. Then what can we
say about the solutions for Cρ = t/j (j/j − 1 > t > 1)? From Theorem 4, if
ρ̄ > 0 and ξ̄ = 0, or ρ̄ = 0, R does not change for Cρ = t/j. Then, for ρ̄ > 0
and ξ̄ �= 0, can (ρ̄, R̄, ξ̄) and (z̄, δ̄) or (ρ̄, R̄, ξ̄) and (t z̄, t δ̄) be the solutions
for Cρ = t/j? Neither can. The solutions (ρ̄, R̄, ξ̄) and (z̄, δ̄) do not satisfy the
complementarity condition for ξ̄r > 0. And the solutions (ρ̄, R̄, ξ̄) and (t z̄, t δ̄)
do not satisfy the complementarity condition. This means that the optimal R
may change for 1/(j − 1) > Cρ > 1/j.

3.2 LP SVMs

Now investigate the dependence of the solution of the LP SVM on the CM value.
Because of the slack variables, the LP SVM has a feasible solution. In addi-

tion, because the objective function given by (10) is restricted to be non-negative,
the optimal solution of the minimization problem always exists.

For a small CM value, the solution Rii = 0 (i = 1, . . . , m) is obtained as the
following theorem shows:

Theorem 5. Define

Cmin = min
i=1,... ,m
�M

r=1 air>0

1/

M∑

r=1

air. (18)



6 Shigeo Abe

Then, if Cmin exists, for Cmin > CM > 0 the solution of the LP SVM is

Rii = 0 for i = 1, . . . , m. (19)

Otherwise, (19) is satisfied for CM > 0.

This is a degenerate solution but because tradeoff between minimization of
the margin and the maximization of the classification accuracy is controlled by
the margin parameter CM, the degenerate solution is not an anomaly solution.

The relation
∑M

r=1 air ≤ 0 may hold when the nearest training pairs, mea-
sured by the ith input variable, with the opposite classes are dominant.

Now consider a general case where all the constraints (12) are not active for
the optimal solution and let S be the index set for the active constraints. Then,
(10) for the optimal solution becomes

minimize J(R, ξ) = |S|CM +
m∑

i=1

(1 − CM

∑

r∈S

air)Rii. (20)

The set of {xr | r ∈ S} is the set of support vectors. Thus, for 1−CM

∑
r∈S air >

1, Rii = 0. This means that by training the LP SVM, input variable selection is
simultaneously performed.

Similar to the ν-LP SVM, for a large value of CM, the optimal solution does
not change as the following theorem shows:

Theorem 6. There exists a positive C0 such that for CM ≥ C0 the optimal
solution (R, ξ) of the LP SVM does not change.

3.3 Comparison of ν-LP SVMs and LP SVMs

As Theorem 1 shows, the ν-LP SVM and LP SVM are equivalent when ρ is
positive and the objective function value for the ν-LP SVM is positive. To obtain
a solution with positive ρ and the positive objective function, Cρ needs to be
selected in [1/M, 1/j], where j ∈ {1, . . . , M−1}. But, there is no way of selecting
the value of j.

For the optimal solution with Cρ = 1/j, at least j constraints are active.
Therefore, controlling the number of active constraints is easy but again the
optimal j is not known in advance.

For the LP SVM, the lower bound of CM that gives nonzero R is Cmin given
by (18). But unlike the ν-LP SVM, there is no upper bound of CM. This is
because a zero-margin solution (i.e., Rii → ∞) is not obtained.

Using either the ν-LP SVM or LP SVM, we need to optimize the value of
Cρ or CM by e.g., cross-validation. And because by the LP SVM, we do not
worry about the upper bound of CM, in the following we use the LP SVM for
Mahalanobis kernel training.
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4 Computer Experiment

We compared performance of the proposed method with that of Mahalanobis
kernels given by (1) and (2), RBF kernels, and the Mahalanobis distance pro-
posed in [6]. The RBF kernel is given by exp(−γ‖x − x′‖2/m), where γ is a
positive constant. We used one-against-all fuzzy L1 SVMs [8].

We determined the parameter values by fivefold cross-validation. For the
margin parameter C of the L1 SVM, we selected the value from {1, 10, 50, 100,
500, 1, 000, 2, 000}. For the proposed Mahalanobis kernel and the RBF kernel,
we selected the value of δ and γ from {0.1, 0.5, 1, 5, 10, 20, 50, 100, 200} and for
the Mahalanobis kernel given by (1) and (2), we selected the value of δ from
{0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20}.

For the proposed Mahalanobis kernel, to speed up model selection, we deter-
mined the value of CM in two stages for single training and test data sets: First,
we trained the LP SVM with CM = 2, 000, and determined the values of C and
δ for the SVM by cross-validation. Then, we determined the values of CM and
C by cross-validation, fixing δ value with the value selected by cross-validation.
For multiple training and test data sets, we set CM = 1 or 2,000, and determined
the C and δ values by cross-validation. And we selected the CM value with the
higher recognition rate for the cross-validation data set.

Table 1 shows the results. In the table, the In/Cl/Tr/Te column shows
the numbers of inputs, classes, training data, and test data, the following four
columns show the recognition rates for the test data sets: the proposed method;
the Mahalanobis kernel calculated by (1) and (2); RBF kernels; and the Maha-
lanobis distance in [6]. The “Final” column shows the average number of inputs
per decision function selected by the proposed method.

The results of the balance and Pima Indians data sets were obtained by
randomly dividing files 10 times. Among the first three methods, the best recog-
nition rate is shown in boldface, the second in Roman, and the third in italic.
The last row of the table shows the summary: e.g., the first numeral in the three
numerals shows the number that gives the best recognition rate. From the table,
the proposed kernel shows the best and the Mahalanobis and RBF kernels are
comparable. For the last three data sets, all the three methods showed better
recognition rates than the Mahalanobis distance by [6] did.

In the “Final” column, the reduction rates for the hiragana-50, hiragana-105,
and USPS data sets are high because they are gray scale images.

5 Conclusions

We discussed training Mahalanobis kernels with a diagonal covariance matrix by
linear programming support vector machines (LP SVMs). Training can be for-
mulated either by ν-LP SVMs or regular LP SVMs. We clarified the dependency
of ν-LP SVMs and regular LP SVMs on the margin parameter and proved that
the ν-LP SVM may give a zero-margin solution for the margin parameter value
close to 1. But this kind of solution does not appear in the regular LP SVM.
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Table 1. Comparison of recognition rates and the number of selected inputs

Data In/Cl/Tr/Te Proposed Mahalanobis RBF [6] Final

Thyroid [9] 21/3/3772/3428 97.93 97.49 96.47 — 17.7
Blood [8] 13/12/3097/3100 93.77 93.32 93.52 — 12.3
Hiragana-50 [8] 50/39/4610/4610 98.85 99.31 99.26 — 24.0
Hiragana-13 [8] 13/38/8375/8356 99.86 99.80 99.77 — 10.4
Hiragana-105 [8] 105/38/8375/8356 100 100 100 — 39.2
Abalone [9] 8/3/3133/1044 66.38 67.63 65.04 — 7.0
Satimage [9] 36/6/4435/2000 91.20 91.00 91.90 — 31.8
USPS [10] 256/10/7291/2007 95.32 94.77 95.47 — 116
Letter [9] 16/26/16000/4000 98.23 97.58 97.83 96.54 15.8
Balance [9] 4/3/532/93 99.03±1.12 97.96±2.01 99.03±1.22 90.22±3.17 4
Pima Indians [9] 8/2/653/115 74.96±3.92 75.31±3.98 75.13±4.14 72.36±3.71 8

Ranking — 6:3:2 4:2:5 4:4:3 —

We also derive the lower bound of the margin parameter for the LP SVM that
gives the nonzero solution. Because of the zero-margin problem, we used regular
LP SVMs. Using several benchmark data sets we showed that the generalization
ability of the proposed method is better than that of RBF kernels.
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