Skip to main content

Properties of the Hopfield Model with Weighted Patterns

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7552))

Abstract

The standard Hopfield model is generalized to the case when input patterns are provided with weights that are proportional to the frequencies of patterns occurrence at the learning process. The main equation is derived by methods of statistical physics, and is solved for an arbitrary distribution of weights. An infinitely large number of input patterns can be written down in connection matrix however the memory of the network will consist of patterns whose weights exceed a critical value. The approach eliminates the catastrophic destruction of the memory characteristic to the standard Hopfield model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amit, D., Gutfreund, H., Sompolinsky, H.: Storing Infinite Numbers of Patterns in a Spin-Glass Model of Neural Networks. Phys. Rev. Lett. 55, 1530–1533 (1985)

    Article  Google Scholar 

  2. Amit, D., Gutfreund, H., Sompolinsky, H.: Statistical mechanics of neural networks near saturation. Annals of Physics 173, 30–67 (1987)

    Article  Google Scholar 

  3. Hertz, J., Krogh, A., Palmer, R.: Introduction to the Theory of Neural Computation. Addison-Wesley, Massachusetts (1991)

    Google Scholar 

  4. Parisi, G.: A memory which forgets. J. of Phys. A19, L617–L620 (1986)

    Google Scholar 

  5. Nadal, J.P., Toulouse, G., Changeux, J.P., Dehaene, S.: Networks of Formal Neurons and Memory Palimpsest. Europhys. Lett. 1, 535–542 (1986)

    Article  Google Scholar 

  6. van Hemmen, J.L., Keller, G., Kuhn, R.: Forgetful Memories. Europhys. Lett. 5, 663–668 (1988)

    Article  Google Scholar 

  7. van Hemmen, J.L., Kuhn, R.: Collective Phenomena in Neural Networks. In: Domany, E., van Hemmen, J.L., Schulten, K. (eds.) Models of Neural Networks, pp. 1–105. Springer, Berlin (1992)

    Google Scholar 

  8. Karandashev, Y., Kryzhanovsky, B., Litinskii, L.: Local Minima of a Quadratic Binary Functional with a Quasi-Hebbian Connection Matrix. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part III. LNCS, vol. 6354, pp. 41–51. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Karandashev, Y., Kryzhanovsky, B., Litinskii, L.: Weighted Patterns as a Tool for Improving the Hopfield Model. Phys. Rev. E85, 041925 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karandashev, I., Kryzhanovsky, B., Litinskii, L. (2012). Properties of the Hopfield Model with Weighted Patterns. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33269-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33269-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33268-5

  • Online ISBN: 978-3-642-33269-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics