Skip to main content

Rademacher Complexity and Structural Risk Minimization: An Application to Human Gene Expression Datasets

  • Conference paper
Book cover Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7553))

Included in the following conference series:

Abstract

In this paper, we target the problem of model selection for Support Vector Classifiers through in–sample methods, which are particularly appealing in the small–sample regime, i.e. when few high–dimensional patterns are available. In particular, we describe the application of a trimmed hinge loss function to Rademacher Complexity and Maximal Discrepancy based in–sample approaches. We also show that the selected classifiers outperform the ones obtained with other state-of-the-art in-sample and out–of–sample model selection techniques in classifying Human Gene Expression datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anguita, D., Ghio, A., Oneto, L., Ridella, S.: In-sample Model Selection for Support Vector Machines. In: Proc. of the Int. Joint Conference on Neural Networks (2011)

    Google Scholar 

  2. Anguita, D., Ghio, A., Oneto, L., Ridella, S.: Selecting the Hypothesis Space for Improving the Generalization Ability of Support Vector Machines. In: Proc. of the Int. Joint Conference on Neural Networks (2011)

    Google Scholar 

  3. Anguita, D., Ghio, A., Ridella, S.: Maximal Discrepancy for Support Vector Machines. Neurocomputing 74, 1436–1443 (2011)

    Article  Google Scholar 

  4. Anguita, D., Ridella, S., Rivieccio, F., Zunino, R.: Quantum optimization for training support vector machines. Neural Networks 16(5-6), 763–770 (2003)

    Article  Google Scholar 

  5. Bartlett, P.L., Boucheron, S., Lugosi, G.: Model selection and error estimation. Machine Learning 48, 85–113 (2002)

    Article  MATH  Google Scholar 

  6. Braga-Neto, U.M., Dougherty, E.R.: Is cross-validation valid for small-sample microarray classification? Bioinformatics 20(3), 374 (2004)

    Article  Google Scholar 

  7. Collobert, R., Sinz, F., Weston, J., Bottou, L.: Trading convexity for scalability. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 201–208 (2006)

    Google Scholar 

  8. Hsu, C., Chang, C., Lin, C., et al.: A practical guide to support vector classification (2003)

    Google Scholar 

  9. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, vol. 14, pp. 1137–1145 (1995)

    Google Scholar 

  10. Pelckmans, K., Suykens, J.A.K., De Moor, B.: Morozov, ivanov and tikhonov regularization based ls-svms. Neural Information Processing 3316, 1216–1222 (2004)

    Article  Google Scholar 

  11. Platt, J.: Sequential minimal optimization: A fast algorithm for training support vector machines. Advances in Kernel Methods-Support Vector Learning 208, 98–112 (1999)

    Google Scholar 

  12. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge University Press (2004)

    Google Scholar 

  13. Statnikov, A., Aliferis, C.F., Tsamardinos, I., Hardin, D., Levy, S.: A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21(5), 631 (2005)

    Article  Google Scholar 

  14. Vapnik, V.N.: Statistical learning theory. Wiley Interscience (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oneto, L., Anguita, D., Ghio, A., Ridella, S. (2012). Rademacher Complexity and Structural Risk Minimization: An Application to Human Gene Expression Datasets. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33266-1_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33266-1_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33265-4

  • Online ISBN: 978-3-642-33266-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics