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Abstract. We consider to learn a causal ordering of variables in a linear
non-Gaussian acyclic model called LiNGAM. Several existing methods
have been shown to consistently estimate a causal ordering assuming that
all the model assumptions are correct. But, the estimation results could
be distorted if some assumptions actually are violated. In this paper, we
propose a new algorithm for learning causal orders that is robust against
one typical violation of the model assumptions: latent confounders. We
demonstrate the effectiveness of our method using artificial data.
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1 Introduction

Bayesian networks have been widely used to analyze causal relations of variables
in many empirical sciences [11]. A common assumption is linear-Gaussianity.
But this poses serious identifiability problems so that many important models
are indistinguishable with no prior knowledge on the structures. Recently, it was
shown [9] that use of non-Gaussianity allows the full structure of a linear acyclic
model to be identified without pre-specifying any causal orders of variables. The
new model, a Linear Non-Gaussian Acyclic Model called LiNGAM [9], is closely
related to independent component analysis (ICA) [7].

Existing estimation methods [9,10] for LiNGAM learn causal orders assuming
that all the model assumptions hold. Therefore, these algorithms could return
completely wrong estimation results when some of the model assumptions is
violated. Thus, in this paper, we propose a new algorithm for learning causal
orders that is robust against one typical model violation, i.e., latent confounders.
A latent confounder means a variable which is not observed but which exerts a
causal influence on some of the observed variables.

The paper is organized as follows. We first review LiNGAM [9] and its ex-
tension to latent confounder cases [6] in Section 2. In Section 3, we propose
a new algorithm to learn causal orders in LiNGAM with latent confounders.
Simulations are conducted in Section 4. We conclude this paper in Section 5.

http://arxiv.org/abs/1204.1795v1
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2 Background: LiNGAM with latent confounders

We briefly review a linear non-Gaussian acyclic model called LiNGAM [9] and
an extension of the LiNGAM to cases with latent confounding variables [6].

In LiNGAM [9], causal relations of observed variables xi are modeled as:

xi =
∑

k(j)<k(i)

bijxj + ei, (1)

where k(i) is such a causal ordering of variables xi that they graphically form
a directed acyclic graph (DAG) so that no later variable determines, i.e., has
a directed path on any earlier variable, ei are external influences, and bij are
connection strengths. In matrix form, the model (1) is written as

x = Bx+ e, (2)

where the connection strength matrix B collects bij and the vectors x and e
collect xi and ei. Note that the matrix B can be permuted to be lower tri-
angular with all zeros on the diagonal if simultaneous equal row and column
permutations are made according to a causal ordering k(i) due to the acyclicity.
The zero/non-zero pattern of bij corresponds to the absence/existence pattern
of directed edges. External influences ei follow non-Gaussian continuous distri-
butions with zero mean and non-zero variance and are mutually independent.
The non-Gaussianity assumption on ei enables identification of a causal ordering
k(i) based on data x only [9]. This feature is a big advantage over conventional
Bayesian networks based on the Gaussianity assumption on ei [11].

Next, LiNGAM with latent confounders [6] can be formulated as follows:

x = Bx+Λf + e, (3)

where the difference with LiNGAM (2) is the existence of latent confounding
variable vector f . A latent confounding variable is such an latent variable that is
a parent of more than or equal to two observed variables. The vector f collects
non-Gaussian latent confounders fj with zero mean and non-zero variance (j =
1, · · · , q). Without loss of generality [6], latent confounders fj are assumed to be
mutually independent. The matrix Λ collects λij which denotes the connection
strength from fj to xi. For each j, at least two λij are non-zero since a latent
confounder is defined to have at least two children. Further, it is assumed [6] that
correlation and conditional correlation of xi, fi and ei are entailed by the graph
structure only, i.e., the zero/non-zero status of bij and λij . This is a well-known
assumption called faithfulness in causal discovery [11].

The central problem of causal discovery based on the latent variable LiNGAM
in Equation (3) is to estimate as many of causal orders k(i) and connection
strengths bij as possible based on data x only. This is because in many cases
only an equivalence class of the true model whose members produce the exact
same observed distribution is identifiable [6].

In [6], an estimation method based on overcomplete ICA was proposed. How-
ever, overcomplete ICA methods are often not very reliable and get stuck in local
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optima. Thus, in [2], a method that does not use overcomplete ICA was proposed
to first find variable pairs that are not affected by latent confounders and then
estimate a causal ordering of one to the other instead of a causal ordering of
more than two variables.

3 A hybrid estimation approach

In this section, we propose a new approach for estimating causal orders of more
than two variables without explicitly modeling latent confounders. We first pro-
vide principles to identify such an exogenous (root) variable and a sink variable
that are not affected by latent confounders in the latent variable LiNGAM in
Equation (3) (if such variables exist) and next present an estimation algorithm.
Recent estimation methods [8, 10] for LiNGAM in Equation (2) and its non-
linear extension [5] learn a causal ordering by finding causal orders one by one
either from the top downward or from the bottom upward assuming no latent
confounders. We extend these ideas to latent confounder cases.

We first generalize Lemma 1 of [10] for the case of latent confounders.

Lemma 1 Assume that all the model assumptions of the latent variable LiNGAM

(3) are met and the sample size is infinite. Denote by r
(j)
i the residuals when xi

are regressed on xj: r
(j)
i = xi −

cov(xi,xj)
var(xj)

xj (i 6= j). Then a variable xj is an

exogenous variable in the sense that it has no parent observed variable nor latent

confounder if and only if xj is independent of its residuals r
(j)
i for all i 6= j. ⊓⊔

Next, we generalize the idea of [8] for the case of latent confounders.

Lemma 2 Assume that all the model assumptions of the latent variable LiNGAM
(3) are met and the sample size is infinite. Denote by x(−j) a vector that contains

all the variables other than xj. Denote by r
(−j)
j the residual when xj is regressed

on x(−j), i.e., r
(−j)
j = xj −σ

T
(−j)jΣ

−1
(−j)x(−j), where Σ =

[

σj σ
T
j(−j)

σj(−j) Σ(−j)

]

is the

covariance matrix of [xj ,x
T
(−j)]

T . Then a variable xj is a sink variable in the
sense that it has no child observed variable nor latent confounder if and only if

x(−j) is independent of its residual r
(−j)
j . ⊓⊔

The proofs of these lemmas are given in the appendix.
Thus, we can take a hybrid estimation approach that uses these two princi-

ples. We first identify an exogenous variable by finding a variable that is most
independent of its residuals and remove the effect of the exogenous variable
from the other variables by regressing it out. We repeat this until independence
of every variable and any of its residuals is statistically rejected. Dependency
between every variable and any of its residuals implies that such an exogenous
variable in Lemma 1 does not exist or some model assumption of latent vari-
able LiNGAM (3) is violated. Similarly, we next identify a sink variable in the
remaining variables by finding a variable that its regressors and its residual are
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most independent and disregard the sink variable. We repeat this until indepen-
dence is statistically rejected for every variable. We test pairwise independence
between variables and the residuals using a kernel-based independence measure
called HSIC [4] and combine the resulting p-values using a well-known Fisher’s
method [3]. We use Bonferroni correction for multiple comparison dividing the
significance level by the maximum number of tests p−1.

Thus, the estimation consists of the following steps:

1. Given a p-dimensional random vector x, a set of its variable subscripts U ,
a p × n data matrix of the random vector as X and a significance level
α, initialize an ordered list of variables Khead := ∅ and Ktail := ∅ and
m := 1. Khead and Ktail denote first |Khead| orders of variables and last
|Ktail| orders of variables respectively, where each of |Khead| and |Ktail|
denotes the number of elements in the list.

2. Let x̃=x and X̃=X and find causal orders one by one from the top downward:

(a) Do the following steps for all j ∈ U \Khead: Perform least squares regres-
sions of x̃i on x̃j for all i ∈ U \Khead (i 6= j) and compute the residual
vectors r̃(j). Then, find a variable x̃m that is most independent of its
residuals:

x̃m = arg max
j∈U\Khead

PFisher(x̃j , r̃
(j)), (4)

where PFisher(x̃j , r̃
(j)) is the p-value of the test statistic defined as

−2
∑

i log{PH(x̃j , r̃
(j)
i )}, where PH(x̃j , r̃

(j)
i ) is the p-value of the HSIC.

(b) Go to Step 3 if PFisher(x̃m, r̃(m)) < α/(p− 1).
(c) Append m to the end of Khead and let x̃ := r̃(m) and X̃ := R̃(m). If

|Khead| = p− 1, append the remaining variable subscript to the end of
Khead and go to Step 4. Otherwise, go back to Step (2a).

3. If |Khead| < p − 2,3 let x′ = x and X′ = X and U ′ := U \ Khead and find
causal orders one by one from the bottom upward:
(a) Do the following steps for all j ∈ U ′ \ Ktail: Collect all the variables

except x′
j in a vector x′

(−j). Perform least squares regressions of x′
j on

x′
(−j) and compute the residual r′

(−j)
j . Then, find such a variable x′

m

that its regressors and its residual are most independent:

x′
m = arg max

j∈U ′\Ktail

PFisher(x
′
(−j), r

′(−j)
j ). (5)

(b) Go to Step 4 if PFisher(x
′
(−m), r

′(−m)
m ) < α/(p− 1).

(c) Append m to the top of Ktail and let x′ = x′
(−m)X

′ = X′
(−m). Go to

Step 4 if |U ′ \Ktail| < 3.3 Otherwise go back to Step (3a).
4. Estimate connection strengths bij for variables in Khead and Ktail by doing

multiple regression of every variable xi in Khead and Ktail on all of its non-
descendants xj with k(j) < k(i).

3 We do not examine remaining two variables in Step 3 since it is already implied in
Step 2 that some latent confounders exist or some model assumption is violated.
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Fig. 1. True network used in the simulation. The variables f1 and f2 were latent
confounders. The green contours include variables that share f1 or f2. The external
influences ei are omitted to be shown.

Note that our algorithm would output no causal orders in cases that such ex-
ogenous variables and sink variables as in Lemmas 1 and 2 do not exist, although
the outputs are still correct. One way to learn more causal orders in those cases
would be to develop a divide-and-conquer algorithm that divides variables into
subsets where such exogenous or sink variables exist and integrates the estima-
tion results on the subsets. This is an important direction of future research.

4 Experiments on artificial data

We compared our method with an estimation method for LiNGAM (2) called
DirectLiNGAM [10] that does not allow latent confounders and an estimation
method for latent variable LiNGAM (3) called Pairwise LvLiNGAM [2]. If there
is no latent confounders, all the methods should estimate correct causal orders for
enough large sample sizes. The number of variables was 6, and the sample sizes
tested were 500, 1000, 2000. The original network used was shown in Figure 1.
The e1, e4 and f1 followed a multimodal asymmetric mixture of two Gaussians,
e2, e5, f2 followed a double exponential distribution, and e3 and e6 followed a
multimodal symmetric mixture of two Gaussians. The standard deviations of
the ei were set so that their signal-to-noise ratios, i.e., var(xi)/var(ei)−1 were
all ones. The number of trials was 100. The significance level α was 0.05.

First, to evaluate performance of estimating causal orders k(i), we computed
the percentage of correctly estimated causal orders in estimated causal orders be-
tween two variables (Precision) and the percentage of correctly estimated causal
orders in actual causal orders between two variables that share no latent con-
founders in the true data generating network (Recall). The reason why only
pairwise causal orders were evaluated was that Pairwise LvLiNGAM only es-
timates causal orders of two variables unlike our method and DirectLiNGAM.
Tables 1 and 2 show the results. Regarding precisions, our method was com-
parable to Pairwise LvLiNGAM and the two methods were much better than
DirectLiNGAM for all the conditions. Regarding recalls, our method was better
than both DirectLiNGAM and Pairwise LvLiNGAM for all the conditions.
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Table 1. Precisions

Sample size
500 1000 2000

Our method 0.78 0.80 0.80
DirectLiNGAM 0.65 0.64 0.64
Pairwise LvLiNGAM 0.79 0.81 0.81

Table 2. Recalls

Sample size
500 1000 2000

Our method 0.97 0.99 0.99
DirectLiNGAM 0.81 0.80 0.81
Pairwise LvLiNGAM 0.86 0.89 0.90

Next, to evaluate the performance in estimating connection strengths bij , we
computed the root mean square errors between true connection strengths and
estimated ones. The root mean square errors for our method and DirectLiNGAM
were 0.079 and 0.090 for 500 data points, 0.070 and 0.079 for 1000 data points
and 0.015 and 0.057 for 2000 data points, respectively, where our method was
more accurate. Note that Pairwise LvLiNGAM does not estimate bij .

5 Conclusions

We proposed a new algorithm for learning causal orders, which is robust against
latent confounders. In experiments on artificial data, our approach learned more
causal orders accurately than two existing methods. In future work, we would like
to test our method on real-world data including functional magnetic resonance
imaging data to analyze causal interactions between brain regions.

Acknowledgments. S.S and T.W. were supported by KAKENHI #24700275
and #22300054. We thank Patrik Hoyer and Doris Entner for helpful comments.
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Appendix: Proofs of the lemmas

Theorem 1 (Darmois-Skitovitch theorem (D-S theorem) [1]) Define two
random variables y1 and y2 as linear combinations of independent random vari-
ables si(i=1, · · · , q): y1 =

∑q

i=1 αisi, y2 =
∑q

i=1 βisi. Then, if y1 and y2 are
independent, all variables sj for which αjβj 6= 0 are Gaussian. ⊓⊔

In other words, this theorem means that if there exists a non-Gaussian sj for
which αjβj 6=0, y1 and y2 are dependent.

Further, Lemma 3 of [2] has shown that the regressor and its residual in simple
linear regression are dependent if there are some latent confounders between the
regressor and regressand in the latent variable LiNGAM (3).

Proof of Lemma 1 i) Assume that xj has at least one parent observed variable
or latent confounder. Let Pj denote the set of the parent variables of xj . Then one
can write xj=

∑

ph∈Pj
wjhph+ej, where the parent variables ph are independent

of ej and the coefficients wjh are non-zero. Suppose that xi is a parent of xj . For

such xi, we have r
(j)
i = xi −

cov(xi,xj)
var(xj)

xj = xi −
cov(xi,xj)
var(xj)

(
∑

ph∈Pj
wjhph + ej) =

{

1− wjicov(xi,xj)
var(xj)

}

xi−
cov(xi,xj)
var(xj)

∑

ph∈Pj ,ph 6=xi
wjhph−

cov(xi,xj)
var(xj)

ej . Each of those

parent variables (including xi) in Pj is a linear combination of external influences
other than ej and latent confounders that are non-Gaussian and independent.

Thus, the r
(j)
i and xj can be written as linear combinations of non-Gaussian and

independent external influences including ej and latent confounders. Further, the

coefficient of ej on r
(j)
i is non-zero since cov(xi, xj) 6= 0 due to the faithfulness

and that on xj is one by definition. These imply that r
(j)
i and xj are dependent

since r
(j)
i , xj and ej correspond to y1, y2, sj in D-S theorem, respectively. Next,

for the other case that xj has a latent confounder, r
(−j)
i and an observed variable

can be shown to be dependent using Lemma 3 of [2] since by definition at least
one observed variable shares the latent confounder with xj .

ii) The converse of contrapositive of i) is straightforward using the model
definition. From i) and ii), the lemma is proven.
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Proof of Lemma 2 i) Assume that a variable xj has at least one child observed
variable or latent confounder. First, without loss of generality, one can write

x =

[

xj

x(−j)

]

= (I−B)−1(Λf + e) = A(Λf + e) (6)

=

[

1 aT
j(−j)

a(−j)j A(−j)

] [

λλλT
j f + ej

Λ(−j)f + e(−j)

]

, (7)

where each of A (= (I−B)−1) and A(−j) is invertible and can be permuted to
be a lower triangular matrix with the diagonal elements being ones if the rows
and columns are simultaneously permuted according to the causal ordering k(i).
The same applies to the inverse of A:

A−1 =

[

(1− aT
j(−j)A

−1
(−j)a(−j)j)

−1 −aT
j(−j)D

−1

−D−1a(−j)j D−1

]

, (8)

where D = A(−j) − a(−j)ja
T
j(−j). Thus, 1− aT

j(−j)A
−1
(−j)a(−j)j = 1. Then,

r
(−j)
j = xj − σ

T
(−j)jΣ

−1
(−j)x(−j) (9)

= λλλT
j f + ej + aTj(−j)(Λ(−j)f + e(−j))

−σ
T
(−j)jΣ

−1
(−j){a(−j)j(λλλ

T
j f + ej) +A(−j)(Λ(−j)f + e(−j)) (10)

= {λλλT
j + aTj(−j)Λ(−j) − σ

T
(−j)jΣ

−1
(−j)(a(−j)jλλλ

T
j +A(−j)Λ(−j))}f

+{1− σ
T
(−j)jΣ

−1
(−j)a(−j)j}ej + {aTj(−j) − σ

T
(−j)jΣ

−1
(−j)A(−j)}e(−j).(11)

In Equation (11), if aT
j(−j) − σ

T
(−j)jΣ

−1
(−j)A(−j) = 0T , then we have

r
(−j)
j = {λλλT

j (1− aTj(−j)A
−1
(−j)a(−j)j)}f + {1− aTj(−j)A

−1
(−j)a(−j)j}ej (12)

= λλλT
j f + ej . (13)

Thus, the coefficient of ej on r
(−j)
j is one. Now, suppose that xj has a child xi.

The coefficient of ej on xi is non-zero due to the faithfulness. Thus, r
(−j)
j and xi

are dependent due to D-S theorem. Next, suppose that xj has a latent confounder
fi. Then, in Equation (11), the corresponding element in λλλj is not zero, i.e., the

coefficient of fi on r
(−j)
j is not zero. Further, fi has a non-zero coefficient on

at least one variable in x(−j) due to the definition of latent confounders and

faithfulness. Therefore, r
(−j)
j and x(−j) are dependent due to D-S theorem.

On the other hand, in Equation (11), if aTj(−j) − σ
T
(−j)jΣ

−1
(−j)A(−j) 6= 0T ,

at least one of the coefficients of the elements in e(−j) on r
(−j)
j is not zero. By

definition, every element in e(−j) has a non-zero coefficient on the corresponding

element in x(−j), Thus, r
(−j)
j and x(−j) are dependent due to D-S theorem.

ii) The converse of contrapositive of i) is straightforward using the model
definition. From i) and ii), the lemma is proven.
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