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Abstract. In this work we will apply sparse linear regression methods to
forecast wind farm energy production using numerical weather prediction
(NWP) features over several pressure levels, a problem where pattern
dimension can become very large. We shall place sparse regression in the
context of proximal optimization, which we shall briefly review, and we
shall show how sparse methods outperform other models while at the
same time shedding light on the most relevant NWP features and on
their predictive structure.
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1 Introduction

Most modelling problems of interest in practical machine learning involve high
dimensional data, sometimes coupled with large samples. The overall goal in
those problems is to achieve good predictive models but large sizes and dimen-
sions often preclude the straight use of strong but complex methods such as
neural networks or support vector machines. The simplest choice is to use linear
models, that while probably inferior to other alternatives, offer a first quality
standard against other approaches that can be benchmarked. Moreover, linear
models can also help to pinpoint which variables are most influential. This can
be exploited by selecting the most important features to be used as inputs of
stronger methods and, also, to gain further knowledge of the problem under
study.

In the past decade the Stanford school of Breiman, Friedman, Hastie and
Tibshirani has proposed a series of sparse enforcing linear models, such as the
Lasso [8], Group Lasso [9], and Elastic–Net [10]. They add to the standard square
error loss function an `1 penalty (Lasso), a mixed `2,1 penalty (Group Lasso) or
combine the `1 penalty with an `2 regularizer term (Elastic–Net). The resulting
optimization problems are still convex but no longer differentiable, and a series
of ad–hoc methods have been proposed to solve them. From a general point of
view the combined criterion function has the form

min
W

{
1

2
L̂S(W ) + λ1R̂(W ) +

λ2
2
‖W‖22

}
, (1)



with L̂S(W ) denoting the quadratic loss of a linear model with weights W over
a sample S and R̂(W ) the non–differentiable but still convex `1 or `2,1 norms
of W . This general formulation places the above problems under the scope of
Proximal Optimization [3] which exploits the concept of proximal operators to
arrive to a general optimization procedure. Moreover, it makes quite easy to
extend the previous methods. For instance we will consider here a group version
of Elastic–Net simply by mixing in (1) the `2,1 and `2 norms of W . We shall
apply this set up to the problem of predicting wind farm energy production, of
considerable interest nowadays and fitting squarely in the previous set up.

The usual approach uses historical wind energy production data and fore-
casts derived from numerical weather prediction (NWP) systems, in our case,
the Agencia Española de Meteoroloǵıa (AEMET; [1]). These systems provide
forecasts for the nodes of a geographical grid, typically at resolutions that start
at 0.16◦ degrees or even finer, for either a surface level derived from a smooth
orographical model or for several constant pressure levels that go from sea level
to a height of about 20 Km. These forecasts are usually given every three hours.
Moreover, many meteorological variables are available at each level and the num-
ber of possible features may clearly become very large. To manage this, a first
obvious approach is to fix a square of grid points centred at the wind farm and
consider for each grid point a number of surface variables. However, these are
given typically 10 m above the grid point height, but that may bear little rela-
tionship with the actual altitude of a wind farm. The alternative is to consider
NWP forecasts for a number of pressure levels but this will of course augment
feature dimension and, thus, make the sparse methods attractive modelling tools.

This approach will be applied to the study of wind energy forecasting at the
Sotavento wind farm, situated in the Galicia region of north–western Spain. We
shall work with a 6 × 6 grid with a 0.25◦ degree resolution, 6 pressure layers
and 5 meteorological variables. Total dimension is thus 1, 080. We will consider
a one–year long training sample, whose size is thus 2, 920, i.e., about three times
pattern dimension and well below the linear regression rule of thumb of having 10
patterns per dimension. Regularization is thus mandatory but sparse regression
also comes in very naturally. In fact, and as we shall see, sparse models beat ridge
regression using a quite small number of the features available. Moreover, sparse
models also shed light on the predictive structure of NWP variables, something
that could be exploited when considering stronger, more complex methods than
standard regression. The paper is organized as follows. In Sect. 2 we will briefly
review the theory of Proximal Optimization and its training algorithms, and
describe how the previous sparse regression problems fit in this set up. In Sect.
3 these models will be applied to wind energy prediction for the Sotavento farm
and the paper ends with a discussion and conclusions section.

2 Proximal Methods for Regularized Linear Models

Assume a training set S =
{

(X(p), y(p))
}N
p=1

with (X(p), y(p)) ∈ RD × R, for

which we want to build a model fW : RD → R, in a certain Hilbert space fW ∈ H



and parametrized by a weight vector W , such that fW (X(p)) ≈ y(p), ∀p. To make
this more precise, we introduce a convex loss function LS : H → R and look in
principle for a f∗W that minimizes LS(fW ). However, we may also want to control
model complexity for which we may introduce a sparsity controlling convex term
R(fW ) as well as a regularization term ‖fW ‖2H. These considerations lead to the
general optimization problem

min
fW∈H

{
1

2
LS(fW ) + λ1R(fW ) +

λ2
2
‖fW ‖2H

}
, (2)

where λ1 and λ2 are the parameters which will determine the relative impor-
tance of the regularization terms against the error term. Notice that if λ2 6= 0,
the objective function is strictly convex. While the first and third terms are dif-
ferentiable, R(fW ) will usually not be so. To deal with this, we will consider the
problem (2) under the framework of Proximal Methods, a set of techniques to
solve non–differentiable optimization problems in an iterative way. The starting
point is the fact [6] that the solution f∗W of (2) satisfies for any η > 0 the fixed
point equation

f∗W = proxλ1
η ;R

((
1− λ2

η

)
f∗W −

1

2η
∇LS(f∗W )

)
, (3)

where the proximity operator proxλ;F (x) of a function F at a point x ∈ RD
with step λ is defined as

proxλ;F (x) = arg min
y

{
λF (y) +

1

2
‖x− y‖22

}
. (4)

The solution of (4) is problem dependent and finding it is the main issue when
applying proximal optimization. If it is known, (3) justifies an iterative algorithm
based on the steps

f
(t)
W = proxλ1

ηt
;R

((
1− λ2

ηt

)
f
(t−1)
W − 1

2ηt
∇LS(f

(t−1)
W )

)
.

There are several general purpose algorithms that apply this iterative scheme.
Here we will use the Fast Iterative Shrinkage–Thresholding Algorithm (FISTA;
[2]) which automatically determines the step length ηt.

Sparse regularized linear regression fits nicely in this set up. In that case,
H = RD, the basic model is fW (X) = X ·W and the loss function is LS(fW ) =
1
N ‖XW − Y ‖

2
2, where X is the matrix collecting all the inputs X(p) in its rows,

and Y is the vector of all the desired outputs y(p). All the mentioned linear
sparse models can be derived for particular choices of the functional R and the
parameters λ1 and λ2, as summarized in Table 1. The simplest case is to fix
λ1 = λ2 = 0, which leads to the Ordinary Least Squares (OLS) model. The
resulting optimization problem can be easily solved analytically (see Table 1),
but if no regularization is included, OLS models are likely to over–fit the sample
when the feature dimension D is comparable with sample size. The simplest way



Table 1: Correspondence between the regularized linear models and problem (2).
Model LS(fW) R(fW) ‖fW‖2H Solution

OLS 1
N ‖XW − Y ‖

2
2 × × W o = (XTX )−1XTY

RLS 1
N ‖XW − Y ‖

2
2 × 1

D ‖W‖
2
2 W o = (XTX +

Nλ2
D )−1XTY

LA 1
N ‖XW − Y ‖

2
2

1
D ‖W‖1 × FISTA

GL 1
N ‖XW − Y ‖

2
2

1
D ‖W‖2,1 × FISTA

ENet 1
N ‖XW − Y ‖

2
2

1
D ‖W‖1

1
D ‖W‖

2
2 FISTA

GENet 1
N ‖XW − Y ‖

2
2

1
D ‖W‖2,1

1
D ‖W‖

2
2 FISTA

to avoid this is just to take some λ2 > 0 while keeping λ1 = 0. This leads to
Regularized Least Squares (RLS; [4]) which has also a closed form solution.

A first choice for the functional R is to use the `1 norm, RLA(fW ) = 1
D‖W‖1.

Setting λ1 > 0 and λ2 = 0 and using this functional, we recover the Lasso (LA;
[8]) algorithm. The `1 norm encourages sparse models, something that can be
seen as an implicit feature selection, because the inputs associated with zero
coefficients are just discarded. Because of its non–differentiability, LA models
will be trained using FISTA, as explained above. The proximal operator for the
`1 norm is given by soft thresholding [5] as (proxλ;‖·‖1 (x))i = xi(1− λ

|xi| )
+. Notice

that in LA all coefficients are treated individually. In certain circumstances we
may want to have a grouping effect in the features, so as to detect relevant
groups. A way to achieve this is to enforce that all the coefficients in a group
should be active or inactive at the same time. This is what the Group Lasso (GL;
[9]) algorithm obtains using a mixed `2,1 norm as regularizer, i.e., RGL(fW ) =

1
D‖W‖2,1 = 1

D

∑D
V
i=1

√∑V
v=1 w

2
i,v, where wi,v is the component corresponding

to the v–th variable of the i–th group, and the space RD is decomposed in D
V

groups of V variables. Notice that this `2,1 norm is just the `1 norm of the `2
group norms; thus it precisely enforces group sparsity. Again, this problem will
be solved using FISTA with the proximal operator being now (proxλ;f1 (x))i =

xi,v(1− λ
‖xi,·‖2 )+.

While the `1 norm enforces sparseness, the regularizing effect of the `2 norm
has its own advantages and combining both seems sensible. This is what Elastic–
Net (ENet; [10]) does, setting λ1 > 0, λ2 > 0 and using the RLA regularizer of
LA. On the other hand, the Proximal Optimization approach easily allows to
define a group version of this, the Group Elastic–Net (GENet), that combines
the `2 norm with the RGL regularizer. Both ENet and GENet will be also solved
by FISTA.

3 Numerical Experiments

In this section we will apply the previous algorithms to study the prediction of
the energy production of a wind farm. We will work with the Sotavento wind
farm [7], located at 43.34◦ N, 7.86◦ W and that makes production data publicly



available. The usual features in wind power forecasting are surface predictions
of meteorological variables. We shall work first with the following: V , the norm
of the wind speed, Vx, its x component, Vy, its y component, the temperature
T and pressure P . They will be considered over a rectangular, 0.25◦ resolution,
6 × 6 point grid surrounding Sotavento. The dimension for surface prediction
is thus 180 = 6 × 6 × 5, large but not too much so. We will work with a 1
year training set and a 2 months test period. Meteorological forecast are only
available every three hours; thus, we have eight patterns per day and training
sample size is 2, 920. We normalize the wind energy production target values to
the [0, 1] interval as percentages of the total installed wind power in Sotavento.

In any case, many more variables are available on the 17 constant pressure
levels for which AEMET gives NWP forecasts, although obviously not all of them
will have an effect on the energy. These levels have a 50 hPa resolution and over
them pressure is constant and no longer a predictive variable; we substitute it
by geopotential heights. A first level selection can be done using Sotavento’s
elevation, with an average of about 600 m. The first 11 levels are consistently
located much higher; moreover, correlation plots with wind farm production
(not included) show that they do not contain useful information and we have
discarded them outright. We are left with the lowest 6 layers and total feature
dimension is then 6× 6× 6× 5 = 1, 080. Thus, sample size is about 3 times the
dimension. However, it is not clear that all of these features have the same effect
(if any) on the wind energy production and they may handicap full regression
models even if they are regularized. Sparse methods can thus help us first to
find better models and, second, to better understand which grid points, pressure
levels and variables are the most useful to improve predictions.

To do so, we will use the models described in Sect. 2. For the case of
group algorithms (GL and GENet), we consider as a group the 5 meteoro-
logical variables evaluated over a grid point. As usually done in wind energy,
the models are evaluated using the Mean Absolute Error over the test set,

MAE = 1
N ′

∑N ′

p=1 |X(p) ·W − y(p)|. We will also report the standard devia-
tion σAE of the absolute errors, although they are rather conservative as we
do not perform any sample size correction (assuming independence for these
errors would lead to divide the values given by

√
N ′ and, hence, much smaller

values). An important issue for most of the algorithms used is the estimation of
the hyper–parameters λ1 and λ2 that configure each model. This is done as a
search over a grid representation of the parameter space, working on a logarith-
mic scale from 10−3 to 103 with steps of 100.10. For the algorithms that involve
a bi–dimensional grid (ENet and GENet), the step size is increased to 100.20. At
each point of the parameter grid, a 5–fold cross validations is used to evaluate a
given model using as fitness the MAE and discarding models above a predefined
sparseness level ρ, fixed as the percentage of non–zero weights. Three different
values of ρ, 30, 50 and 100 (i.e., no restrictions), are considered for all models.

The comparison of the different algorithm is summarized in Table 2. A first
reference are surface models, for which we recall that feature dimension is 180;
therefore, we only consider the 100% sparsity level. Their performance is given



Table 2: Results and parameters for 6 pressure levels and minimum 30%, 50%
and 100% sparseness, and surface data. Models ordered by MAE.

(a) 6 levels (ρ = 30%).

Method MAE σAE Act W λ1 λ2

ENet 7.09 6.5 011.7% −0.40 −2.80
RLS 7.11 6.6 100.0% × +1.20

LA 7.14 6.5 010.9% −0.30 ×
GENet 7.52 6.7 017.1% +0.20 −2.00
GL 7.61 6.8 013.9% +0.30 ×
OLS 8.65 8.6 100.0% × ×

(b) 6 levels (ρ = 50%).

Method MAE σAE Act W λ1 λ2

LA 7.08 6.5 014.4% −0.60 ×
ENet 7.10 6.5 016.8% −0.60 +0.00

RLS 7.11 6.6 100.0% × +1.20

GENet 7.31 6.6 023.6% +0.00 +0.00

GL 7.32 6.6 022.7% +0.00 ×
OLS 8.65 8.6 100.0% × ×

(c) 6 levels (ρ = 100%).

Method MAE σAE Act W λ1 λ2

GL 7.05 6.5 053.2% −0.60 ×
ENet 7.07 6.5 039.6% −1.00 +0.60

LA 7.10 6.6 034.4% −1.00 ×
GENet 7.11 6.5 075.5% −0.60 +0.80

RLS 7.11 6.6 100.0% × +1.20

OLS 8.65 8.6 100.0% × ×

(d) Surface (ρ = 100%).

Method MAE σAE Act W λ1 λ2

GL 7.12 6.7 100.0% −2.80 ×
LA 7.13 6.7 091.7% −2.80 ×
RLS 7.14 6.7 100.0% × −2.80
OLS 7.21 6.8 100.0% × ×
GENet 7.26 6.6 100.0% −2.00 −2.60
ENet 7.32 6.6 066.7% −2.20 −1.80

in Subtable 2d and the best models are GL and LA in that order, although
they essentially do not achieve any sparsity enforcing, as their active weights are
100% and 91.7% respectively. Subtables 2a, 2b and 2c give the performance of
the multi–level variables. Recall that feature dimension is now 1, 080, making
mandatory the use of regularized or sparse models (notice that unregularized
linear regression OLS performs very badly due to a clear case of over–fitting).
As it can be expected, the best results are obtained at the 100% sparsity level,
with the best algorithm being GL that uses about half of the features. If more
sparsity is imposed, model performance is just slightly worse, but sparsity greatly
increases. At the 50% level, LA is the second best model, with only 14.4% of
active weights. At the strictest 30% sparsity level, ENet is the best model, with
a sparsity of just 11.7%. Moreover, in all cases the results using pressure level
variables are better than the ones obtained using surface variables. As mentioned
before, a reason for this is that the 10 m height of surface variables may not
be representative of actual wind farm altitude. In any case, the use of sparse
methods such as LA and ENet over pressure layers is justified.

We turn now our attention to the structure identified by the sparse models.
Figure 1a shows the percentage of the total active weights per variable. The non–
sparse algorithms obviously do not perform any kind of variable selection and
the same is true for the group methods, the reason being that they essentially
select all the variables at a given grid point. On the other hand, LA and ENet
favour the V and Vx variables and discard almost completely the geopotential
height. This is reasonable as it has a much smaller correlation with respect
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Fig. 1: Active weight % per variable (left) and level (right) for ρ = 50%.

to wind energy production. Figure 1b shows the percentage of the total active
weights per pressure level. Now all the sparse methods perform some kind of
level selection, favouring the highest and lowest layers. The reason for this is
clear, as all levels have high correlations with respect to wind energy while the
extreme levels are the most independent. This effect is particularly strong for
the group models GL and GENet, as they must focus on actually selecting levels
instead of variables. We also point out that sparse methods define some grid
structure as they select points which are mostly located in either the centre of
the grid (closest to the wind farm) or the grid extremes (points least correlated
with the grid centre but still correlated with the wind energy).

Summing things up, it is clear that taking into account different pressure
levels yields better models than considering only surface variables. Sparse models
help on this and, moreover, automatically select the feature structure better
suited for modelling.

4 Conclusions

Most modelling problems of interest in practical machine learning involve high
dimensional data. The goal in these problems is not only to achieve good predic-
tive models but also to do so in an economic way using as few features as possible
and, moreover, to identify some structure in the predictive variables. A natural
approach to this task is to use linear regression models upon which sparsity is
enforced; this is the case of the Lasso, Group Lasso and Elastic–Net methods,
to which we have added a group version of Elastic–Net. In this work, we have
reviewed them under the unifying point of view of Proximal Optimization. This
makes possible to apply efficient algorithms and to consider extensions of pre-
vious models, as it is the case of the Group Elastic–Net model. Wind energy
prediction is a natural field of application for these methods, as NWP makes
available a large number of predictive variables. We have analyzed wind energy



prediction for the Sotavento wind farm, located in the Galicia region of north–
western Spain, considering NWP values for points in a 6×6 grid over 6 different
pressure layers. As our results show, sparse models built over several pressure
layers outperform those built using just NWP surface values, even when a strict
degree of sparsity is required. Moreover, sparse models also identify the predic-
tive structure in the NWP features and discriminate among the levels considered,
thus improving our problem understanding.

In any case, stronger models could clearly yield better predictions, which
makes natural to exploit sparse linear regression to select the most relevant
features upon which more advanced models can be built. For example, better
models can be obtained using standard RLS over features selected by the Lasso.
Moreover, the sparse linear methods also have strong theoretical foundations
that could be brought to bear on feature selection. We are currently studying
these and other related issues.

Acknowledgement. With partial support from grant TIN2010-21575-C02-01
of Spain’s Ministerio de Economı́a y Competitividad and the UAM–ADIC Chair
for Machine Learning in Modelling and Prediction. The first author is supported
by the FPU–MEC grant AP2008-00167. We thank our colleague Álvaro Barbero
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