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Abstract

We study the computational complexity of graph planarization via edge contraction. The problem Con-
tract asks whether there exists a set S of at most k edges that when contracted produces a planar graph.
We work with a more general problem called P -RestrictedContract in which S, in addition, is required
to satisfy a fixed MSOL formula P (S,G). We give an FPT algorithm in time O(n2f(k)) which solves P -
RestrictedContract, where n is number of vertices of the graph and P (S,G) is (i) inclusion-closed and
(ii) inert contraction-closed (where inert edges are the edges non-incident to any inclusion-minimal solution
S).

As a specific example, we can solve the `-subgraph contractibility problem in which the edges of the set
S are required to form disjoint connected subgraphs of size at most `. This problem can be solved in time
O(n2f ′(k, `)) using the general algorithm. We also show that for ` ≥ 2 the problem is NP-complete.

Keywords: planar graph, contraction, MSOL formula, FPT algorithm

1. Introduction

Graph visualization techniques are thoroughly studied. In many applications visual understanding of
the graph under consideration is important or required. It is commonly accepted that edge crossings make
a plane drawing of a graph less clear, and thus the goal is to avoid them, or reduce their number. It is
now well-known that one can decide fast whether crossings can be avoided at all, as planarity testing is
linear time decidable [2], while determining the minimum number of crossings needed to draw a non-planar
graph is NP-hard [3]. Several variants of planar visualization of graphs have been considered and explored,
including simultaneous embeddings, book-embeddings, embeddings on surfaces of higher genus, etc.

Marx and Schlotter [4] considered planarization of a graph by removing its vertices while Kawarabayashi
and Reed [5] considered removing its edges. Another possible way to planarize a graph is by contracting
some of its edges. If the number of contracted edges is not limited, every connected graph can trivially
be contracted into a single vertex, and thus becomes planar. A graph is k-contractible if the number of
contracted edges is limited by a number k. If k is a part of the input, testing k-contractibility is NP-
complete [6]. Polynomial-time algorithms are known if one asks about contraction to a particular fixed
planar graph (so called H-contractibility); for nice overviews see [7, 8]. In this paper, we present a fixed-
parameter tractable algorithm for contractibility to planar graphs.
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the third authors are supported by CE-ITI (P202/12/G061 of GAČR) and Charles University as GAUK 196213.
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S G G′

Figure 1: An example of a 2-contractible graph.

Definitions and Notation. In this paper all graphs are simple, i.e., no multiple edges and no loops. For
a graph G, we denote by V (G) its vertices and by E(G) its edges (or simply V and E, when the graph is
clear from the context). By G \H, we denote the subgraph of G induced by V (G) \ V (H). We denote by
G ◦ e the graph obtained by contracting an edge e in G. For a set of edges S, we denote a graph created
from G by contracting all edges of S by G ◦ S. We call S ⊆ E a planarazing set of G if G ◦ S is a planar
graph; see Fig. 1. We say that G is k-contractible if there exists a planarizing set S of size at most k.

MSOL formulas for graphs are logic formulas which contain predicates of equality, incidence and con-
tainment, logic operators and quantifiers for vertices, edges, sets of vertices and edges; see [9]. For instance,
3-colorability can be expressed by MSOL as existence of three sets V1, V2 and V3 of vertices, such that each
vertex belongs to exactly one Vi, and there are no edges with both endpoints in one Vi.

Restricted Contractibility. We address the following more general problem. We want to find a planarizing
set S of size at most k that satisfies an additional restriction: a monadic second-order logic (MSOL) formula
P (S,G) fixed for the problem.1

Problem: P -RestrictedContract
Input: An undirected graph G and an integer k.

Output: Is there a planarizing set S ⊆ E(G) of size at most k satisfying
P (S,G) that when contracted produces a planar graph?

We want to construct an FPT algorithm for this problem with respect to the parameter k. This is not
possible for every MSOL formula P (S,G). For some formulas, the problem is already NP-hard even for
k = 0. For instance, let P (S,G) be the formula: “For S = ∅, is G ◦ S a 3-colorable graph?” Then the
problem P -RestrictedContract is equivalent to testing 3-colorability of planar graphs which is known
to be NP-complete [10].

In this paper, we describe an FPT algorithm which works as follows. Either the graph is simple (of small
tree-width) and the problem can be solved in a brute-force way. Or we find a small part of the graph which
we can prove to be far from any inclusion-minimal planarizing set. We modify the graph by contracting this
small part, and repeat the process. Therefore, we need to restrict ourselves to MSOL formulas for which
satisfiablity is not changed by this modification.

An MSOL formula P is inclusion-closed if for every S satisfying P also every S′ ⊆ S satisfies P . This
property is necessary since the algorithm looks for inclusion-minimal planarizing sets. A set B of edges of G
is called inert if it is not incident with any edge of any inclusion-minimal planarizing set S; see Fig. 2a for
an example. A formula P is called inert contraction-closed if the following holds for every inclusion-minimal
planarizing set S and every inert set B

P (S,G)⇐⇒ P (S,G ◦B)

Therefore the modification by contraction of inert edges does not change solvability of the problem.

1More precisely, we have different formulas Pk(e1, . . . , ek) for each k where S = {e1, . . . , ek}. So the length of the formula
may depend on k.
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Figure 2: (a) Every inclusion-minimal planarizing set S contains one edge in each K5. Therefore, inert sets are subsets
of the highlighted edges. (b) The connected components of a planarizing sets S act as clusers. After contracting S, each
cluster corresponds to one vertex in G′. Two vertices in G′ are adjacent if and only if there exists an edge in G between the
corresponding clusters.

Theorem 1.1. For every inclusion-closed and inert contraction-closed MSOL formula P , the problem P -
RestrictedContract is solvable in time O(n2f(k)) where n is the number of vertices of G and f is a
computable function.

Our algorithm uses an approach developed by Grohe [11] which shows that there is a quadratic-time
FPT algorithm for crossing number. The most significant difference is the proof of Lemma 2.3. We cannot
use the same approach as that of [11] because k-contractible graphs do not have bounded genus [12] which is
essential in [11]. Further, our approach in the proof of Lemma 2.3 can be modified for the crossing number
which simplifies the argument of Grohe [11]; see Section 4.

For a trivial formula P that is true for every set of edges, we get the k-contractibility problem considered
above. We note that k-contractibility was independently proved to be solvable in time O(n2+εf̄(k)) for
every ε > 0 in a recent paper of Golovach et al. [12]. The algorithm described here uses similar techniques
but has a better time complexity.

`-subgraph Contractibility. For different formulas P , we get problems different from k-contractibility
having new specific properties. As one particular example, we work with a problem which we call `-subgraph
contractibility. A graph is called `-subgraph contractible if and only if there exists a planarizing set S such
that its edges form disjoint connected subgraphs with at most ` vertices. For instance, for ` = 2 the
planarizing set S is required to be a matching, see Fig. 3.

Problem: `-SubContract
Input: An undirected graph G and an integer k.

Output: Is G `-subgraph contractible by a set S having at most k edges?

Contraction of a set S can be interpreted as graph clustering, see Fig. 2b. We want to find clusters such
that the resulting cluster graph is planar. For `-subgraph contractibility, every cluster has to be of size at

S G G′

Figure 3: For ` = 2, when we require that a planarizing set S is a matching, a smallest planarizing set contains three edges.

3



most `. In comparison to k-contractibility, the contracted edges have to be more equally distributed in G,
and thus the contractions do not change the graph too much.

From a graph drawing perspective this approach offers a drawing such that all crossings happen in
disjoint areas nearby the clusters and the rest of the meta-drawing is crossing-free. Such a meta-drawing
resembles well the original graph and can be well grasped by a glance from the distance. The local crossings
get inspected by taking a magnifying glass for particular clusters.

If ` = 1, the problem is solvable in linear time as it becomes just planarity testing. For ` ≥ 2, we prove:

Proposition 1.2. For ` ≥ 2, the problem `-SubContract is NP-complete.

Since `-subgraph contractibility can be expressed using MSOL formulas, we get the following corollary
of Theorem 1.1.

Corollary 1.3. For every fixed `, the problem `-SubContract can be solved in time O(n2f ′`(k)) where n
is the number of vertices and f ′l is a computable function.

Paper Layout. In Section 2, we describe our FPT algorithm for the P -RestrictedContract problem.
In Section 3, we deal with the `-SubContract problem. Last, in Section 4, we show how to simplify the
proof of Grohe [11].

2. Restricted Contractibility is Fixed-Parameter Tractable

Let P be a fixed inclusion-closed and inert contraction-closed MSOL formula. In this section, we show
that the problem P -RestrictedContract is fixed-parameter tractable with respect to the parameter k.
Namely, we describe an algorithm which solves P -RestrictedContract in time O(n2 · f(k)) for some
function f .

The basic structure of our algorithm is based on the following idea invented by Grohe [11]. If the graph
has a small tree-width, we solve the problem by Courcelle’s Theorem [13]. If the tree-width is large, we find
an embedded large hexagonal grid and produce a smaller graph to which we apply the procedure recursively.

2.1. Definitions

We first introduce notation similar to that of Grohe’s in [11].

Topological Embeddings. A topological embedding h : G ↪→ H of G into H consists of two mappings:
hV : V (G) → V (H) and hE : E(G) → P (H), where P (H) denotes set of all paths in H. These mappings
must satisfy the following properties:

• The mapping hV is injective, distinct vertices of G are mapped to distinct vertices of H.

• For distinct edges e and f of G, the paths hE(e) and hE(f) are distinct, do not share internal vertices
and share possibly at most one endpoint.

• If e = uv is an edge of G then hV (u) and hV (v) are the endpoints of the path hE(e). If w is a vertex
of G different from u and v then path hE(e) does not contain the vertex hV (w).

G H

→֒֒→

Figure 4: An example of a topological embedding G ↪→ H.
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Figure 5: Hexagonal grids H1, H2 and H3. Inside H2, the principal cycles C1 and C2 are depicted in bold. Inside H3, the
principal subgrid H2

3 is shown.

For an example, see Fig. 4.
It is useful to notice that there exists a topological embedding h : G ↪→ H, if there exists a subdivision

of G which is a subgraph of H. For a subgraph G′ ⊆ G, denote by h � G′ the restriction of h to G′. For
simplicity, we use the term embeddings instead of topological embeddings.

Hexagonal grid. We define recursively the hexagonal grid Hr of radius r (see Fig. 5). The graph H1 is
a hexagon (the cycle of length six). The graph Hr+1 is obtained from Hr by adding 6r hexagonal faces
around Hr as indicated in Fig. 5.

The nested principal cycles C1, . . . , Cr are called the boundary cycles of H1, . . . ,Hr . From the inductive
construction of Hr, Hk is obtained from Hk−1 by adding Ck and connecting it to Ck−1. A principal subgrid
Hs

r where s ≤ r denotes the subgraph of Hr isomorphic to Hs and bounded by the principal cycle Cs of Hr.

Flat Topological Embeddings. Let H be a subgraph of a graph G. An H-component C of G is

• either a connected component of G \ H together with the edges connecting C to H and its incident
vertices, or

• an edge e = uv and the incident vertices u and v such that u, v ∈ V (H) and e /∈ E(H).

The endpoints of edges of C contained in H are called the vertices of attachment of C. Figure 6a illustrates
the notion of H-components.

Let G be a graph and let h : Hr ↪→ G be an embedding of a hexagonal grid in G. A vertex v ∈ h(Hr)
is called inner if v ∈ h(Hr) \ h(Cr). An h(Hr)-component C is called proper if C has at least one vertex of
attachment in h(Hr) \h(Cr), namely, the component is attached to an inner vertex of the grid. Let h+(Hr)
denote the union of h(Hr) with all proper h(Hr)-components. Notice that the proper h(Hr)-components
may be obstructions to the planarity of h+(Hr). The embedding h is called a flat embedding if h+(Hr) is a
planar graph. For an example, see Fig. 6b.

Tree-width. For a graph G, its tree-width is an integer k which describes how “similar” is G to a tree [14].
For our purposes, we use tree-width as a black box in our algorithm. The following two properties of
tree-width are crucial.

C1

H

C2

C3(a)

C1

C2

C3

(b)

h+(H3)

Figure 6: (a) H-components C1, C2 and C3 of G. (b) A subgraph h+(H3) consisting of h(H3) and three proper components
C1, C2 and C3 having attachments to inner vertices of h(H3) (highlighted in bold). The embedding h is not flat since C3

obstructs planarity.
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Theorem 2.1 (Robertson and Seymour [15], Boadlaender [16], and Perkovic̀ and Reed [17]).
For every s ≥ 1, there is t ≥ 1 and a linear-time algorithm that, given a graph G, either (correctly) recognizes
that the tree-width of G is at most t or returns an embedding h : Hs ↪→ G.

Theorem 2.2 (Courcelle [13]). For every graph G of tree-width at most t and every MSOL formula ϕ,
there exists an algorithm that decides the formula ϕ on G in time O(n · g(t, |ϕ|)), where n is the number of
vertices of G.

2.2. The algorithm

Overview. The general outline of the algorithm is as follows. It proceeds in two phases. The first phase
deals with graphs of large tree-width and repeatedly modifies G to produce a graph of small tree-width.
In addition, we keep a set F ⊆ E of forbidden edges for contractions. Initially, F is empty and during
the modification some edges are added. The second phase reduces P -RestrictedContract to solving an
MSOL formula which is done by Courcelle’s Theorem 2.2.

Phase I. We first prove the following lemma, which states that in an embedded large hexagonal grid Hs

into G, we either find a flat hexagonal grid Hr (smaller than Hs), or else G is not k-contractible. This
lemma represents the most significant difference from the paper of Grohe [11], as illustrated in Section 4.

Lemma 2.3. Let G be a k-contractible graph. For every r ≥ 1, there exists s ≥ 1 such that for every
embedding h : Hs ↪→ G there is some subgrid Hr ⊆ Hs such that h � Hr is a flat embedding.

Proof. For given r and k, we fix s and t large enough as follows: We choose s ≈ 2kt so that Hs contains
2k + 1 disjoint subgrids Ht1 , . . . ,Ht2k+1

of radius t. Let H ′ti , formerly denoted by Ht−2
ti , be the principal

subgrid of Hti obtained from Hti by removing the two outermost layers. We choose t ≈ (7r + 10)k so that
each principal subgrid Ht−10k−7

ti contains 7k + 1 disjoint subgrids Hti,r1 , . . . ,Hti,r7k+1
of radius r.2 In this

way, we get the hierarchy of nested subgrids as in Fig. 7:

Hs ) Hti ) H ′ti ) Hti,rj , where 1 ≤ i ≤ 2k + 1, 1 ≤ j ≤ 7k + 1.

10k + 5 10k + 5 10k + 5 10k + 5
· · ·Ht1,r1 Ht1,r7k+1

Ht2k+1,r1
Ht2k+1,

r7k+1

· · · · · ·

Hs

H
t−10k−7

t1
H

t−10k−7

t2k+1

H
′

t1
H

′

t2k+1

Ht1 Ht2k+1

Figure 7: The hierarchy of the hexagonal grids nested in Hs.

2Actually just s ≈
√

2kt and t ≈
√

7kr + 10k would be sufficient.
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v
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Figure 8: The component C acts as a bridge allowing two non-crossing paths across the grid. Thus we can embed K3,3 into
h(Hti ).

We next argue using the pigeon-hole principle that for some Hti,rj the embedding h � Hti,rj is a flat
embedding.

Since we are assuming that G is k-contractible, we can fix a corresponding planarizing set S and consider
one subgrid Hti . Let a cell be the h-image of a hexagon of H ′ti . We call an h(Hti)-component bad if it
contains an edge from S. A cell is considered bad if it contains an edge of S or if there is at least one
bad h(Hti)-component attached to the cell. Since bad cells have some obstructions to planarity attached to
them, we will exhibit some grid Hti,rj such that its embedding h(Hti,rj ) avoids all bad cells.

To proceed, call an h(Hti)-component C large if it has two vertices of attachment of C in h(H ′ti) which
do not belong to one cell of H ′ti . As an example, in Fig. 6b (when H3 = H ′ti) the component C3 is large,
but C1 and C2 are not. Large h(Hti)-components posses the following useful properties which we prove
afterwards in a series of claims.

1. If an h(Hti)-component is large, then we can embed K3,3 into h+(Hti). This implies that there must
be some Hti having no large h(Hti)-component, otherwise the graph would not be k-contractible.

2. On the other hand, if a bad h(Hti)-component is not large, it can produce at most seven bad cells.
This implies that h(Hti) must have a number of bad cells bounded by 7k and therefore for some j,
the embedding h(Hti,rj ) contains no bad cells and it is a flat embedding.

Claim 2.4. Let C be a large h(Hti)-component. Then we can embed K3,3 into h+(Hti) such that K−3,3 :=
K3,3 − e is embedded into the grid h(Hti).

Proof of Claim. Instead of a tedious formal proof, we illustrate the main idea in Fig. 8. If C is large, it
has two vertices u and v in h(H ′ti) not contained in one cell. Thus there exists a path P going across the
grid “between” u and v. Using C as a “bridge” from u to v, we can cross P by another path across the grid.
These two paths together with the two outer layers of h(Hti) allow to embed K3,3 into h+(Hti) such that
K−3,3 is embedded into h(Hti). �

Claim 2.5. There is some Hti such that there is no large h(Hti)-component.

Proof of Claim. According to the above claim, if there exists a large h(Ht`)-component, we can embed
K3,3 into h+(Ht`). Since G ◦ S is a planar graph, this embedding of K3,3 has to be contracted by S. To
contract it, there has to be an edge e ∈ S incident with h(K−3,3), otherwise G◦S still contains an embedding
of K3,3. Therefore e is incident with h(Ht`). We know that |S| ≤ k and each edge in S is incident with
at most two grids h(Ht`). Since we have 2k + 1 disjoint grids, there is some Hti such that no edge of S is
incident with h(Hti).

3 Therefore, there is no large h(Hti)-component. �

Claim 2.6. For Hti having no large h(Hti)-component, h(H ′ti) contains at most 7k bad cells.

3By a more refined analysis, one can show that only k + 1 disjoint grids suffice. The reason is that if an edge is incident to
two grids, it contracts neither of the embeddings h(K3,3).
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Proof of Claim. Let e ∈ S. Each h(Hti)-component C is not large, so it is attached to at most seven
cells of h(H ′ti). Therefore, if e ∈ C, we get at most seven bad cells. If e belongs to a cell directly, we get two
bad cells. Since |S| ≤ k, we get at most 7k bad cells. �

By the pigeon-hole principle, there exists one of h(Hti,r1), . . . , h(Hti,r7k+1
) containing no bad cells, and

we denote it by Hti,rj .

Claim 2.7. For Hti having no large h(Hti)-component and h(Hti,rj ) having no bad cells, the embedding
h � Hti,rj is a flat embedding.

Proof of Claim. Since h(Hti,rj ) contains no bad cells, clearly it contains no edges of S. Let C be a
proper h(Hti,rj )-component, it remains to show that C∩S = ∅. Notice that all above claims involve h(Hti)-
components, so we need to relate C to them. If C is an edge, let C ′ = C. If C contains an edge with
one endpoint in h(Hti,rj ) and another endpoint in h(Hti) \ h(Hti,rj ), let C ′ be this edge. Otherwise let C ′

be a component of C \ h(Hti) together with the edges connecting C ′ to h(Hti) and its incident vertices,
and assume that C ′ is attached to an inner vertex u of h(Hti,rj ); it always exists. Observe that C ′ is a
h(Hti)-component.

Since h(Hti,rj ) contains no bad cells, C ′∩S = ∅. Also, C ′ is not attached to any vertex of h(H ′ti \Hti,rj ),
otherwise it would be a large component. It remains to show that C ′ is not attached to any vertex of
h(Hti \H ′ti) as well. This concludes the proof since C ∩ h(Hti \Hti,rj ) = ∅, so C = C ′ and C ∩ S = ∅.

Suppose that C ′ is attached to v ∈ h(Hti \H ′ti). By our assumption, u and v are at least 10k + 5 layers

of the grid h(Hti) apart. By the pigeon-hole principle, there exist 5 consecutive layers L = h(Hq
ti \H

q−5
ti )

of the grid h(H ′ti \Hti,rj ) such that no edge of S is incident with them. Using L, we can embed K3,3 into
h+(Hti) ◦ S; see Fig. 9. We embed K3,3 − e into the middle three layers of L. The remaining edge e is
embedded in the outer/inner layers of L, together with a path in h(Hti) ∪ C ′ \ L, using a path from u to v
through C ′ as a bridge. Since edges of S are not incident with L, they are not incident with the embedding
of K3,3 − e, so K3,3 remains in G ◦ S, contradicting that S is a planarizing set. �

Following the above claims, we get for Hr = Hti,rj a flat embedding h � Hr, concluding the proof. �

The next lemma shows that a small part of h+(Hr), where Hr is the hexagonal grid which we got from
Lemma 2.3, is never contracted by a minimal set S. Let the core K of h+(Hr) denote the h-image of the
central principal cycle h(C1) together with the h(Hr)-components attached only to h(C1).

C ′

Hti,rj

Hti

H ′

ti

u

v

K3,3

→֒

Figure 9: When 5 consecutive layers of h(Hti \Hti,rj ) (depicted with dots) avoid the edges of S, we can use the component
C′ to embed K3,3.
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K O′

R+

I ′

(a) (b)

Ri R
+

i

Figure 10: (a) An example of a ring Ri and an extended ring R+
i . (b) The extended ring R+ (in bold) splits G′ \ R into an

outer part O′ and an inner part I′. The inner part is connected and contains H2i−1
r and K.

Lemma 2.8. Let G be a k-contractible graph and let S be a minimal planarizing set of G. Let h : Hr ↪→ G,
where r ≥ 4k + 3, be a flat embedding and let K be the core of h+(Hr). Then the edges of G incident with
the vertices of K do not belong to S.

Proof. We define a ring Ri as h(H2i+1
r \ H2i−1

r ), i.e., it is the h-image of the two consecutive principal
cycles of Hr together with the edges between them. An extended ring R+

i is the union of Ri with all the
h(Hr)-components having all vertices of attachment in Ri. See Fig. 10a. Consider 2k + 1 disjoint extended
rings R+

1 , . . . , R
+
2k+1 and notice that for some i, no edge of S is incident with a vertex of R+

i . Denote

R := Ri, R
+ := R+

i and the principal cycles of this ring as Couter := h(C2i+1) and Cinner := h(C2i).
The graph G′ := G ◦ S is planar with a planar embedding ∆′ as follows; see Fig. 10b. The ring R itself

is a subdivision of a 3-connected graph, and therefore it has a unique embedding up to the choice of an
outer face. We choose a drawing having Couter as the outer face of ∆′ � R. For the extended ring R+, the
embedding of the attached components is not unique, but they are attached somehow to R.

Now, G′ \ R+ is split by R+ into two parts: the inner part I ′ lying inside the face bounded by Cinner

and the outer part O′ inside the outer face bounded by Couter. Moreover, we can assume for ∆′ that I ′ is
connected, containing h(H2i−1

r ) ◦ S. The reason is that a connected component of I ′, not containing the
grid, is a separate component of G′, so we choose ∆′ such that it is drawn into the outer face.

Since contraction does not change connectivity in G and all contractions avoid R+, the subgraph G\R+

is separated into parts I (containing h(H2i−1
r ) and especially K) and O (containing the rest) such that

I ◦ S = I ′ and O ◦ S = O′ with no edges between I and O. We show next that the minimality of S forces
that I ∩ S = ∅.

We take the embedding ∆′, remove ∆′ � I ′ and replace it with some embedding of I. Since h(Hr) is a
flat embedding, the graph h+(Hr) is planar, so in particular the subgraph induced by R+ ∪ I is planar. We
consider one of its planar embeddings ∆ having I embedded into the inner face of R+. Since ∆ � I has the
same orientation of edges to R as ∆′ � I ′, it is possible to replace the embedding of I ′ in ∆′ by ∆ � I. This
means that it is not necessary to contract the edges of I and therefore I ∩ S = ∅. The statement follows
since K and its incident edges belong to I. �

We note that the algorithm just contracts K and not the whole I since we do not know which extended
ring R+

i avoids edges of S.
Recall that F is the set of forbidden edges to contract. If the graph G is k-contractible by a planarizing

set S such that S ∩ F = ∅, we say that G is (k, F )-contractible. As we proceed with our algorithm, we use
Lemma 2.8 to modify the input G and F to a smaller graph G′ and an extended set F ′ as follows. The core
K is contracted into a single vertex v, so G′ := G ◦K. Let Ev be the set of edges incident with v. We add
them to F , so F ′ := F ∪ Ev. Figure 11 depicts this modification.

9



K

G G′

v
Ev

Figure 11: The graph is modified by contraction of the core K and adding its incident edges Ev to F .

Lemma 2.9. The graph G is (k, F )-contractible if and only if the graph G′ is (k, F ′)-contractible.

Proof. According to Lemma 2.8, a minimal planarizing set S for G avoiding F does not contain any edges
of K and also the edges of G from which F ′ arises in G′. Therefore, it is also a planarizing set of G′ avoiding
F ′.

On the other hand, assume that G′ has a planarizing set S disjoint from F ′ of size at most k. We want
to show that S is also a planarizing set for G. We consider an embedding of G′ ◦ S and we replace the
vertex created by contracting the core K by an embedding of K in a manner completely analogous to the
one described in the proof of Lemma 2.8. We get a planar embedding of G ◦ S. �

Phase II. If the graph G is k-contractible by a planarizing set S such that S∩F = ∅ and P (S,G) is satisfied,
we say that G is (k, F )-contractible with respect to P . As we process our algorithm, we use Lemma 2.8 to
modify We show next that when the tree-width of G is small, we can solve (k, F )-contractibility with
respect to P using Courcelle’s theorem [13]. To this effect all we need to show is that it is possible to express
(k, F )-contractibility in the monadic second-order logic (MSOL).

Lemma 2.10. For a fixed graph H, there exists an MSOL formula µH(S,G) which is satisfied if and only
if G′ := G ◦ S contains H as a minor.

Proof. We modify a well-known formula µ̃H(G) for testing whether H is a minor of G. For |H| = `, the
formula µ̃H(G) tests whether there exist disjoint sets of vertices V1, . . . , V` (representing the sets of vertices
contracted to vertices of H) such that

• for every vivj ∈ E(H) there exists an edge between Vi and Vj in G, and

• each set Vi is connected in G.

Let S = {e1, . . . , ek} and ej = xjyj . To test whether H is minor in G′, we require for every j ∈ {1, ..., k}
that each Vi either contains both endpoints of ej , or none of them. Formally,

µH(S,G) = µ̃H(G) ∧
∧

1≤i≤`
1≤j≤k

(xj ∈ Vi ⇐⇒ yj ∈ Vi).

�

Lemma 2.11. There exists a formula ϕk(F,G) which is satisfiable if and only if G is (k, F )-contractible
with respect to the MSOL formula P .

Proof. This formula is defined as follows:

ϕk(F,G) := ∃S ⊆ E(G) : |S| ≤ k ∧ (S ∩ F = ∅) ∧ P (S,G) ∧ ¬µK5(S,G) ∧ ¬µK3,3(S,G). �

Putting all the Pieces Together. We finish this section with a proof of the announced Theorem 1.1,
stating that P -RestrictedContract for an inclusion-closed and inert contraction-closed MSOL formula
P (S,G) is solvable in time O(n2 · f(k)) for some function f .
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Algorithm 1 P -RestrictedContract

Require: A graph G and an inclusion-closed and inert contraction-closed formula P (S,G).
Ensure: A planarizing set S of size at most k satisfying P (S,G) if it exists.

1: Initialize the set of forbidden edges F := ∅.
2: Depending on k, choose suitable s ≥ 1 and t ≥ 1 for Theorem 2.1.

3: while the tree-width of G is larger than t do
4: Find an embedding h : Hs ↪→ G using Theorem 2.1.
5: Find a subgrid Hr such that h � Hr is a flat embedding as described in Lemma 2.3.
6: Modify the graph as G := G ◦K and F := F ∪ Ev.
7: end while

8: return a planarizing set S satisfying ϕk(F,G) using Theorem 2.2 if it exists.

Proof (Theorem 1.1). See Algorithm 1 for a pseudocode; Phase I corresponds to steps 3 to 7, Phase
II corresponds to step 8. Depending on k, we choose a suitable value for s so we can apply Lemmas 2.3
and 2.8. By Theorem 2.1, there is a corresponding value of t.

We repeat Phase I till the tree-width of G becomes at most t. Every iteration of Phase I first finds
embedding h of a large hexagonal grid Hs, by Theorem 2.1 in linear time. Using Lemma 2.3, there exists
a subgrid Hr such that h(Hr) is flat. Moreover, we can find such Hr in time O(k2n) by testing planarity
for all h+(Hti,rj ). We contract the kernel K and we modify the graph G and the set of forbidden edges F .
Lemmas 2.8 and 2.9 show that this modification does not change the solvability of the problem. After each
modification, we get a smaller graph G. Therefore we need to repeat this at most O(n) times, so the total
running time of Phase I is O(n2 · p(k)) for some function p.

Let G denote the original graph and let G′ denote the modified graph and let F ′ denote the set of
forbidden edges created by Phase I. Phase II uses Theorem 2.2 to solve the MSOL formula ϕk(F ′, G′) in
time O(n · q(k)). By Lemmas 2.3, 2.8 and 2.9, the modified graph G′ is (k, F ′) contractible if and only if the
original graph is k-contractible. It remains to show that none of the modifications changes the satisfiability
of P (S,G). Since P (S,G) is inclusion-closed, we can concentrate on inclusion-minimal planarizing sets in G
and G′. Further by Lemma 2.8, each modification contracts some inert edges which are not incident with any
inclusion-minimal planarazing set S. Since P (S,G) is inert contraction-closed, none of these modifications
changes the solvability of P (S,G). So testing ϕk(F ′, G′) correctly tests whether G is k-contractible with
respect to P (S,G).

The overall complexity of the algorithm is O(n2 · f(k)) for some function f . �

3. `-subgraph Contractibility

We first establish Corollary 1.3 which states that for a fixed `, testing `-subgraph contractibility can be
done in time O(n2 · f ′`(k)) for some function f ′`. It follows from Theorem 1.1 and the fact that `-subgraph
contractibility is expressible using MSOL.

Proof (Corollary 1.3). We just describe in words how to construct the MSOL formula P and we check
that P is inclusion-closed and inert contraction-closed. The length of the formula may depend on k and
`. The formula P tests whether there exists a decomposition of the edges in S into pairwise disjoint sets
E1, . . . , Ek satisfying the following properties. Let V1, . . . , Vk denote the corresponding sets of vertices
incident with E1, . . . , Ek, respectively. The formula P is satisfied if and only if |Vi| ≤ ` for each i and the
sets V1, . . . , Vk are pairwise disjoint. This solves `-subgraph contractibility and is an inclusion-closed MSOL
formula.

It remains to show that P is inert contraction-closed. Assume that P (S,G) is satisfiable and let S be
an inclusion-minimal planarizing set satisfying P (S,G). For every inert set B, by definition, no edge of
B is incident with an edge of S. Therefore S is a planarizing set of G ◦ B consisting of `-subgraphs, and
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P (S,G ◦ B) is satisfiable. For the other implication, if S is an inclusion-minimal planarizing set satisfying
P (S,G ◦B), then it also satisfies P (S,G). The reason is that B is inert, so no edge of S is incident with an
edge of B. Therefore, S is a planarizing set of G consisting of `-subgraphs. �

Matching Contractibility. In the rest of this section, we establish NP-completeness of `-SubContract.
To do so, we first introduce a new problem called matching contractibility. The graph G is F -matching
contractible with respect to a set of edges F if there exists a planarizing set S which forms a matching in G
and S ∩ F = ∅.

Problem: MatchingContract
Input: An undirected graph G and a set of forbidden edges F ⊆ E.

Output: Is G an F -matching contractible graph?

First, we show that `-subgraph contractibility can solve matching contractibility.

Lemma 3.1. Matching contractibility is polynomial-time reducible to `-subgraph contractibility, for any fixed
`.

Proof. For an input G and F , we produce a graph G′ which is `-subgraph contractible if and only if G is
F -matching contractible. We replace the edges of G by paths:

• if e ∈ F , then we replace it by a path of length `, and

• if e /∈ F , then we replace it by a path of length `− 1.

Also, we put k = |E(G′)| so only `-subgraphs restrict a planarizing set.
If a planarizing set S is a matching in G avoiding F , then we can contract the corresponding paths in

G′ by `-subgraphs. On the other hand, let S′ be a planarizing set of G′ consisting of `-subgraphs. First,
we ignore each `-subgraph which does not contract one of the paths of length ` − 1, since its contraction
preserves the topological structure of the graph. If a path in G′ corresponding to e ∈ E(G) is contracted, it
has to be contracted by a single `-subgraph. In such a case, e /∈ F , otherwise the path is too long. Also, the
contracted paths have to form a matching since the `-subgraphs cannot share the end-vertices belonging to
G. So the planarazing set S′ of G′ gives a planarizing set S of G which is a matching and which avoids F .�

Overview of the Reduction. To show NP-hardness of MatchingContract, we present a reduction
from Clause-Linked Planar 3-SAT. An instance I of Clause-Linked Planar 3-SAT is a Boolean
formula in CNF such that each variable occurs in exactly three clauses, once negated and twice positive,
each clause contains two or three literals and the incidence graph of I is planar. Fellows et al. [18] show
that this problem is NP-complete.

Given a formula I, we construct a graph GI with a set FI of forbidden edges such that GI is FI -matching
contractible if and only if I is satisfiable. The construction has a variable gadget Gx for each variable x,
and a clause gadget Hc for each clause c. All variable gadgets Gx are isomorphic and we have two types
of clause gadgets Hc, depending on the size of c. These gadgets consist of several copies of the graph K5

with most of the edges in FI . In Fig. 12, the edges not contained in FI are represented by bold lines. Each
variable gadget contains three pendant edges that are identified with certain edges of the clause gadgets,
thus connecting the variable and clause gadgets.

Variable Gadget. Let x be a variable which occurs positively in clauses c1 and c2, and negatively in a
clause c3. The corresponding variable gadget Gx is depicted in Fig. 12a. It consists of four copies of K5,
each having all but two edges in FI . Three of the copies of K5 have pendant edges attached, denoted by

e(x, ci) = v(x, ci)w(ci), i ∈ {1, 2, 3};

refer to Fig. 12a. These edges also belong to the clause gadgets Hc1 , Hc2 and Hc3 . All other vertices and
edges are private to the variable gadget Gx.
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Figure 12: The bold edges can be contracted and the dashed edges are forbidden edges from FI . (a) The variable gadget Gx

where the three outgoing edges are shared with clause gadgets Hc1 , Hc2 and Hc3 . (b) The clause gadget Hc. The edge e(z, c)
may also be in FI if the clause contains only two variables x and y. The two or three contractible edges are shared with variable
gadgets Gx, Gy and possibly Gz .

The main idea behind the variable gadget is that exactly one of the edges tx and fx is contracted. This
encodes the assignment of the variable x as follows: the edge tx is contracted for true and fx for false.
The edges e(x, c1) and e(x, c2) shared with the clause gadgets Hc1 and Hc2 , can be contracted only if tx is
contracted, and e(x, c3) shared with Hc3 can be contracted if and only if fx is contracted.

Clause Gadget. Let c be a clause containing variables x, y and possibly z. The clause gadget Hc is the
graph K5 with all but 2 or 3 edges in FI . The edges that are not forbidden to contract share a common
vertex w(c) and they are the edges e(x, c), e(y, c) and possibly e(z, c) shared with the variable gadgets Gx,
Gy and possibly Gz; see Fig. 12b.

To make the clause gadget planar, we need to contract exactly one of the edges e(x, c), e(y, c) and
possibly e(z, c). This is possible only if the clause is satisfied by the corresponding variable evaluated as
true in this clause.

Lemma 3.2. The graph GI is FI-matching contractible if and only if I is satisfiable.

Proof. =⇒: Suppose first that GI is FI -matching contractible, and let S ⊆ E(GI) \ FI be a matching
planarizing set. Using S, we construct a satisfying assignment of I. Consider a variable x. In Gx, each copy
of K5 needs to have at least one edge contracted by S.

Exactly one of tx and fx is in S. If tx ∈ S, then t′x cannot be in S (note that S is a matching), hence
e′(x, c3) ∈ S, and e(x, c3) cannot be in S. On the other hand, if tx /∈ S, necessarily fx ∈ S, and by a similar
sequence of arguments, none of e(x, c1) and e(x, c2) is in S.

We define a truth assignment for the variables of I so that x is true if and only if tx ∈ S. It follows that
if x appears as a false literal in a clause c, then the edge e(x, c) is not in S. Since S contains exactly one
edge of Hc, in each clause gadget at least one literal must be evaluated to true. Thus I is satisfiable.

⇐=: Suppose that I is satisfiable and fix a satisfying truth assignment φ. We set

S = {tx, f ′x, e(x, c1), e(x, c2), e′(x, c3) | φ(x) = true} ∪ {fx, t′x, e′(x, c1), e′(x, c2), e(x, c3) | φ(x) = false}.

The edges of S contained in variable gadgets form a matching. Each clause gadget contains at least one
edge of S. But if a clause, say c, contains more than one literal evaluated as true, then its clause gadget Hc

contains in S more edges with the common vertex w(c). In such a case, we perform a pruning operation on
Hc, i.e, remove all edges from S ∩ E(Hc) but one. The resulting set S′ is a matching such that each K5 in
GI contains exactly one edge of S′.

It only remains to argue that this set S′ is a planarizing set. The graph G′ = G ◦ S′ consists of copies
of K4 glued together by vertices or edges. Each copy is attached to other copies by at most three vertices.
Since K4 itself has a non-crossing drawing in the plane such that three of its vertices lie on the boundary
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of the outer face, and these vertices can be chosen arbitrarily as well as their cyclic order on the outer face,
the drawings of the variable and clause gadgets can be combined together along a planar drawing of the
incidence graph of I. Therefore, G′ is planar. �

This shows that `-SubContract is NP-complete for every ` ≥ 2:

Proof (Proposition 1.2). Clearly, `-SubContract belongs to NP. By Lemma 3.2 and [18], the problem
MatchingContract is NP-hard. Lemma 3.1 implies that `-SubContract is NP-hard. �

We note that the problem `-SubContract remains NP-complete when generalized to surfaces of a
fixed genus g (instead of planar graphs). Consider a graph Hg such that for every embedding of Hg into the
surface, each face is homeomorphic to the disk. We modify our reduction by taking GI ∪Hg as the graph
and by adding all the edges of Hg into F . For each surface, there exists such a graph Hg (see triangulated
surfaces in Mohar and Thomassen [19]).

4. Simplifying Grohe’s Approach

Grohe [11] gives an FPT algorithm for computing the crossing number k of a graph, in time O(n2f(k))
for some function f . Our FPT algorithm is based on his approach. On the other hand, we can simplify his
argument in a similar manner as in the proof of Lemma 2.3. We describe this simplification here.

Grohe uses Thomassen’s Theorem [20] which states the following:

Theorem 4.1 (Thomassen [20]). Let G be a graph of genus at most k. For every r ≥ 1, there is s ≥ 1
such that for every topological embedding h : Hs → G, there exists a subgrid Hr ⊆ Hs such that the restriction
h � Hr of h is flat.

This result can be used since for graphs the genus is upper bounded by the crossing number, so it works
as Lemma 2.3 in our FPT algorithm. With our simplification, we can completely avoid the notion of genus
which is independent of the notion of crossing number. Therefore, we do not need to consider the more
complicated theory of graphs on surfaces. Also, our proof is quite short and elementary.

Consider a plane drawing D of a graph G. The facial distance d(x, y) of vertices x, y in G is the minimal
number of intersections of D and a simple curve C connecting x and y, where C avoids the vertices of G.
Let cr(G) denote the crossing number of a graph G. We use Riskin’s Theorem [21]:

Theorem 4.2 (Riskin [21]). If G is a 3-connected cubic planar graph, then

cr(G+ xy) = d(x, y),

where G+ xy is the graph G with the added edge xy.

Lemma 4.3. Let G be a graph with cr(G) ≤ k. For every r ≥ 1, there is s ≥ 1 such that for every topological
embedding h : Hs → G, there exists a subgrid Hr ⊆ Hs such that the restriction h � Hr of h is flat.

Proof. Similarly as in Lemma 2.3, we define a hierarchy of grids as in Fig. 13. We choose s ≈ (k+ r) · k so
that Hs contains k+ 1 disjoint subgrids Ht1 , . . . ,Htk+1

of radius k+ r. Let H ′ti denote the principal subgrid
Hr

ti of Hti . In this way, we get the hierarchy:

Hs ) Hti ) H ′ti , where 1 ≤ i ≤ k + 1.

We want to show using the pigeon-hole principle that for some H ′ti the embedding h � H ′ti is a flat embedding.

Claim 4.4. Let C be an h(Hs)-component which has a vertex of attachment in h(H ′ti) \ h(Cr
ti), where Cr

ti
is the r-th principal cycle of Hti . Then C has no attachment vertices in h(Hs) \ h(Hti).

14



· · ·

Hs

H
′

t1
H

′

tk+1

Ht1
Htk+1

kk kk

Figure 13: The hierarchy of the hexagonal grids nested in Hs.

Proof of Claim. For contradiction, let x be an inner vertex of h(H ′ti) which is a vertex of attachment of
C, and let y be a vertex of attachment of C in h(Hs) \ h(Hti). Then there exists a path P from x to y with
no internal vertices in h(Hs). Consider h(Hs) together with P and apply Riskin’s Theorem 4.2. (We note
that subdividing a graph preserves the crossing number.) Since the face distance d(x, y) is at least k + 1,
we get that cr(G) > k which is a contradiction. �

Let Gi be the graphs h(Hti) together with h(Hti)-components with vertices of attachment in h(H ′ti) \
h(Cr

ti) (which are also h(Hs)-components, by the previous claim).

Claim 4.5. Let Gi be the graph defined above. If Gi is planar, then the embedding h � H ′ti is flat.

Proof of Claim. Let C be a proper h(H ′ti)-component. Exactly as in the proof of Claim 2.7, we construct
from C a proper h(Hti)-component C ′. Since C ′ has a vertex of attachment in h(H ′ti) \ h(Cr

ti), it belongs
to Gi.

The graph h(Hti) is a subdivision of a 3-connected planar graph, so it has a unique embedding into
the plane having h(Cr+k

ti ) as the outerface. Since Gi is planar, the component C ′ has to be embedded
into a face bounded by a cell of h(H ′ti) (which is the h-image of a hexagon of H ′ti). Therefore, C ′ has no
vertices of attachment in h(Hti) \ h(H ′ti) and C = C ′. Thus, h+(H ′ti) is constructed from Gi by removing
h(Hti) \ h(H ′ti), so it is planar. �

By Claim 4.4, graphs G1, . . . , Gk+1 are pairwise disjoint. Since cr(G) ≤ k, by the pigeon-hole principle,
some Gi is planar. By Claim 4.5, the embedding h � H ′ti is flat. �

5. Open Problems

We conclude this paper with several open problems.

Problem 1. Let P (S,G) be an inclusion-closed and inert contraction-closed MSOL formula. Can the prob-

lem P -RestrictedContract be solved in time O(n · f̃(k))?

Problem 2. Consider the generalization of P -RestrictedContract which asks whether there exists a
set S ⊆ E(G) such that |S| ≤ k and G ◦ S is a graph of genus at most g. Is this problem fixed-parameter
tractable with the parameter k?

In generalizing our approach, the main difficulty lies in Lemma 2.3.
Asano and Hirata [6] proved that for an MSOL formula P (S,G) which is always satisfied P -

RestrictedContract is NP-complete. In Section 3, we show this for one particular MSOL formula
P (S,G) which test whether S consists of `-subgraphs. The very natural question is for which formulas
P (S,G) it is NP-complete. Clearly, it is not for every formula P (S,G). For instance, if the formula P (S,G)
cannot be satisfied at all, the problem P -RestrictedContract can be solved by outputting “no” and
clearly belongs to P.
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Problem 3. For which MSOL formulas P (S,G) is the problem P -RestrictedContract NP-complete?

Theorem 1.1 shows that for every inclusion-closed and inert contraction-closed formula P (S,G), the
problem P -RestrictedContract can be solved in FPT time with respect to the parameter k. Can this
be strengthened?

Problem 4. For which MSOL formulas P (S,G) is the problem P -RestrictedContract solvable in FPT
time with respect to the parameter k?
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